
[image: Image]

Learning
MicroStation VBA

Jerry Winters

[image: Image]

Exton, PA
2006

LEARNING MICROSTATION VBA

First Edition

Copyright © 2006 Bentley Systems, Incorporated. All Rights Reserved.

Bentley, “B” Bentley logo, Bentley Institute Press, and MicroStation are either registered or unregistered trademarks or servicemarks of Bentley Systems, Incorporated or one of its direct or indirect wholly-owned subsidiaries. Other brands and product names are trademarks of their respective owners.

Publisher does not warrant or guarantee any of the products described herein or perform any independent analysis in connection with any of the product information contained herein. Publisher does not assume, and expressly disclaims, any obligation to obtain and include information other than that provided to it by the manufacturer.

The reader is expressly warned to consider and adopt all safety precautions that might be indicated by the activities herein and to avoid all potential hazards. By following the instructions contained herein, the reader willingly assumes all risks in connection with such instructions.

The publisher makes no representation or warranties of any kind, including but not limited to, the warranties of fitness for particular purpose of merchantability, nor are any such representations implied with respect to the material set forth herein, and the publisher takes no responsibility with respect to such material. The publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or part, from the readers' use of, or reliance upon, this material.

ISBN Number: 0-9714141-8-1

Library of Congress Control Number: 2006903498

Published by:

Bentley Institute Press

Bentley Systems, Incorporated

685 Stockton Drive

Exton, PA 19341

www.bentley.com

[image: Image]

Printed in the U.S.A.

[image: Image]

Foreword

John Gooding of Bentley Systems, Inc.

MicroStation VBA, the MicroStation V8 implementation of the Microsoft Visual Basic for Applications (VBA) engine, provides MicroStation users and developers with a large number of capabilities - from easy customization to tight integration with other Windows applications. With VBA, users can customize MicroStation to automate repetitive tasks that are specific to their needs.

Many users have discovered the simplicity of using VBA to make their jobs easier. The ability to use a standard user interface, the advantage of using one of the most popular programming languages in the world, and the ease of connecting and communicating with Microsoft Office and other applications are just some of the many things that VBA provides.

While MicroStation VBA is popular, you might be among those who are hesitant − perhaps even a bit leery − to explore programming in MicroStation. You shouldn’t be. VBA is the easiest environment to explore programming, and Learning MicroStation VBA is an excellent guide to help you do it yourself.

Too often, one-size-fits-all manuals lack either the appropriate grounding material a new user needs or the in-depth technical information experts require. However, Learning MicroStation VBA accomplishes the rare feat of serving both novice and expert users equally well. With the benefit of Jerry Winters' broad VBA expertise and his knowledge of MicroStation, that’s exactly what this comprehensive text accomplishes.

The introductory chapters thoughtfully and thoroughly step new users through the basics of Visual Basic for Applications. From his detailed review of VBA’s Integrated Development Environment, through his careful consideration of how and when to use forms and class modules, to his comprehensive explanation of object models, Jerry ensures that novice users not only have a how-to guide for working with VBA, but they can also benefit from his insight into how VBA tools can be best applied to create professional applications for MicroStation.

Expert VBA programmers will likewise find Jerry’s book an invaluable reference tool -- one that will help them exploit what VBA has to offer. Jerry’s overview of XML and the Windows API in MicroStation VBA, for instance, are sure to improve any programmer’s mastery.

But for the masses of MicroStation users, this book should help you finally put your programming fears to rest. Within these pages, you have all you need to start programming in MicroStation and automate your most common tasks.

[image: Image]

Contents

Introducing VBA

What is VBA?

Why Learn VBA?

When Should You Use VBA?

How Do We Use VBA?

What does VBA look like?

Review

The VBA Project Manager

VBA Project Manager Functionality

Macros Dialog Box

Review

The VBA IDE

Menus

File Menu

Edit Menu

View Menu

Insert Menu

Format Menu

Debug Menu

Run Menu

Tools Menu

Add-Ins Menu

Window Menu

Help Menu

Toolbars

Standard toolbar

Edit toolbar

Debug toolbar

UserForm toolbar

Windows

Project Explorer

Object Browser

Properties Window

Watch Window

Locals Window

Immediate Window

Call Stack Window

Toolbox Window

Other Windows

Review

Finding Help

Terminology

Help Files

Contents tab

Index tab

Search tab

Favorites tab

MicroStation VBA Help File

The Net

The Object Browser

Review

Modules, Forms, and Class Modules

Modules

Forms

Classes

Procedures and Functions

Returning an Array

Returning ‘Types’

Returning Objects

ByVal and ByRef

Declaring Variables

Option Explicit

Review

Variables

Standard VBA Variable Types

Integer

Long

Double

Boolean

Date

String

Object

Variant

MicroStation-Specific Variable Types

Application

DesignFile

ModelReference

Level

LineElement

EllipseElement

ArcElement

TextElement

Assigning Values and Setting Objects

Arrays

Constants

Variable Names

Case Sensitivity

Option Explicit

Using Variables

Review

Working With Text

VBA String Functions

UCase

LCase

StrConv

WeekDayName, WeekDayNumber

MonthName

LTrim, RTrim, Trim

StrComp

Len

Left

Right

Mid

Replace

InStr

InStrRev

Split and Join

Asc and Chr

FormatCurrency

FormatNumber

FormatDateTime

Format

&

vbCr

vbTab

Review

Working With Numbers

Numeric Functions

Addition

Subtraction

Multiplication

Division

Squares and Exponents

Square Root

Sine, Cosine, Tangent

Arc Tangent

Absolute Value

Convert to Integer, to Long, to Double, and Value

CLng

Fix

CDbl

Val

IsNumeric

Round

Mod - Find the Remainder

Sgn - Show me a sign

Rnd and Randomize

Order of Operations

Review

Standard VBA Calls

MessageBoxes

InputBox

Now!

DateAdd

DateDiff

Timer

FileDateTime

FileLen

MkDir

RmDir

Dir

Kill

Beep

SaveSetting

GetSetting

DeleteSetting

GetAllSettings

Reading and Writing to ASCII Files

FreeFile

Reading from ASCII Files

Controlling Code Execution

For … Next

While … Wend

Do … Loop

For Each … Next

If … Then

Select Case

Error Handling

Review

Visual Interface

Properties, Methods, and Events

Properties

Control Events

Common Control Properties

Name

Left, Top

Width, Height

Visible

Enabled

TabStop

TabIndex

Tag

ControlTipText

Label

TextBox

Properties

Events

ComboBox

Properties

Methods

Events

ListBox

Properties

Methods

Events

CheckBox

Properties

Events

OptionButton

Properties

Events

Toggle Button

Properties

Events

Frame

Properties

CommandButton

Properties

Events

Tab Strip

Properties

Methods

Events

MultiPage

Properties

Methods

Events

ScrollBar

Properties

Events

SpinButton

Properties

Events

Image

Properties

User Interface Exercises

Point List Reader

Write Out File

Zoom And Pan

Review

The MicroStation Object Model - Objects

The Object Browser

Auto List Members

MicroStation VBA Help File

Adding Watches

The MicroStation Object Model

Application Object

Review

The MicroStation Object Model - Enums

MsdDesignFileFormat

The Enumeration List

Review

The MicroStation Object Model - Types

Review

The MicroStation Object Model - Events

OnDesignFileOpened and OnDesignFileClosed

Review

Adding To Documents

Graphical Elements

Lines

Creating Shapes

Creating Circles

Creating Ellipses

Creating Arcs

Creating Text

Creating Cells

Creating New Documents

Security Issues with Creating Data

Review

Searching In Files

The Basics of Searching Files

Using ScanCriteria

Multiple Combinations of Criteria

Reviewing Three Collection methods

Scan Criteria Methods

Review

Interactive Modification

Giving Users Feedback and Information

Working With Selection Sets

Getting User Input

Some Real-World Applications

Using SendCommand

Modeless Dialog Boxes

frmMatchProperties.frm

Providing User Feedback and Information

UserForm Initialize

frmAlignText.frm

frmExportElements.frm

frmDFAV.frm

Interacting with MDL Applications

Review

Interface Essentials

Interface Basics

Class Module Review

Class Module Lifecycle

ILocateCommandEvents

LocateFilter Event

Accept Event

LocateReset Event

LocateFailed Event

Start Event

Cleanup Event

Dynamics Event

LocateCriteria

IPrimitiveCommandEvents

Optimizing The Dynamics Event

Review

Using MicroStation’s Built-In User Forms

Declaring MicroStation User Form Functions

The mdlDialog_fileOpen Function

The mdlDialog_fileCreate Function

The mdlDialog_fileCreateFromSeed Function

The mdlDialog_openAlert Function

The mdlDialog_openInfoBox Function

Review

Class Modules

Encapsulating Similar Functionality

Creating Objects with Properties, Methods, and Events

Using Class Modules with Collections

Accessing Objects in a Collection

Removing Objects from a Collection

Using Custom Class Modules

Review

VBA for CAD Managers

Using VBA for Maintaining Standards

Cross-Company Standards

Tracking Time

Drafters

Managers

Accountants

Auto-Load and Auto-Run

MS_VBA_OPEN_IN_MEMORY

Protecting Projects

Distributing VBA Projects

Working in High Security Mode

Review

MicroStation File-Based Events

OnDesignFileOpened

OnDesignFileClosed

ISaveAsEvents Interface

Review

Responding to MicroStation Attachment Events

The IAttachmentEvents Interface

AfterAttach

After Detach

AttachmentModified Event

BeforeAttach Event

BeforeDetach Event

Review

Model Events

Review

Level Events

The Active Event

The AfterCreate Event

The AfterDelete Event

The BeforeChangeActive Event

The BeforeDelete Event

The ChangeAttribute Event

Review

Change Track Events

BeginUndoRedo Event

Element Changed Event

Example 1

Example 2

Example 3

Example 4

Activating the ChangeTrackEvents Interface

Review

Non-Graphical Info - Databases

How MicroStation ‘link’ elements to Databases

Creating a Database from Scratch

Making Use of UDL Files

Linking MicroStation Elements to Database Records

Creating Database Records using SQL

Creating a User Interface to view Database Information

Review

Tags

Getting Information from Tags based on a Selection

Getting All Tags in a File

Working with Tagsets

Getting All Tags of All Files in a Folder

Changing a Tag’s Value

Changing multiple Tags in Multiple Files

Exporting Tag Information to a File

Review

XML

What is XML?

XML File Structure

Reading XML Files

Review

Batch Processing

Processing Files Listed in an ASCII File

Processing All Files in a Folder

Processing All Files in a Folder and SubFolders

Creating a User Interface for File Selection

Logging File Batch Processing

Using a Log File

Tracking Activities with a Database

Storing Information in the Registry

Logging Activities over the Internet

E-mailing Transaction Logs

Review

The Standards Checker

Basics of Implementing the Standards Checker

Standards Check A

Standards Checker Settings

Checking for Standards

Where we are at this point

Standards Checker Reporting

Automatically Loading Custom Standards Checker Add-Ins

Review

Using the Windows API

Declaring API Calls

Declaring Types

Utilizing API Calls

GetLogicalDrives

GetDriveType

GetComputerName

GetVersionEx

Sleep

FindExecutable

GetDiskFreeSpace

GetSystemMetrics

GetTickCount

GetUserName

GetWindowsDirectory

LogonUser

MessageBeep

PlaySound

ShellExecute

SHGetFileInfo

Review

Using Third Party ActiveX Controls and DLLs

Using ActiveX Controls

Using Existing DLLs

Microsoft Scripting Runtime

Microsoft Speech Object Library

Microsoft CDO for Windows 2000 Library

DSO OLE Document Properties Reader 2.0

Review

Working With Excel

Connecting to Excel

GetObject

CreateObject

New

Workbooks, Worksheets, Ranges, and Cells

Cell and Range Addresses

Working with Worksheets

Tag Extraction

Review

Working With Databases (ActiveX Data Objects)

Primer on ActiveX Data Objects

UDL File Basics

Connections, Recordsets, and More

Recordsets

The Find Method

The GetString Method

AddNew and Update

SQL Essentials

Select Statement

Where

Order By

Extending ActiveX Data Objects

Examining Database Schema

Excel Files as Databases

Review

MicroStation Leveraging Mathcad via VBA

A Brief Introduction to Mathcad

Adding a Reference and using the Object Browser

Basic Macros that Communicate With Mathcad

Region Objects - The Basis for All Calculations

The Mathcad Object Model

Application

IMathcadApplication2

Driving MicroStation Geometry from Mathcad

Review

Accessing Data from External Applications

ActiveX / COM Basics

References, Early Binding, and Late Binding

GetObject, SetObject, and New

When to use GetObject, CreateObject, and New

What does ‘WithEvents’ do for us?

Run Macros from Excel or MicroStation?

Controlling MicroStation from within Excel

Running Excel Macros

Review

Writing VB6 Applications

Differences between VBA and VB6

VB6 Project Structure

Controlling MicroStation with VB6

Creating an ActiveX Control in VB6

Debugging ActiveX Control Projects

Compiling our ActiveX Control

Creating ActiveX DLLs

Compiling and Distributing Applications

Compiling Applications

Distributing VB6 Applications

Review

Using VB.NET

VB.NET Introduction

You can do this in VB.NET!

A DGN Browser Application

VBA to VB.NET Reference

Everything is an Object

Overloaded

Procedures and Functions

Accessing ASCII Files

Traversing a Folder and its Subfolders

Getting All Files in a path

Returning Function Values

Windows API Calls

Distributing VB.NET Applications

Review

Additional Sources

[image: Image]

Introduction

Learning MicroStation VBA provides an in-depth tour of one of MicroStation’s most powerful customization abilities. The book starts by supplying the foundation for understanding VBA basics and then shows how to apply the fundamentals to real-world situations.

Learning MicroStation VBA provides full coverage of the VBA subject - taking you through the basics like the editing environment, modules, visual interface, and MicroStation object model through advanced topics like the Windows API, interacting with other applications, and Visual Basic, among many other things.

Whether you are a MicroStation user who simply wants to make your job easier or an experienced programmer who wants to master the nuances of MicroStation VBA, this book is an invaluable resource for learning MicroStation VBA.

The following type styles are used in this book to distinguish various text:

	Filename or URL

	Menu and menu items

	Function

	Object

	Function Index

	Variable

	Keyboard key

ACCOMPANYING CD-ROM

The accompanying CD includes all source code referenced in each chapter of the book. The CD also includes procedures, and addenda to the book as well as a comprehensive Object Model listing and other example files such as V8 DGN files, Microsoft Excel spreadsheets, Microsoft Access databases, and more.

MYSELECT CD

Bentley SELECT Subscribers can order the supporting files through the MySELECT CD program. MySELECT CD allows you to select the Bentley software or documents you need and have a CD delivered to your door.

To become a Bentley SELECT Subscriber, go to http://www.selectservices.HYPERLINK "http://bentley.com"bentley.com. Bentley SELECT is a subscription program that features product upgrades and updates.

ABOUT THE AUTHOR

Jerry Winters began his CAD career as many have, at the bottom of the totem pole, drafting eight hours a day. It didn’t take long for him to discover that in many situations, the computer could complete repetitive tasks much faster than he could. So, he began writing programs that not only simplified the drawing creation process but significantly decreased the amount of time needed to create drawings. Rather than wasting the time saved by his programming efforts, Jerry used the new found time to write more programs until he stopped ‘using’ CAD software and began ‘customizing’ CAD software on a full-time basis. So, for the past 15 years, Jerry Winters has been customizing CAD software and teaching others to do the same.

Whether it’s on stage or in the written word, Jerry brings occasionally complex programming topics down to the level of the average CAD user (in part because he considers himself an average CAD user). His extensive knowledge of Visual Basic programming is complimented with Active Server Page development, database programming expertise, and the occasional creation of Java applets for graphically-rich web-based development.

This is his first book on customizing MicroStation with VBA and he experienced one difficulty throughout the entire book. "There is just so much that can be done in MicroStation’s VBA environment, it is difficult to know what to include and what to shelf for a later date."

Jerry and his wife Candice are the parents of six children. They live in Lake Point, Utah, where they raise their children and their children raise chickens.

ACKNOWLEDGMENTS

I would like to thank the Technical Review Committee of Mark Anderson, Phil Chouinard and Robert Hook, as well as the Bentley Institute Press Team of Gilda Cellini, Frank Conforti, Lissa Jennings, Drew Knox, Maureen Rhoads, and Christopher Rogers, without whom this book would have never gotten off the ground.

Furthermore, I would like to thank the Bentley Institute for affording me the opportunity to write about MicroStation’s implementation of VBA. I hope the lessons learned in this book will be as rewarding to the reader as they have been for me.

[image: Image]

1Introducing VBA

"LET'S START AT THE VERY BEGINNING. IT'S A VERY GOOD PLACE TO START."

[image: Image] What is VBA?

[image: Image] Why should we learn it?

[image: Image] When should we use it?

[image: Image] How do we use it?

[image: Image] What does it look like?

These are five very good questions and they deserve answers.

WHAT IS VBA?

VBA is an abbreviation for Visual Basic for Applications. Microsoft licenses VBA to companies such as Bentley Systems, Inc., so users can customize the company’s software. Then, companies that develop world-class software, such as MicroStation, can give their customers the best set of tools available. These companies know that one way to accomplish this goal is to empower customers to modify and personalize their software to meet individual needs.

WHY LEARN VBA?

Learn VBA to rapidly develop programs that meet your individual needs. Much of what you learn in MicroStation’s VBA environment can be used in other VBA environments. The first two-thirds of the VBA abbreviation is "VB." Visual Basic includes both the Visual Basic programming language and its programming environment. "A" finishes up the final third of VBA. The "A" is the Application-specific Objects and Application Programming Interfaces (APIs).

If we think of VBA as being two-thirds Visual Basic and one third Application, we could state that two-thirds of everything you learn in this book is directly applicable to other VBA environments. For example, if you learn MicroStation VBA, you would be 2/3 of the way to knowing Microsoft Excel VBA. And this is not far off. So, in addition to being able to customize MicroStation to meet your needs, learning VBA allows you to leverage other VBA-enabled applications.

WHEN SHOULD YOU USE VBA?

Only under the direct supervision of an adult?

Between the hours of 8 AM and 5 PM?

Holidays? Weekends?

The real question you should be asking yourself is, "Can the program I need to write be written in VBA?" If the answer to this question is YES, then it should probably be written in VBA. And as you learn more about VBA, more and more often the answer to this question will be YES!

How Do WE USE VBA?

MicroStation VBA programming is stored in files with an .mvba extension. To run any of the code in one of these MicroStation VBA files you must first load the file. Before we go any further, let’s create a new drawing file named Introduction.dgn. Go to the MicroStation menu Utility > Macros > Project Manager to open the Project Manager.

[image: Image]

We use the Project Manager to begin new VBA projects and open existing VBA projects.

[image: Image]

In this dialog box, click the Load Project button. Now, browse to the CD included with this book for a folder named "MVBA Files". In this folder you will find a file named Introduction.mvba. Select this file and click the OK button.

[image: Image]

This loads the .mvba file into MicroStation and displays it in the VBA Project Manager.

[image: Image]

Opening an MVBA file does not close the Project Manager. The Project Manager remains open until you click the Close button in the upper right-hand corner of the dialog box.

Now that we have loaded an .mvba file, we can run some code. How do we do it? There are a few ways. Let’s begin by running code from within the VBA Project Manager. If the VBA Project Manager (VBAPM) is closed, follow the instructions above to re-open it. Make sure to load the Introduction.mvba file. In the VBAPM, select the VBA Project Introduction.mvba. Now look at the top of the VBAPM for a triangle that looks like the play button on a VCR. This is the Run Macro button.

When you click it, the Macros dialog box opens, which allows you to select which macro (procedure or function) you want to run.

[image: Image]

Select ProcedureA from the list of macros and click the Run button. The macros dialog box closes and a diagonal line is drawn in the active model. ProcedureA draws a line from (0, 0, 0) to (10, 10, 0) in the active file. If the macro is run and the line is not visible, use the Fit View button to zoom the active view to display all of the contents of the file.

Remember, the steps to running an MVBA macro are:

1 Load the MVBA file using the VBAPM (VBA Project Manager).

2 Select the project in the list of projects.

3 Click the Run Macro button in the VBAPM, or click the MicroStation menu Utilities > Macro > Macros, or hold down the <ALT> key on your keyboard and press <F8> key.

It’s a three-step process. Of course, if the .mvba file is already loaded, You do not need to load it each time you run the macro. You can run a specific macro by using one of three methods described above in Step 3.

You have just run a macro using the VBAPM. Now run one by using the <ALT+F8> keyboard shortcut. Hold down the <ALT> key and then press the <F8> key to display the Macros dialog box. Select ProcedureC from the list and click the Run button. ProcedureC draws a square using lines from (0, 0, 0) to (10, 0, 0) to (10, 10, 0) to (0, 10, 0) and finally back to (0, 0, 0).

That’s all there is to running a MicroStation VBA macro. Load it and run it.

WHAT DOES VBA LOOK LIKE?

Here is the VBA code behind that macro:

Sub ProcedureA()

'********

'* This Procedure draws a line from (10, 10, 0) to (30, 10, 0)

'********

Dim StartPoint As Point3d

Dim EndPoint As Point3d

Dim MyLine As LineElement

StartPoint.X = 0

StartPoint.Y = 0: StartPoint.Z = 0

EndPoint.X = 10: EndPoint.Y = 10: EndPoint.Z = 0

Set MyLine = CreateLineElement2 (Nothing, _ StartPoint, EndPoint)

ActiveModel Reference. AddElement MyLine

End Sub

VBA Projects are broken up into blocks of code called procedures, functions, and events. Each block of code has a name. The procedure shown above is named ProcedureA. Comments in the code begin with an apostrophe. Everything after the apostrophe is part of the comment. Variables are declared with 'Dim' statements and are then assigned values or set to objects. Code in procedures, functions, and events runs from top to bottom. Together we will write a large number of functions and procedures as we study MicroStation VBA.

Back to the code in ProcedureA. It does not have a graphical user interface — it is just code. Writing code is one part of VBA development.

The other part of VBA development is the graphical user interface (GUI), such as buttons, text boxes, and labels.

[image: Image]

Some of the applications we write will have no GUI, but we will also explore the visual side of Visual Basic.

REVIEW

VBA projects are contained in .mvba files. Each file contains code and can also contain graphical user interfaces. Load and unload VBA projects using the VBA Project Manager. After the code is written, You run VBA projects and the code they contain by using the MicroStation menu Utilities > Macro > Macros… or by pressing <ALT+F8> on the keyboard.

Learning VBA is very much like learning a new language. It requires patience and time. Keep this in mind as we continue to study together.

[image: Image]

2The VBA Project Manager

You have already seen how to display the VBA Project Manager. Remember, go to the MicroStation menu Utilities > Macro > Project Manager. We used the Project Manager to load a VBA project and run a couple of macros contained in that project. Let’s take a more comprehensive look at what the Project Manager can do for us.

[image: Image] The Project Manager gives us the ability to load existing VBA projects.

[image: Image] The Project Manager allows us to run the procedures and functions of projects that have already been loaded.

[image: Image] Start new VBA projects using the Project Manager.

[image: Image] Unload VBA Projects that are already loaded.

[image: Image] Save loaded VBA Projects to a new location and/or a different file name.

[image: Image] Enter the Visual Basic Editor from the Project Manager.

[image: Image] Record macros from the Project Manager.

[image: Image] Auto-Load VBA Projects so projects are loaded each time MicroStation is started.

We can use the MicroStation menu to display the VBA Project Manager or we can hold down the <ALT> key and press the <F8> key to display the macros that are loaded and are ready to be run.

We need to be careful when discussing the VBA Project Manager. The term 'Project Manager' is so generic it could be confused with other products or functionality. For brevity we will refer to the VBA Project Manager as the VBAPM from time to time throughout this book.

Now that we have identified the VBAPM’s functionality in general it is time to examine it in greater detail.

VBA PROJECT MANAGER FUNCTIONALITY

The following graphic shows the VBAPM with its elements identified with leader lines. We will refer to the image during the remainder of this chapter.

[image: Image]

	A
	Begin a New VBA Project
	You are prompted for the location of the new .MVBA file and for its name.

	B
	Open an Existing VBA Project
	Select an existing .MVBA file to load into the current session.

	C
	Close VBA Project
	This button is enabled only when an existing project is selected.

	D
	Save Project As
	When an existing project is selected, you can save it to a new location and/or a different file name.

	E
	Display the VBA Editor
	All saved VBA projects and new projects are edited from within the VBA Editor.

	F
	Run Macro
	Click this button to display the Run Macro dialog box where you select and execute specific macros.

	G
	Record Macro
	Enabled when an existing project is selected. When activated, activities in MicroStation are recorded to a macro in the selected project.

	H
	Stop Recording Macro
	Enabled only when actively recording a macro. When stopped, the macro is placed in the selected VBA Project under the name "Macro1," "Macro2", Macro3", etc. The Macro Recorder automatically names the macros. You can rename recorded macros in the VBA Editor.

	J
	Pause Recording Macro
	Pauses the recording of a macro and toggles between Pause / Resume Recording.

	K
	Auto-Load
	Sets a specific VBA project to automatically load each time MicroStation is opened. When you click in the column, a checkmark indicates the file is set to Auto-Load.

[image: Image]

We have just identified ten things that you can do directly from within the VBA Project Manager. One of these is "Run Macro" which, rather than actually running a macro, displays the Macros dialog box.

MACROS DIALOG BOX

We use the Macros dialog box to select a macro to run but we can do far more in this dialog box than just running a macro. We can "Step Into" it.

[image: Image]

Step Into executes the macro in debug mode stepping through the code one line at a time so we can see how the code is executing, what values are stored in variables, etc. It is one of the best features of VBA, whether you are a novice programmer or a seasoned developer.

The Edit button takes us into the VBA Editor window with the cursor on the top line of the selected Macro.

The Delete button deletes the selected Macro from the VBA Project. This is a very dangerous button. After all, there is no Undo button displayed in this dialog box. Is there? Use with care.

Macros in: lists VBA projects. If you select <All Standard Projects>, the Macro list displays all executable macros from all loaded VBA Projects. Selecting a project filters the Macros list to display only those in the selected project.

The Description area allows us to type in a description for a selected macro. This is a nice feature because we are given the ability to provide more information than by using the macro name only.

For example, we do not need to name a macro, Draw_A_Line_From_0_0_0_to_10_0_0. We can name it ProcedureA and enter a description in the Macros dialog box.

We have covered every button in the Macros dialog box except for one, the button that is grayed out in the image above. You use the Create button to create new Macros. It’s simple. Here’s how it works:

As you select macros in the Macros list, a TextBox just above the list box displays the macro selected name. If you change the text in the TextBox to a macro name (Procedure name) not already shown in the Macros list box, the Create button is enabled to begin a new macro with the name specified. So, if you type ProcedureA_1 into the TextBox and click the Create button, a new Procedure named ProcedureA_l is created. Of course, no code is entered into the procedure after it is created. That is our job. We can now select ProcedureA_1 from the ListBox, click the Edit button, and go into the new procedure in the VBA Editor to begin writing code.

REVIEW

The VBA Project Manager is useful for performing a number of tasks. Among them are:

[image: Image] To load and unload VBA projects (MVBA files).

[image: Image] To save existing VBA projects to new files and locations.

[image: Image] To begin new VBA projects.

[image: Image] To record macros into existing VBA projects.

[image: Image] To use Auto-Load to automatically load VBA projects within the VBAPM.

[image: Image] To enter the VBA Editor from within the VBAPM.

[image: Image]

3The VBA IDE

Open the VBA IDE PDQ!!! Yes, the IDE is WYSIWYG. GM?

Translation: Open the Visual Basic for Applications Integrated Development Environment Pretty Darn Quick!!! Yes, the Integrated Development Environment is "What You See Is What You Get". Got Milk?

The VBA IDE is where we do our VBA programming work. As with most Windows programs, the VBA IDE is composed of three elements:

[image: Image] Menus

[image: Image] Toolbars

[image: Image] Windows

[image: Image]

MENUS

Nearly all Microsoft Windows applications utilize Menus to issue commands. Many menu items have shortcuts. For example, holding down the <CTRL> key and pressing the <P> key does the same thing as selecting File > Print from the menu. Whether you click your mouse or use the associated shortcuts, it is helpful to know what a menu item does. Let’s look at the menu items that are available in VBA.

File Menu

[image: Image]

[image: Image] Import File imports existing form (.frm), module (.bas), and class (.cls) files into our project.

[image: Image] Export File exports forms, modules, and classes from our project to their own .frm, .bas, and .cls files. After these files have been exported, they can be imported into another project.

[image: Image] Remove removes forms, modules, and classes from our project. When we attempt to remove an element from our project we are asked if we want to export it (save it) first.

[image: Image] Print allows us to print code and/or forms.

[image: Image] Close and Return to MicroStation hides the VBA environment and gives MicroStation focus.

Edit Menu

[image: Image]

[image: Image] Undo and Redo are standard Windows menu items.

[image: Image] Cut, Copy, and Paste perform standard Windows Clipboard operations.

[image: Image] Clear deletes selected text or objects.

[image: Image] Select All selects all text when in a Code window or all controls when in a User Form.

[image: Image] The Find, Find Next, and Replace menu items perform standard Find and Replace functions.

[image: Image] Indent indents the selected code by one tab to the right. Outdent (is Outdent a real word?) shifts the selected code by one tab to the left.

[image: Image] List Properties/Methods displays the Properties/Methods list.

[image: Image] List Constants works with an API call that utilizes constants. A list of the applicable constants is shown.

[image: Image] To use Quick Info, set the cursor on a variable, an object, or an objects property or method and then click Quick Info to display the type of object or variable on which the cursor was placed.

[image: Image] Parameter Info displays information about the Method the cursor is over.

[image: Image] Complete Word shows the list of Constants and Methods in VBA so we can select something from the list.

[image: Image] Bookmarks sets and removes bookmarks in our code and moves from bookmark to bookmark. A bookmark is a flag that lets you quickly jump to a line of code. Bookmarks are not saved with .mvba projects.

View Menu

[image: Image]

[image: Image] When looking at a user form, click Code to jump to the code behind the form.

[image: Image] Object displays the form associated with the code we are looking at.

[image: Image] Click on Definition when the cursor is over the item you want to look at to quickly display where the variable is declared or the method is defined.

[image: Image] Last Position moves the cursor to the previous line of code the cursor was in.

[image: Image] Object Browser, Immediate Window, Locals Window, Watch Window, Call Stack, Project Explorer, Properties Window, and Toolbox display a window with the same name.

[image: Image] Tab Order displays the Tab Order properties of controls so we can see the order in which controls receive focus when the user hits the Tab button in the form.

[image: Image] Toolbars toggles the display of the Debug, Edit, Standard, and User Form toolbars.

[image: Image] Click on MicroStation to bring the MicroStation window to the forefront.

Insert Menu

[image: Image]

[image: Image] Procedure displays the Add Procedure dialog box to begin new procedures. This dialog box is most useful for creating new Properties for Class Modules.

[image: Image] UserForm, Module, and Class Module inserts these new objects into our project.

[image: Image] One way to speed up our development is to reuse code that has already been written. If we place code in ASCII Text Files, insert snippets into our project by clicking File and then selecting the file to insert.

Format Menu

[image: Image]

Use the Format menu to perform standard formatting when editing a User Form.

Debug Menu

The Debug menu allows us to perform debugging operations on our code. We will cover this functionality in Chapter 9 "Standard VBA Calls".

[image: Image]

Run Menu

[image: Image]

[image: Image] Run Macro, Break into, and Reset code execution by using these menu items in the Run menu.

[image: Image] Design Mode is a standard VBA button that does nothing substantive in the MicroStation implementation of VBA.

Tools Menu

[image: Image]

[image: Image] References allows us to add a reference to existing DLLs and type libraries. For example, if we want to work with Microsoft Excel, we can add a reference to the "Microsoft Excel Object Library". Doing so makes working with Excel in VBA very easy.

[image: Image] By default, 14 controls display in the toolbox for use in our forms. We can add more controls by selecting the Additional Controls menu item.

[image: Image] Macros displays the Macros dialog box where we can create, edit, run, delete, and debug macros in our project.

[image: Image] Change preferences such as font size, tab width, and grid settings by clicking on Options.

[image: Image] The Properties menu item displays the properties for the active VBA project. In the image shown above, the project is named Default.

[image: Image] Digital Signature allows us to sign our VBA projects. This assures end users that the code they are going to run is created by a specific company.

Add-Ins Menu

[image: Image]

Third party developers can create add-Ins for VBA. Add-In Manager displays the Add-In dialog box where we can set properties for available add-ins.

Since we will not be discussing Add-Ins anywhere else in this book, here is a snapshot of the manager with an add-in that has been loaded. Add-ins can be loaded based on the "Load Behavior" settings.

[image: Image]

Window Menu

[image: Image]

These are the standard menu items available in nearly every Microsoft Windows program.

Help Menu

[image: Image]

[image: Image] We will cover Help issues in the next chapter. One way to get there is by clicking the Microsoft Visual Basic Help menu item.

[image: Image] About Microsoft Visual Basic displays the About dialog box.

TOOLBARS

Toolbars offer a very quick way to issue a command. One click is usually all it takes to get things started. Compare this with at least two clicks to issue the same command using a menu and we can instantly double our CIP (Command Issuing Performance). As a general rule, all commands issued by clicking on a toolbar icon can be issued from the menus.

It can take a little while to become familiar with toolbar icons. Until you learn what each icon does, hold your cursor over an icon to see what the icon does.

Standard toolbar

[image: Image]

The Standard toolbar is very, very important. Why? Because the only way to save the changes we are making in our VBA project from within VBA is to click the Save button. We cannot Save changes by using the menu. We must use the Save icon in the Standard toolbar. And please, please, please, my friend, save your project often. There are few things worse than spending a couple of hours working on a project only to have something silly like a power outage or a fatal error cause you to lose all of that work.

[image: Image]

Notice how holding your cursor over an icon displays the icon’s tool tip.

We could show each and every button on every toolbar but that would be a bit of a waste because you can move your cursor over the icons to see what they do.

Edit toolbar

[image: Image]

The Edit toolbar displays functionality found in the Edit menu.

Debug toolbar

[image: Image]

The Debug toolbar displays the functionality found in the Debug menu.

UserForm toolbar

[image: Image]

The UserForm toolbar exposes functionality found in the Format menu.

WINDOWS

Use the toolbars and menu items to display and hide VBA windows. Let’s take a look at the VBA windows we will be working with on a regular basis.

Project Explorer

[image: Image]

The Project Explorer displays the top-level objects in the loaded projects.

In this project we have a form named UserForm1, a module named Module1 and a class module named Class1. The view shown uses folders to group the common types of objects.

Click on the Folder icon in the top of the Project Explorer to turn off Folders and display the objects in alphabetical order.

[image: Image]

Object Browser

[image: Image]

The Object Browser gives us a way to explore the objects (classes) loaded into the current VBA project. In addition to the objects themselves, we see a list of properties, methods, and events associated with each object under the "Members" list. The gray area at the bottom of the window gives us the declaration of the selected method, property, or event. We can display All Libraries or select a specific library. We also have the ability to search the loaded libraries.

We will cover the Object Browser in more detail in the next chapter.

Properties Window

[image: Image]

Objects in VBA have names. For example, this user form has the name UserForm1. We can use the Properties window to change this form’s name, color, and other properties. The Properties window is used extensively when working with forms and controls on forms.

Watch Window

[image: Image]

The Watch window is a favorite among VBA developers. It allows us to watch the value of a variable, object, or property. As we can see above, I added a watch to a variable named MyApp. This variable points to the MicroStation Application. Take a look at all of the properties with which we can work.

Locals Window

[image: Image]

The Locals window looks a lot like the Watch window. There is one primary difference however. To look at items in the Watch window, you must add a watch to the item. The Locals window automatically displays the variables declared in the active procedure or function along with each variable’s type and value.

Immediate Window

[image: Image]

The Immediate window does a couple of things for us. First, it allows us to display text as our code executes. When we use the following code

Dim MyApp As Application

Set MyApp = Application

Debug.Print MyApp.Caption

the caption of the MicroStation application is printed to the Immediate window. For this reason, it is also called the Debug window.

The other thing the Immediate window does is it allows us to execute code immediately. For example, we can type

MsgBox "Learning MicroStation VBA"

in the Immediate window and press the <Enter> key. When we do so, a MessageBox displays.

[image: Image]

Call Stack Window

[image: Image]

As we step through our code line-by-line or break into our code as it is executing, the Call Stack window shows us where we are (the top line), where we started (the bottom line), and how we got there (all of the lines in between). There are times when one procedure calls another procedure which calls a function which calls a procedure. Knowing how we arrived inside a procedure or function can help us debug it.

Toolbox Window

[image: Image]

The Toolbox window displays the standard controls that can be placed on our user forms. It only displays when a user form is the active window in VBA. If we are working with a user form and the toolbox is not visible, click on the Toolbox icon in the Standard toolbar or go to the View > Toolbox menu to display it.

All of the windows discussed so far are dockable except for the Toolbox. This means they can be snapped to the bottom, top, right, or left window of the VBA IDE. These windows' dockable property is set in the Docking tab of the Options dialog box. To view this, go to the Tools menu in VBA and select Options.

[image: Image]

If an attempt to dock a window fails, look at the Docking property of the window in the Options dialog box and turn on Docking for the specific window you want to dock. As with many applications, these windows are docked by dragging the window to the edge where you want the window docked. They are un-docked by dragging the window away from the edge where the window is currently docked.

Other Windows

There are a couple of additional windows in VBA we should discuss. As we have already discovered, VBA projects are composed of forms, modules, and classes. Each of these elements has its own windows.

Here is a Form.

[image: Image]

A single CommandButton has been added to this form. This form window allows us to place controls on it. Remember, the controls are placed from the toolbox to the form.

What happens when we are running this form and the user clicks the button? Code is executed. Double-clicking the button takes us to Code window behind the form. Another way to see the code is to right-click on the button and select View Code.

[image: Image]

This is the Click Event of CommandButton1. View Code takes us to the default event of the control we right-click over. So, here we can see the Click Event. Are there other events we can work with? How do we see them and write code in them?

[image: Image]

Take a look at the top of the Code window. There are two ComboBoxes. The left one contains the controls and objects available in this Code window. The right one contains the events we can work with. Selecting an event from the right ComboBox takes us into the code for that event.

[image: Image]

Open Module (Code Module) and Class Module windows by double-clicking on their icons in the Project Explorer or by right-clicking on the icons and selecting View Code. They look exactly like the Code window shown above.

We have spent a few pages discussing the VBA IDE. As we continue learning MicroStation VBA, we will discover other facets of the IDE and get into more detail.

REVIEW

The VBA IDE (Visual Basic for Applications Integrated Development Environment) is where we do our programming, i.e. writing code and creating user interfaces. As you become more familiar with this environment, you will be able to develop your programs much more quickly.

[image: Image]

4Finding Help

Finding help can be one of the most difficult aspects of learning a new programming language. Why? If you have a question for someone, you can converse with them until the question is clear. That’s easy. When learning VBA, however, you don’t always know what to ask. For example you might ask, "How do I put something on a form that forces a user to enter a numeric value?" If you could ask a VBA guru this question, you will get a straightforward answer. Working through a Help file for the answer is different. For starters, even if you know what to ask but you don’t know the correct terminology, you won’t find the answer.

Distressing? Yes. Frustrating? Definitely. The end of civilization as we know it? No.

This book is targeted toward helping you learn MicroStation VBA. It is filled with code samples and explanations but it does not contain every answer to every possible question. Here a few things that will provide help when you need it.

In this Chapter:

[image: Image] Terminology

[image: Image] Help Files

[image: Image] The Net

[image: Image] The Object Browser

TERMINOLOGY

Thingy. Dilly Whopper. Whatchamacallit. Gizmo. Whether we are asking a person or a computer, these words will get us nowhere. How can we get a little closer to the right keyword?

Let’s begin by looking in VBA.

[image: Image]

Holding your cursor over a variety of objects displays a Tool Tip. There is a ComboBox icon in the Toolbox. If we ask about I a ComboBox we are more likely to find answers than if we ask about a DropDown. Both combinations of words may make sense to us, but using the correct name for the control gets us closer to finding answers to our questions than using terminology that, although descriptive, is not correct.

Since the terminology used in VBA may be foreign to you when getting started, it is a good idea to make notes or highlight areas of this book and other resources when you come across a word or phrase you want to remember or that you may want to be able to find quickly at a later date.

For example, if you are asked to provide a string, you may produce a piece of flexible material useful for restricting blood circulation in one’s index finger with the intent of reminding you of something. As for me, I’m just as likely to forget the string is tied around my finger as I am to forget why the string is there in the first place. What does this mean? Before long we are collectively fingerless. Or is it finger-free? Digitless?

What is a string when it comes to VBA? It is a type of variable that can hold text, numbers, and other characters. "This is a test" is an example of a string. Since the word string is very different when dealing with VBA when compared to Benjamin Franklin’s experiments with electricity, highlighting the definition of a string type variable in a book may be helpful.

In addition to highlighting existing text, get out a pen or pencil and write in the margins of this book.

"Chicken Soup for the VBA Programmer." "The VBA Word of the Day." "The VBA Programmers Daily Calendar." These products may not exist but they could be very helpful. Why? Frequent and regular exposure reinforces retention.

If your goal were to obtain a dark tan, you would want regular exposure to the sun. If your goal were to bake bread, it would be out of reach if you rarely stepped inside a kitchen. "Practice makes Perfect," "No Pain, No Gain," and "If at first you don’t succeed, try, try again." We have heard these statements over and over again. Each of them reminds us that frequent and prolonged exposure and practice is usually necessary for success in any endeavor. While you don’t need to write a thousand lines of code every day to learn VBA terminology, 20 lines of code every day will do more than 100 lines of code only on Monday mornings.

If you expose yourself to VBA frequently, the terminology becomes familiar and you will be in a better position to find the help you need.

HELP FILES

One way to display the VBA Help File is to go to the Help menu in VBA and select Microsoft Visual Basic Help.

[image: Image]

It is filled with a large amount of information but also gives us the ability to organize our own unique help file by using of the Favorites tab.

So, you want a little help with a ComboBox? Let’s begin in the Contents tab and drill down to the ComboBox starting with the Microsoft Forms Reference.

Contents tab

[image: Image]

It may take a little digging to find what you are looking for using the Contents tab but knowing the correct terminology is a big help. At the top of many help topics, are links for "See Also," "Example," "Properties," "Methods," "Events," and "Specifics". If you are looking for more explanations, "See Also" is very helpful. If you are looking for code to copy and paste, "Example" is the link you want. For information about specific Properties, Methods, and Events, click the appropriate link.

The body of help topics often contain hyperlinks to other topics and pop-ups to explain the highlighted text in greater detail.

You can print help Help topics by clicking the Print icon at the top of the file.

Index tab

[image: Image]

The Index tab displays a different way to organize help topics. It works much like the index of a book. This is another area where using correct terminology is very helpful. If you enter "string" in the keyword textbox, you get a large number of linked topics. Enter "text" and you get a number of unrelated topics (if we are looking for information on the String variable type) but also a link to the "String data type." So even if you don’t have the exact terminology, getting close to the correct word may link you to the correct topic.

Search tab

[image: Image]

Use the Search tab to enter a word or series of words to search for in the help topics. It returns a list of all help topics containing the word(s) entered. For example, if you enter "combobox," you are returned a listing of 67 topics. Some topics are properties such as "List Property." Other topics are instructional, such as "Ways to put data in a ListBox or ComboBox." Keep in mind that most help topics are linked to related topics. So, we could begin with a search for "combobox" and read far more than 67 topics by jumping to other help topics.

Favorites tab

[image: Image]

If you find a particularly helpful help topic or one that was difficult to find, add it to your Favorites. The "Current topic" text box displays the default topic title. Fortunately, you can change this description to whatever you want it to say. For example, you could change it to "ComboBox - Adding To the List." Then click the Add button.

Favorites is one of the best ways to personalize the standard Visual Basic Help file. Sure, you can print out page after page after page, use a highlighter and make a binder. That is a fine way to catalog what you have learned and create additional reference material. But Favorites is a quick way to find 'bookmarked' topics and jumps to linked topics. It also keeps the Copy and Paste functionality available.

To sum up, VBA stands for Visual Basic for Applications. Thus far in this chapter, we have been discussing how to find help for the "VB" portion of VBA. What about the "A"? The Application? Good question.

Learning everything about the VBA programming language will give us some good background but will not get us very far when attempting to interact with MicroStation.

MicroStation VBA Help File

[image: Image]

MicroStation has its own VBA Help file. It contains MicroStationspecific help for VBA. Searching for the file 'microstationvba.chm' on your computer should show us where it is and let you open it.

[image: Image]

One of the most helpful sections in the MicroStation VBA help file is the Examples folder, which contains excellent explanations as well as the code to perform specific tasks.

Another excellent way to open the MicroStation VBA Help file is to select a MicroStation-specific API call in the Object Browser or in our code and hit the <F1> key on the keyboard.

THE NET

Got Net? http://msdn.microsoft.com/isv/technology/vba/defoult.aspx gets us to Microsoft’s VBA web site. If this URL is difficult to remember, you can also use http://msdn.microsoft.com/vba, which contains links to white papers, Knowledge Base articles, and other reference materials that comprise a wealth of information on VBA programming and its associated topics. Although you are not likely to find much about MicroStation’s VBA-specific implementation here, you will find many other examples on how to accomplish specific tasks in the VBA environment.

[image: Image]

Google, Yahoo, and other search engines can unlock the rest of the Internets VBA knowledge for us. Remember, there are a lot of programming languages out there. A search for "Message Box" returns us a large number of web pages to check out, but in addition to VBA results, we will get pages for C#, C++, Java, JavaScript, Fortran, Pascal, and other languages.

A quick trip to the Bentley web site and a search for "vba" nets some good information as well. Why not go directly to the source?

[image: Image]

Among the Bentley Discussion Groups we find Bentley.microstation.v8.vba. This is a good place to ask questions. And who knows? As you become a VBA guru in your own right, you may be able to help others by answering their questions in this Discussion Group.

[image: Image]

THE OBJECT BROWSER

We talk to MicroStation through its Object Model. The top level of the MicroStation’s Object Model is the Application Object. Using the Object Browser in VBA is a great help when you are trying to discover something about an Object Model. As shown, you can restrict browsing to the MicroStation DGN library so all MicroStation Classes show up in the ListBox on the left. Selecting "Application" in the left ListBox displays its properties, methods, and events in the listbox on the right side of the window.

[image: Image]

For example, if you have selected Application in the ListBox on the left and want to do something with the active design file in MicroStation, click on ActiveDesignFile in the right-hand ListBox. The description at the bottom of the Object Browser tells us the ActiveDesignFile property of the Application Object returns a DesignFile object. We can now select DesignFile in the Classes list (the listbox on the left) to see the Design File’s properties, methods, and events in the Members list on the right.

[image: Image]

Selecting AddNewLevel in the Members list shows that we need to supply a LevelName when using AddNewLevel. It also shows that AddNewLevel returns a Level Object.

One reason the Object Browser is helpful is because you can start at a very general level (Application) and work down through the object model to the object, property, method, or event for which you are looking. We can literally browse through the available objects and APIs using the Object Browser.

Other ways to find/get help? Take a Bentley-approved VBA training class or attend the annual Bentley Developer Conference.

REVIEW

Finding help is not always easy. Knowing where to look is the first step. Next, using correct terminology moves us along the path to finding the answers to our questions. Learning to use tools, such as the Object Browser, provides more answers.

Keep in mind that the most simple subjects still require effort to learn and retain. VBA is no different. If you allow yourself to become frustrated, the chances of success are diminished. You can learn MicroStation VBA. You really can.

[image: Image]

5Modules, Forms, and Class Modules

We have already discussed the basics of how MicroStation VBA projects. modules, forms, and classes are used to create programs that improve productivity and accuracy. That much we know. It’s time to learn when to use each of these design elements and how they work together.

In this Chapter:

[image: Image] Modules

[image: Image] Forms

[image: Image] Classes

[image: Image] Procedures and Functions

MODULES

Code modules are the foundation of every VBA project. We use them to declare variables that can be used from within the code module, by other code modules, by forms, and even by class modules. Windows API functions are declared in modules so the API calls can be used in our project (more on Windows API functions later in the book). Procedures and functions inside modules can be run from the VBA Project Manager. In fact, code modules are so essential that an initial code module is created every time a new VBA project is created. Procedures written in code modules are the starting point for running code and displaying forms.

Enough talking. Let’s write some code.

Let’s begin by creating a new VBA project named Chapter 05. Save it in the folder C:\MicroStation VBA. After this new project is created, you can see that a code module named "Module 1" is created automatically. Rename this module modCh05.

Continue by creating a new procedure named Main. Inside the code module, type

Sub Main()

When you press the <Enter> key after typing the above code, VBA finishes the new procedure by entering an "Exit Sub" for us. At this point, the module should look like this:

[image: Image]

The next thing we are going to do is enter some code in our new procedure "Main."

Sub Main()

'Declare Variables

Dim MyLine As LineElement

Dim MyCir As EllipseElement

Dim CenPt As Point3d

Dim LineSt As Point3d

Dim LineEn As Point3d

Dim RotMatrix As Matrix3d

'Create Horizontal Line

LineSt.X = -1

LineEn.X = 1

Set MyLine = Application.CreateLineElement2(Nothing, LineSt, LineEn)

Application.ActiveModelReference.AddElement MyLine

'Create Vertical Line

LineSt.X = 0: LineSt.Y = 1

LineEn. X = 0: LineEn. Y = - 1

Set. MyLine = Application. CreateLineElement,2 (Nothing, LineSt, LineEn)

Application. ActiveMode1 Reference. AddElement MyLine

' Create Circles

Set MyCin = Application.CreateEllipseElement2 (Nothing, _ CenPt, 0.25. 0.25. RotMatrix)

Application. ActiveModel Reference. AddElement MyCir

Set MyCir = Application.CreateEllipseElement2 (Nothing, _ CenPt, 0.5. 0.5. RotMatrix)

Application. ActiveMode1 Reference. AddElement MyCir

End Sub

The code above may look like a whole lot of gibberish at this point, but it will make much more sense as we continue to learn VBA together.

Notice the comments inserted into the code. Remember, comments begin with an apostrophe (').

Running this code draws two circles and two lines in MicroStation that create a target shape that looks like this:

[image: Image]

The code works great. From now on, any time we need to draw a target with these dimensions centered at (0, 0, 0) we have the code to do it. In mere milliseconds, we can draw this target by running the macro Main whenever we wish.

If we need to draw the target centered at (4, 5, 0) we can copy and paste the code, and rename the procedure to Main2. And then we can create Main3 with different coordinates, then Main4, then Main5 and so on. Right? Well, we could do that but there is a better way.

The more hard-coding we do, the less often we will be able to run our macros.

Let’s change the way we are doing things a little bit. Instead of having Main draw a target at (0, 0, 0), we create a new procedure that draws the target at the X, Y, and Z coordinates we specify. We will do this by creating parameters for the new procedure.

Sub DrawTarget (CenX As Double, CenY As Double, CenZ As Double) 'Declare Variables

Dim MyLine As LineElement

Dim MyCir As EllipseElement

Dim CenPt As Point3d

Dim LineSt As Point3d

Dim LineEn As Point3d

Dim RotMatrix As Matrix3d

'Create Horizontal Line

LineSt. X = Cen X - 1

LineSt. Y = Cen Y

LineSt. Z = Cen Z

LineEn. X = Cen X + 1

LineEn. Y = Cen Y

LineEn. Z = Cen Z

Set MyLine = Application.CreateLineElement2 (Nothing, LineSt, LineEn) Application.ActiveModel Reference.AddElement MyLine

'Create Vertical Line

LineSt. X = Cen X

LineSt. Y = Cen Y + 1

LineSt. Z = Cen Z

LineEn. X = Cen X

LineEn. Y = Cen Y - 1

LineEn. Z = Cen Z

Set MyLine = Application.CreateLineElement2 (Nothing, LineSt, LineEn) Application.ActiveModel Reference.Add Element My Line

'Create Circles

CenPt. X = Cen X

CenPt. Y = Cen Y

CenPt. Z = Cen Z

Set MyCir = Application.CreateEllipseElement2 (Nothing, CenPt,_0.25, 0.25, RotMatrix)

Application.ActiveModelReference.AddElement MyCir

Set MyCir = Application.CreateEllipseElement2 (Nothing, CenPt,_0.5, 0.5, RotMatrix)

Application.ActiveModelReference.AddElement MyCir

End Sub

The code from Main has been copied and pasted into the same code module. The new pasted procedure is then renamed DrawTarget. The goal here is to make our code more flexible, so we can draw targets anywhere we specify. Our new procedure, DrawTarget requires us to specify three parameters named 'CenX', 'CenY', and 'CenZ'. We declare them as doubles (very precise numbers). Let’s take a look at how we use it.

Sub Main()

'Draw Targets

DrawTarget 0, 0, 0

DrawTarget 3, 0, 0

DrawTarget -3, 0, 0

DrawTarget 0, 3, 0

DrawTarget 0, -3, 0

End Sub

Our procedure Main now draws five targets. More flexible? More powerful? Absolutely. But the coordinates are still hard-coded. This may work at times when we are setting up a page that is to be printed in MicroStation. But how can we let the user specify the coordinates? Let’s expand our program a little by introducing a graphical user interface.

FORMS

[image: Image]

User forms provide a graphical user interface (GUI) for our users. We begin by inserting a new User Form.

This form has three abels, three text boxes and a command button. We will keep the default names for each of these form elements except for the text boxes. We want to rename the text boxes to txtX, txtY, and txtZ. This is done in the properties window inside VBA.

When a control is selected, we can make changes to the control’s properties in the properties window. As with other windows in VBA, if the properties window is not displayed, show it by going to the menu in VBA, View > Properties Window. After changing the names of the text boxes, change the caption properties of the labels and the command button to reflect the image shown above. After you modify the properties of the controls on the form, change the name of the user form to "frmCh05".

We are going to enter some coordinates in the text boxes. When the user clicks the "Place Target" button, we want to use the entered coordinates and use the DrawTarget procedure we just created. We need to write some code in the Click Event of the CommandButton. Double-click on the button when we are designing in our project to be taken into the Click Event of the CommandButton.

[image: Image]

We can also get here by right-clicking on the button and selecting View Code in the pop-up menu.

You only need to enter one line of code to use both the DrawTarget procedure and the values entered into the form’s text boxes.

We are almost finished with this little project. We have a procedure that draws targets. We have a form that allows users to enter coordinates. We now need to give the user a way to display the form. We don’t want the user to enter the VBA environment to run this program, so we will make another change to the procedure named Main.

Sub Main()

'Display the Form

frmCh05.show

End Sub

Save your VBA program now. It would be a shame to lose this work. Click on the Save button in VBA.

Saved? Good. Now run your program and see how well it works. From within MicroStation, hold down the <ALT> key and press the <F8> key on the keyboard.

The macro named Main that is shown is the procedure Main. When it is selected, click the Run button.

[image: Image]

The form is displayed so we can enter numbers for X, Y, and Z coordinates to place our targets.

Before we continue, let’s review what we have done.

We wanted to allow our users to draw a target symbol inside MicroStation. The first thing we needed to do was write some code to draw the target correctly. So we put our code in a procedure named Main and got the basic code that draws a target shape working by hard-coding everything. When that code was working properly, we made the code more flexible and useful by taking the code out of Main and creating a new procedure named DrawTarget. We provided three parameters that could be used to specify the location of the target. After all of this work was completed, we tested it by modifying the code in Main to use the Procedure named DrawTarget.

The next step was creating a user interface (more on using forms in Chapter 10). We used the values from the text boxes for the parameters of DrawTarget (converting the values from a string to a double by using the standard VBA CDbl function). The last step was to change the code in Main to display the form.

We now have a code module and a form working together using Main to display the form. When the user clicks the button, values from the form are parameters in DrawTarget, which resides in the code module. So, why is DrawTarget in the code module? Couldn’t it be in the code area of the form? Yes, it could be and the code would still work. However, other modules and other forms would not be able to use DrawTarget as easily if it had been placed in the form’s code area. One of the things that makes a code module so great is that declared procedures and functions can be easily utilized in other areas of our project. We may have three forms that are using code in a code module as well as procedures and functions in a different code module, for example.

Our code is working pretty well right now but can we do anything else to make our project more flexible and powerful? That is a good question.

CLASSES

You may know that we use classes to create objects, but did you know that by putting a little thought into creating class modules, they can be useful for years to come. How so?

In our current project, we can draw a target at any coordinate we specify. That’s pretty powerful and it meets our needs today. What happens, however, if a year from now we find we want to change the target’s size? The procedure DrawTarget only allows entry of three parameters (X, Y, and Z). We could modify the procedure to require four parameters, the last one specifying the size. But this could break parts of our code that are only providing three parameters. We could also make the new parameter optional, but there is a better way.

We can create a new class that has X, Y, and Z properties. It will also have a Draw method. When this is in place, we will add a Scale property. We could add a Level property, a Color property, a NumberOfCircles property, etc. We can add these properties today, tomorrow, or next year. It doesn’t matter when we add them. We just need to make sure that when we add them we do so in a way that allows the previous code using the class to continue to work properly without modification.

Time to write some code.

Let’s add a new class module to our project. Do this by using the VBA menu Insert > Class Module. Name it clsTarget (using the Properties Window for this). It will have three properties and one method. The most basic way to implement properties for classes is to declare variables as Public in the General Declarations area of the class module. Implement methods by creating procedures in the class module.

Begin by defining the properties.

Public X As Double

Public Y As Double

Public Z As Double

Next implement the Draw method. Recall that you can get this finished project on the CD that accompanies this book and open it instead of typing in all of the code. The Draw method was created by copying and pasting DrawTarget and changing 'CenX' to 'X', 'CenY' to 'Y', and 'CenZ' to 'Z' to use the X, Y, and Z properties defined in the class module.

To make sure we are all on the same page, look at the screen shot of the finished class.

[image: Image]

And here is the code as it should be typed:

Public X As Double

Public Y As Double

Public Z As Double

Sub Draw(X As Double, Y As Double, Z As Double)

'Declare Variables

Dim MyLine As LineElement

Dim MyCir As EllipseElement

Dim CenPt As Point3d

Dim LineSt As Point3d

Dim LineEn As Point3d

Dim RotMatrix As Matrix3d

'Create Horizontal Line

LineSt.X = X - 1

LineSt.Y = Y

LineSt.Z = Z

LineEn.X = X + 1

LineEn.Y = Y

LineEn.Z = Z

Set MyLine = Appllcation.CreateLineElement2(Nothing, LineSt, LineEn) Application.ActiveModel Reference.Add Element MyLine

'Create Vertical Line

LineSt.X = X

LineSt.Y = Y + 1

LineSt.Z = Z

LineEn.X = X

LineEn.Y = Y - 1

LineEn.Z = Z

Set MyLine = Application.CreateLineElement2(Nothing, LineSt, LineEn) Application.ActiveModel Reference.AddElement MyLine

'Create Circles

CenPt.X = X

CenPt.Y = Y

CenPt.Z = Z

Set MyCir = Application.CreateEllipseElement2(Nothing, CenPt, _ 0.25, 0.25, RotMatrix)

Application.ActiveModelReference.AddElement MyCir

Set MyCir = Application.CreateEllipse Element2(Nothing, CenPt, _ 0.5, 0.5, RotMatrix)

Application.ActiveModelReference.AddElement MyCir

End Sub

Once everything is in place, we can use it as follows:

[image: Image]

Instead of using the DrawTarget procedure we previously created, we can use the clsTarget class. Comment out the 'DrawTarget' line of code. Next declare a variable as a "New clsTarget" then set the X, Y, and Z properties of the object and invoke the Draw method.

Class modules are often considered reserved for advanced programmers but this doesn’t need to be the case. As we see here, classes can be implemented very easily and simply. We will discuss classes in greater detail in a later chapter.

PROCEDURES AND FUNCTIONS

Modules, forms, and classes each use procedures and functions. Procedures are declared with the "Sub" keyword and functions are declared with the "Function" keyword.

Let’s look at a few procedures and functions.

Sub DrawCircle ()

'Declare Variables

Dim MyCir As EllipseElement

Dim CenPt As Point3d

Dim RotMatrix As Matrix3d

'Create Circle

CenPt.X = 0

CenPt.Y = 0

CenPt.Z = 0

Set MyCir = Application.CreateEllipseElement2(Nothing, CenPt, _ 0.25, 0.25, RotMatrix)

Application.ActiveModelReference.AddElement MyCir

End Sub

DrawCircle draws a circle at (0, 0, 0) with a radius of 0.25. It can be run by itself without the any other procedure or function.

Sub DrawCircle2(Radius As Double)

'Declare Variables

Dim MyCir As EllipseElement

Dim CenPt As Point3d

Dim RotMatrix As Matrix3d

'Create Circle

CenPt.X = 0

CenPt.Y = 0

CenPt.Z = 0

Set MyCir = Application.CreateEllipseElement2(Nothing, CenPt, _ Radius, Radius, RotMatrix)

Application.ActiveModelReference.AddElement MyCir

End Sub

DrawCircle2 is a procedure with a single required parameter. DrawCircle2 cannot be run by itself — it requires another procedure or function to run it. When it is called by another function or procedure, the required parameter "Radius" must be supplied like this:

DrawCircle2 1.5

Sub DrawCircle3(X As Double, Y As Double, Z As Double, _ Optional Radius As Double = 1.25)

'Declare Variables

Dim MyCir As EllipseElement

Dim CenPt As Point3d

Dim RotMatrix As Matrix3d

'Create Circle

CenPt.X = X

CenPt.Y = Y

CenPt.Z = Z

Set MyCir = Application.CreateEllipseElement2(Nothing, CenPt, _ Radius, Radius, RotMatrix)

Application.ActiveModelReference.AddElement MyCir

End Sub

DrawCircle3 requires us to provide X, Y, and Z values and gives the option of providing a radius. If we supply a radius, it uses the value we give it. If we do not provide the radius, it used a value of 1.25.

Here is one way to test our procedure DrawCircle3:

Sub TestDrawCircle3()

DrawCircle3 2.25, 2.25, 0

DrawCircle3 2.25, 2.25, 0, 1.125

End Sub

The first time we call DrawCircle3 we do not provide the optional parameter. The second time we call it we provide a radius value of 1.125. The first circle will be drawn with a radius of 1.25 (the default value) and the second will be drawn with a radius of 1.125.

[image: Image]

Once an Optional Parameter is declared in the Procedure, any parameters after it must also be optional.

As we call functions and procedures, VBA displays a tip that shows us the parameters for the function or procedure that we are calling. Notice how the radius parameter is enclosed in square brackets. The square brackets tell us that "Radius" is an optional parameter. We are also shown the value of the optional parameter that will be used if we do not supply a value.

Another type of parameter that can be declared in a procedure or function is called ParamArray. A ParamArray must be the last parameter declared, because when we supply a value or values to the parameter in code, we can supply any number of values for the parameter. Here is an example of how it is declared and used in code:

Sub DrawCircle4(X As Double, Y As Double, Z As Double, _ ParamArray Radii () As Variant)

'Declare Variables

Dim MyCir As EllipseElement

Dim CenPt As Point3d

Dim RotMatrix As Matrix3d

Dim I As Long

'Create Circles

CenPt.X = X

CenPt.Y = Y

CenPt.Z = Z

For I = LBound(Radii) To UBound(Radii)

Set MyCir = Application.CreateEllipseElement2(Nothing, CenPt, _ Radii(I), Radii(I), RotMatrix)

Application.ActiveModelReference.AddElement MyCir

Next I

End Sub

We don’t know how many radius values will be provided in the Radii ParamArray. So, we use a For … Next loop which allows us to look at each one and use it in creating a new circle. Here is an example of how we call a procedure with a ParamArray in code:

Sub TestDrawCircle4 ()

DrawCircle4 1, 1, 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5

End Sub

We provide an X of 1, a Y of 1, and a Z of 0. Then we begin providing radius values. After the code is run, we have six new circles in our MicroStation design file.

Here are the six circles created by TestDrawCircle4.

We have created over 100 lines of code so far in this chapter. The current module now has nine different procedures in it. Five of them can be run by themselves, the others must be called by other procedures or functions.

[image: Image]

Speaking of functions, let’s examine them in detail.

Function Pi() As Double

Pi = Atn(1) * 4

End Function

Here is a function named Pi. It does not accept any parameters and the type of value it returns is a Double.

We specify what value is to be returned by assigning the return value to the name of the function.

This function, Pi, can be used now wherever we need the value of Pi. The procedure DrawCircle3 allows us to provide the radius of the circle to be drawn. But what do we do if we only know the area of the circle we want drawn? We can calculate the radius if we know the area but we need the value of Pi to do so. Rather than hard-coding a value of "3.14159" for Pi, we can use the Pi function we just created.

Sub TestPi()

Dim CircleArea As Double

Dim Circle Radius As Double

CircleArea = 3.5

CircleRadius = Sqr(CircleArea / Pi)

DrawCircle3 2.5, 2.5, 0, Ci rcleRadius

End Sub

We calculate the radius of the circle based on a given area. We then use that value in the radius parameter of the procedure DrawCircle3.

The function Pi we just created does not have any parameters. It does not need them because the calculation is always the same. Let’s look at a few additional functions that come in handy from time to time. They are named RTD (Radians To Degrees) and DTR (Degrees To Radians).

Function RTD(AngleInRadians As Double) As Double

RTD = AngleInRadians * 180 / Pi

End Function

Function DTR(AngleInDegrees As Double) As Double

DTR = AngleInDegrees * Pi / 180

End Function

These two functions perform calculations that are very common to those of us who use MicroStation. They are shown here for instructional purposes only because MicroStation’s VBA implementation has a function named Degrees that converts radians to degrees and a function named Radians that converts degrees to radians.

The functions DTR and RTD (as well as the functions Degrees and Radians) have one required parameter. Here is how we use them:

Sub DrawArc1()

Dim MyArc As ArcElement

Dim CenPt As Point3d

Dim RotMatrix As Matrix3d

Set MyArc = Application.CreateArcElement2(Nothing, CenPt, 1.5, _ 1.5, RotMatrix, DTR(45), DTR(90))

Application.ActiveModelReference.AddElement MyArc

End Sub

CreateArcElement2 requires several parameters. One of them is the Start Angle. Another is the Sweep Angle. Both parameters require the value to be given in radians. Many of us don’t normally think in radians, we think in degrees. So, we can use the DTR function shown above to convert from degrees (which we think in) to radians (which the function is expecting).

[image: Image]

Here is the arc created by the above code. It begins at 45 degrees and has a sweep of 90 degrees.

Returning an Array

Functions return a value, right? Yes. But functions can actually return more than one value through the use of an array.

As we will discuss more in the next chapter, but for now know that an array is a variable that contains more than one value and that we can return an array in a function. Here’s what it looks like:

The underscore (_) character allows one line of code to span multiple lines.

Function PolarPoint(X As Double, Y As Double, Z As Double, _ Angle As Double, Distance As Double) As Variant

Dim XChange As Double

Dim YChange As Double

XChange = Cos(Angle) * Distance

YChange = Sin(Angle) * Distance

Dim PPoint(0 To 2) As Double

PPoint(0) = X + XChange

PPoint(1) = Y + YChange

PPoint(2) = Z

PolarPoint = PPoint

End Function

The PolarPoint function allows us to define a starting point (X, Y, and Z), an angle, and a distance. In return, we are given the resulting X, Y, and Z elements of the coordinate as an array.

We return an array by declaring the return type of the function as a variant. As we will learn in the discussion on variables, a variant can hold any type of value, object, or array of values or objects. We declare an array of doubles within the function and then we assign the array variable to the function name. Here’s one way to test the PolarPoint function.

Sub TestPolarPoint()

Dim StartCen As Point3d

Dim CenPt As Point3d

Dim RotMatrix As Matrix3d

Dim X As Variant

StartCen.X = 2

StartCen.Y = 2

StartCen.Z = 0

Set MyCir = Application.CreateEllipseElement2(Nothing, _ StartCen, 1, 1, RotMatrix)

Application.ActiveModelReference.AddElement MyCir

Dim RotAngle As Double

For RotAngle = 0 To 360 Step 30

X = PolarPoint(StartCen.X, StartCen.Y, StartCen.Z, _ DTR(RotAngle), 4)

CenPt.X = X(0)

CenPt.Y = X(1)

CenPt.Z = X(2)

Set MyCir = Application.CreateEllipseElement2(Nothing, _ CenPt, 1, 1, RotMatrix)

Application.ActiveModelReference.AddElement MyCir

Next RotAngle

End Sub

What do we get when we run TestPolarPoint?

[image: Image]

Returning 'Types'

Thus far we have written functions that return either a single value or an array of values. You can also return types. MicroStation VBA has a 'Point3d' type with three properties: X, Y, and Z. Let’s copy and paste the Polar Point function and make use of this type.

Function PolarPoint2(X As Double, Y As Double, Z As Double, _ Angle As Double, Distance As Double) As Point3d

Dim XChange As Double

Dim YChange As Double

XChange = Cos(Angle) * Distance

YChange = Sin(Angle) * Distance

Dim PPoint(0 To 2) As Double

PolarPoint2.X = X + XChange

PolarPoint2.Y = Y + YChange

PolarPoint2.Z = Z

End Function

Instead of returning an array as in the previous example, we are returning a Point3d type. Here is an example that uses the PolarPoint2 function:

Sub TestPolarPoint2()

Dim StartCen As Point3d

Dim CenPt As Point3d

Dim RotMatrix As Matrix3d

Dim X As Variant

StartCen.X = 2

StartCen.Y = 2

StartCen.Z = 0

Set MyCir = Application.CreateEllipseElement2(Nothing, _ StartCen, 1, 1, RotMatrix)

Application.ActiveModelReference.AddElement MyCir

Dim RotAngle As Double

For RotAngle = 0 To 360 Step 30

CenPt = PolarPoint2(StartCen.X, StartCen.Y, StartCen.Z, _ DTR(RotAngle), 4)

Set MyCir = Application.CreateEllipseElement2(Nothing, _ CenPt, 1, 1, RotMatrix)

Application.ActiveModelReference.AddElement MyCir

Next RotAngle

End Sub

Returning Objects

One additional return type is worth mentioning. In addition to returning values and types, a function can return objects. Here is one example.

Function GetExcelWS() As Object

Dim ExcelApp As Object

Set ExcelApp = GetObject(, "Excel.Application")

Set GetExcelWS = ExcelApp.activesheet

End Function

This function gets the active worksheet in Microsoft Excel. Excel must be running for this function to work correctly. How do we use it? Let’s take a look.

Sub TestGetExcelWS()

Dim MyWS As Object

Dim Cell1 As Double

Dim Cell2 As Double

Dim Cell3 As Double

Set MyWS = GetExcelWS

Cell1 = MyWS.Range("B2")

Cell2 = MyWS.Range("C2")

Cell3 = MyWS.Range("D2")

End Sub

This procedure gets the values of three cells in Excel. It really is very easy to get data from or write data to Excel. We will discuss more on working with Microsoft Excel later in this book.

ByVal and ByRef

We have seen how we can provide parameters when we call procedures and functions. By default, values are passed by reference. The other way values can be passed is by value. What do these mean?

Sub GetThreeVals(X As Double, Y As Double, Z As Double)

X = 1

Y = 2

Z = 3

End Sub

This procedure accepts three parameters. Inside the code, we use the parameters names and assign values to them. It is important to understand this is because using variables directly in this manner will change the values in the function or procedure that calls this procedure.

Sub TestGetThreeVals()

Dim A As Double

Dim B As Double

Dim C As Double

A = 100

B = 200

C = 300

GetThreeVals A, B, C

End Sub

Here we have variables A, B, and C. We assign values of 100, 200, and 300 respectively. Then we use these variables (A, B, and C) when we call GetThreeVals. Since the procedure GetThreeVals has its parameters declared without the keyword "ByVal", the values are passed into the procedure "ByRef". ByRef means the values of the parameters may be modified inside the procedure. And if they are modified in the procedure, the variables will maintain these values outside of the procedure. So, before the line of code "GetThreeVals A, B, C" is executed, the values of A, B, and C are 100, 200, and 300. After GetThreeVals is executed, the values of A, B, and C are 1, 2, and 3.

GetThreeVals changes the values of the parameters that are passed in. This can be a powerful feature if it is used correctly. It can also cause a great deal of confusion if it is not understood. Suddenly, variables that were holding one value could hold another value.

If we do not want a function or procedure to change the values of the variables passed as parameters, there are a couple of ways we can do this. The first technique requires discipline on our part. The second technique is a more definite method.

Sub GetThreeVals2(X As Double, Y As Double, Z As Double)

Dim dblX As Double

Dim dblY As Double

Dim dblZ As Double

dblX = X

dblY = Y

dblZ = Z

dblX = 1

dblY = 2

dblZ = 3

End Sub

Instead of manipulating the parameters directly, we place the values of the parameters into variables declared inside the procedure. Then we manipulate these local variables. This keeps us from changing the parameters.

Another way to maintain the integrity of the parameters passed into our functions and procedures is to declare them explicitly as "ByVal".

Sub GetThreeVals3(ByVal X As Double, ByVal Y As Double, _ ByVal Z As Double)

X = 1

Y = 2

Z = 3

End Sub

Taking the additional step of declaring a parameter as ByVal guarantees the integrity of the parameters.

Declaring Variables

Variables are used extensively throughout our code. Variables are declared with a name and a type. We will learn more about this in the next chapter. What is important to understand now is that variables have a scope. There is a pre-determined amount of time when a variable can be used. The variable’s scope depends on where it is declared and what keywords (if any) are used when it is declared. There are two places where variables can be declared. One place is inside the procedures and functions in which they will be used. We have seen numerous examples of this so far. The other place we declare variables is in the General Declarations area of code modules, forms, and class modules.

[image: Image]

In the General Declarations area of this code module, I declared three variables as the same type (as doubles) but used different keywords to declare them: Dim, Private, and Public.

Dim StartPointX as Double

Declaring a variable with "Dim" in the General Declarations area of a code module or form code area means the variable is only available for use from within that module, form, or class module. StartPointX was declared by using the "Dim" keyword so, again, it can only be used from within the module or form in which it is declared.

'Private' has the same effect as using 'Dim'. You can use the variable within any function or procedure in the code area in which it is declared. One function can set its value and another function in the same module, form, or class can read the value.

'Public' variable declarations behave differently depending on where the declarations are made.

Forms - Publicly declared variables are in scope when the form is in scope (usually only when it is displayed). Other areas of a project can access the variable through the form’s name. For example,

UserForml.TestVariable = 4.5

We can use the variable TestVariable only by addressing it through the form and the form must be 'in scope' for this to work.

Modules - Publicly declared variables are in scope for all areas within the same project.

Classes - Publicly declared variables are seen as read/write properties for the class.

Option Explicit

[image: Image]

By default, if we attempt to use a variable that is not declared, it inherits the type of 'Variant'. We can force ourselves to declare variables by using "Option Explicit" in the General Declarations area of modules, forms, and classes.

[image: Image]

In this example, we have declared "Option Explicit" in the General Declarations area. When we attempt to run the macro test shown above we get an error.

To avoid this error, we need to declare X as a double, integer, or long. More on variable types in the next chapter.

REVIEW

[image: Image] Write code as procedures, functions, or inside user form events.

[image: Image] In procedures and functions utilize required and optional parameters.

[image: Image] In functions you can return values, arrays, types, and objects.

[image: Image] In procedures and functions you can make changes to the variables passed into them as parameters if the parameters are declared as "ByRef". Declare a parameter as "ByVal" to keep the variable’s value from changing.

[image: Image] Declare variables in procedures, functions, and events or in the General Declarations area. The scope of these variables depends on where they are declared and what keywords accompany the declaration.

[image: Image]

6Variables

1 + N + 3 = 7

What is N? N is a variable. In the above equation it represents a number. If we were to solve for N we would get a value of 3.

"Learning MicroStation VBA " & N & " Easy."

What is N? N is a variable. In the above equation it represents a string of characters.

What string of characters does it represent? "IS".

[image: Image]

In this Chapter:

[image: Image] Standard VBA Variable Types

[image: Image] MicroStation-Specific Variable Types

[image: Image] Assigning Values and Setting Objects

[image: Image] Arrays

[image: Image] Constants

[image: Image] Variable Names

[image: Image] Option Explicit

[image: Image] Using Variables

STANDARD VBA VARIABLE TYPES

A variable is a name that represents a value or an object. The examples above show variables with a name of N. In one instance the variable holds a numeric value. In the other it holds a string of characters. In general, we know in advance what type of value or object a variable will be representing. Since we know this, we specify what type of variable we will use by declaring it.

Dim N as Integer

N = 7 - 3 - 1

Here, we declare the variable N as an integer. This means it will be a whole number between -32,768 and 32,767.

Dim N As String

N = "IS"

MsgBox "Learning MicroStation VBA " & N & " Easy."

Here we declare N as a string. A string is a group of characters. After a variable is assigned a value, you can use it in the place of a number, text, or some other type of value or object.

We will use variables extensively throughout this book. Let’s examine some of the more common types of variables available to us.

Integer

Dim PageNumber as Integer

PageNumber = 2

We said that an integer is a whole number between -32,768 and 32,767. If we need a variable to hold a value greater than or less than the range of an integer, we must declare it as something different.

Long

Dim MySalary as Long

MySalaray = 123456

A long is a whole number between -2,147,483,648 and 2,147,483,647. These numbers are much larger than those in the range of an integer. It requires more memory to allow for this greater range of numbers so we should only use it when we need it.

Double

Dim HoursToLearnVBA as Double

HoursToLearnVBA = 36.25

A double is also called a double precision floating point number. What does that mean? It means the precision available for a double is twice the precision available for single (also a variable type but not used as much) and the decimal point can float to allow for greater precision of small numbers or larger numbers with less precision. It is important to understand the "floating point" portion of the description. If we expect an extremely large number to be extremely accurate, we may not only be disappointed but we could have less accurate results than we expected.

Consider this next macro, VariableTestC. It has a variable named N declared as a double in which the numbers "1234567890123456789" have the decimal in a different position each time with the last two numbers shown are '46'. VBA rounds the '456' number to '46' because a double variable is given a specific amount of memory in which to keep its value. When we attempt to put more in it than it can handle, it rounds the number to something it can hold.

Sub VariableTestC()

Dim N As Double

N = 1.23456789012346

N = 12.3456789012346

N = 123.456789012346

N = 1234.56789012346

N = 12345.6789012346

N = 123456.789012346

N = 1234567.89012346

N = 12345678.9012346

N = 123456789.012346

N = 1234567890.12346

N = 12345678901.2346

N = 123456789012.346

N = 1234567890123.46

N = 12345678901234.6

End Sub

Doubles can hold very precise numbers but as the value of the number increases, the precision decreases. This is something to keep in the back of your mind as you develop applications.

Boolean

Dim ICanLearnThis as Boolean

ICanLearnThis = True

A Boolean data type can hold one of two values: True or False.

Date

Dim XMReleaseDate as Date

XMReleaseDate = "5/19/2006 8:00:00 AM"

A Date data type holds a Date/Time value.

String

Dim MyLevelName as String

MyLevelName = "utilElectricity"

A string data type contains text. Letters, numbers, and other characters we on our computer keyboards can be held inside this variable. We have seen that numeric variable types have ranges of values. This is because their data types have a predefined amount of memory set aside for each variable. Strings are no different. So how many characters can be held inside a string variable? Approximately 2 billion (2,000,000,000). That is a lot of characters.

Object

Dim MyExcelApp as Object

Set MyExcelApp = GetObject(, "Excel.Application")

Object type variables point to objects. The variable MyExcelApp, for example, could point to an instance of Microsoft Excel, an application. Microsoft Excel is an object with specific properties, methods, and events. Others objects have their own unique properties, methods, and events. When we declare a variable as an object, it is a generic object without any previous knowledge of its properties, methods, or events. Only after we set the variable to an object does it know what kind of an object it is as well as its other attributes.

Variant

Dim PointArray as Variant

Variables declared as a variant can hold any type of value, point to any type of object, or even contain an array of values.

MICROSTATION-SPECIFIC VARIABLE TYPES

The variable types we have discussed are standard VBA variable types. They can be used in MicroStation VBA, in Excel VBA, in Word VBA, or in Access VBA. Let’s consider some of the variable types specific to MicroStation that we will regularly use.

Application

Dim MSApp As Application

Set MSApp = Application

The application variable type points to the MicroStation application. It is the top level object when dealing with MicroStation. A few of the things we can do from a variable declared and set to the MicroStation application are:

[image: Image] Get the ActiveDesignFile property

[image: Image] Get the ActiveModelReference property

[image: Image] Get the ActiveSettings object and its properties

[image: Image] Get the ExecutingVBProject object and its properties

[image: Image] Get the UserName property

[image: Image] Get the left, top, width, and height properties

DesignFile

Dim MyDGN As DesignFile

Set MyDGN = Application.ActiveDesignFile

The DesignFile object refers to a MicroStation DGN file. Top-level DGN properties and collections are available to us via the DesignFile object.

[image: Image] Get and set the Author, Client, Comments, Company, Keywords, Manager, Subject, and Title Properties

[image: Image] Get the FormatMajorVersion and FormatMinorVersion properties

[image: Image] Get the Levels collection

[image: Image] Get the Models collection

[image: Image] Get the Name and Path properties

ModelReference

Dim MyModel As ModelReference

Set MyModel = Application.ActiveModelReference

The ModelReference object is where the rubber meets the road. When we draw inside a file, we do it through the ModelReference object. When we want to find out what is in a file, we do it through the ModelReference object. We will work extensively with this object throughout this book.

Level

Dim MyLevel As Level

Set MyLevel = Application.ActiveDesignFile.Levels(1)

Levels allow us to divide our designs into groups of objects. We usually group our objects based on their specific type of geometry or annotation. Road centerlines may be placed on one level, Lot numbers on another, and title block lines on another, etc. Here are a few of the properties we can get and set from the level object:

[image: Image] Description

[image: Image] ElementColor

[image: Image] ElementLineStyle

[image: Image]ElementLineWeight

[image: Image] IsActive

[image: Image] IsDisplayed

[image: Image] IsFrozen

[image: Image] IsLocked

[image: Image] Name

[image: Image] Number

[image: Image] Plot

LineElement

Dim MyLine As LineElement

Set MyLine = Application.CreateLineElement2(Nothing, _ Point3dFnomXYZ(0, 0, 0), Point3dFromXYZ(4, 5, 6))

Application.ActiveModelReference.AddElement MyLine

A LineElement is created with a start point and an end point. After it is created, we can add it to our model.

EllipseElement

Dim MyCircle As EllipseElement

Dim RotMatrix As Matrix3d

Set MyCircle = CreateEllipseElement2(Nothing, _ Point3dFromXYZ(0, 0, 0), 1.5, 1.5, RotMatrix)

Application.ActiveModelReference.AddElement MyCircle

Lines, circles, and arcs form the basis of much of the geometry found in our MicroStation files. From MicroStation’s perspective, circles are essentially ellipses with equal major and minor radii. The code shown above draws a circle centered at (0, 0, 0) with a radius of 1.5.

ArcElement

Dim MyArc As ArcElement

Dim RotMatrix As Matrix3d

Set MyArc = CreateArcElement2(Nothing, _ Point3dFromXYZ(0, 0, 0), 1.75. 1.75. _ RotMatrix, Radians(45), Radians(90))

Application.ActiveModelReference.AddElement MyArc

We are given several ways to create a new LineElement, EllipseElement, and ArcElement. In this example, we create a new ArcElement by providing a center point, major and minor radii, a start angle, and a sweep angle.

TextElement

Dim MyText As TextElement

Dim RotMatrix As Matrix3d

Set MyText = CreateTextElement1(Nothing, "MicroStation VBA", _ Point3dFromXYZ(0, 0, 0), RotMatrix)

Application.ActiveModelReference.AddElement MyText

The TextElement object needs the text to display and a starting point. When it is created we can set other properties such as the color, level, and textstyle (which includes font, size, etc.).

We use many more types of objects when programming MicroStation in VBA and there is much more to learn about the objects we have just introduced. They will be covered in greater detail as we continue to learn MicroStation VBA.

ASSIGNING VALUES AND SETTING OBJECTS

Value-type variables and object-type variables are declared similarly. When giving the variables values or setting them to objects, there is one major difference.

Dim LevelName As String

LevelName = "Easement"

Dim EasementLevel As Level

Set EasementLevel = _ ActiveDesignFile.AddNewLevel(Level Name)

Here we have two variables. One is declared as a string and the other as a Level.

We assign a value to the LevelName variable by stating the variable by name, using an equal sign, and then the value we want it to have. When we use the Level object, we use the keyword 'Set' to set the variable to an object. We only use 'Set' when we are setting a variable to an object. After it is set to an object we can address it by its name without using Set.

ARRAYS

When we think about an array in MicroStation, we think about taking an element and copying it multiple times. An array in VBA is a single variable name with multiple elements in it.

Dim StartPoint(0 to 2) as Double

StartPoint(00) - 4.5

StartPoint(1) = 5.6

StartPoint(2) = 6.7

In this example, we declared a variable as an array with three elements numbered 0, 1, and 2. We can address the elements individually by specifying their index within the array.

In the next example, I created an array where each Point3D type has an X property, a Y property, and a Z property. Notice how I addressed each element in the array by its index (0 and 1) and then addressed the X, Y, and Z properties.

Sub ArrayTestA()

Dim MyVerticies(0 To 1) As Point3d

Dim MyLine As LineElement

MyVerticies(0).X = 1

MyVerticies(0).Y = 2

MyVerticies(0).Z = 3

MyVerticies(1).X = 4

MyVerticies(1).Y = 5

MyVerticies(1).Z = 6

Set MyLine = CreateLineElement1(Nothing, MyVerticies)

ActiveModelReference.AddElement MyLine

End Sub

CONSTANTS

A constant is similar to a variable with one significant difference: a constant value does not change.

Const PI As Double = 3.14159

You can declare constants as public in the General Declarations area of a code module, as shown above, from within individual procedures and functions. Constants are useful any time you need a value that does not change. For example, if you are writing a program that labels line lengths in a design file, you could specify a constant for the distance the text is to be offset from the line. A constant can also provide a units conversion factor, such as from inches to cubits.

Another reason to use a constant is for calculations that make routine references to specific values, such as a ShimWidth value in multiple calculations. Instead of using a value of 0.6 when we make the calculations, we can declare a constant with a name of ShimWidth and assign it a constant value of 0.6. This makes our code easier to read and allows us to change our ShimWidth value in only one place (where the constant is declared) instead of wherever the value is used.

VARIABLE NAMES

Thousands of pages of text have been devoted to naming variables. The best place to start this discussion is with the rules imposed on us by VBA.

[image: Image] Variables must begin with an alpha character (A through Z).

[image: Image] Variable names cannot contain spaces.

[image: Image] Name characters are A-Z, 0-9, and _ (underscore).

[image: Image] Variable names must be 255 characters or less.

[image: Image] Variable names cannot be keywords (such as 'Dim', 'New', 'Left', 'Right', 'Form', 'Public').

[image: Image] Letters used in variable names can be uppercase or lowercase.

Based on the rules already identified, here are a few variable declarations that work:

Dim my Line As LineElement

Dim txteMyText As TextElement

Dim strName As String

Dim dblStartX As Double

Dim intLevelNumber As Integer

Dim pt3dStartPoint As Point3d

Each of the declarations shown above are legitimate variable declarations. They follow the rules. The first, myLine, is slightly different than the others. Each of the other declared variables begins with characters that identify the type of variable. strName says the variable type is a string. dblStartX says we are working with a double type variable.

It is important to know if a project requires using variable naming conventions. A naming convention is an additional set of rules on how to name variables. For example, one convention may state that each variable name begin with three characters followed by an underscore (_) character, then a name consisting of no more than seven characters. Another convention may not use an underscore. Yet another convention may require that the scope of the variable be identified inside the variables name.

As mentioned, many pages have been devoted to the topic of variable naming conventions, so we will not spend much time here on the subject. You should understand that naming a variable myLine or lineMyLine or line123 does not cause your program to work any differently than naming it elemline_LineA.

Naming conventions can extend beyond variable names. Procedure names, function names, and control names can also be within the scope of a naming convention.

Here is a link to a web page that discusses variable naming conventions:

http://msdn.microsoft.com/library/en-us/modcore/html/deconVariableNames.asp

Another way to become familiar with naming conventions is to search online for "variable naming convention" or "Hungarian Notation".

Case Sensitivity

Consider the following variable declarations:

Dim myLine As LineElement

Dim MYline As LineElement

Since VBA is not concerned with capitalization in variable names, the two variables declared above are the same. When we use a variable inside VBA, VBA automatically changes the capitalization to that used in the declaration. Some programmers use this to make sure they do not introduce typos into their code. They may always use a capital letter somewhere in the variable name when they declare it and then type all lower-case when they use it. When a line of code is complete and the cursor is moved to the next line of code, VBA automatically updates the capitalization of the variable that had been typed in lowercase.

OPTION EXPLICIT

We have spoken for a while about variable types and declaring variables. There are many arguments as to why we should declare our variables. However, VBA does not force us to do so. It is possible to use a variable even if it is not formally declared. When we do this, the variable takes on the characteristics of a specific variable type when it is first used. For example, it will be a 'Variant Double' if its value is 1.23456. Or it will become a 'Variant String' if its value is "owhatafooliam". One way we can make sure we declare our variables is to use "Option Explicit" in the General Declarations area of our modules. Another way is to go to the VBA menu Tools > Options.

[image: Image]

Checking the 'Require Variable Declaration' button causes VBA to enter "Option Explicit" for us.

USING VARIABLES

After a variable is declared and a value is applied to it or it is set to an object, the variable can be used any time the value is needed.

Sub VariableTestD()

Dim MySalary As Double

Dim MyHourly As Double

MySalary = 1234567

MyHourly = MySalary / 52 / 40

MsgBox "My Hourly Rate is " & FormatCurrency(MyHourly, _ 2, vbFalse, vbFalse, vbTrue)

End Sub

[image: Image]

Here we have two variables. One of them (MySalary) is given a value of 1234567. We then use MySalary to calculate MyHourly. We then use the standard VBA function FormatCurrency to convert the variable MyHourly to a two-decimal place currency value and concatenate "My Hourly Rate is" with the result of the FormatCurrency function.

REVIEW

Variables are names that hold values or refer to objects. Variables declared within a function, procedure, or event are local to that function and cannot be used outside of it. Variables declared in the General Declarations area of a form or code module can be used from within the form or code module in which they are declared. Variables declared as 'Public' inside a code module can be used anywhere in the VBA project. Variables declared as 'Public' in class modules become read/write properties of that class module.

We will use variables extensively throughout this book. After all, without variables everything would be static — nothing could change. Lines would always be drawn from the same point to the same point and text would always be inserted at the same point and would always say the same thing.

[image: Image]

7Working With Text

We work with text every day. This book is composed of text: words, phrases, sentences, paragraphs. The ability to work with text is invaluable in our programming.

Recall that the type of variable that deals with text is a String.

Sub TextWork01()

Dim BookTitle As String

BookTitle = "Learning MicroStation VBA"

MsgBox UCase(BookTitle)

MsgBox LCase(BookTitle)

MsgBox Left(BookTitle, 12)

MsgBox Right(BookTitle, 12)

End Sub

In this example, we have a variable named BookTitle that is declared as a String. It is given a value of "Learning MicroStation VBA". Four different functions are then used with the variable BookTitle as a parameter and the result displays in four MessageBoxes.

[image: Image]

VBA STRING FUNCTIONS

Let’s take a look at each of the VBA functions that deal with text (Strings) one-by-one.

UCase

Function UCase(String)

The UCase function converts the supplied string to upper case.

Sub TextWork02()

Dim strNewLevel As String

strNewLevel = InputBox("Enter New Level Name:")

strNewLevel = UCase(strNewLevel)

Application.ActiveDesignFile.AddNewLevel strNewLevel

End Sub

[image: Image]

[image: Image]

In this example we use an InputBox to allow the user to enter the name of a new level. We then convert it to upper case and use it to add a new level (AddNewLevel) to the active design file.

LCase

Function LCase(String)

The LCase function converts the supplied string to lower case.

Sub TextWork03()

Debug.Print LCase("LCase Lowers Capital Letters.")

End Sub

[image: Image]

Debug.Print is used to place text in the Immediate Window. It is often used to display text to aid in debugging our applications. To view the Immediate Window, go to the VBA menu View > Immediate Window.

In this example we used text directly in the function instead of assigning the text to a variable.

StrConv

Function StrConv(String, Conversion As VbStrConv, _

[LocaleID As Long])

StrConv is used to convert the provided string through a variety of parameters. The constant most used with StrConv is VbProperCase'.

Sub TextWork04()

Dim BookTitle As String

BookTitle = "learning microstation vba"

MsgBox StrConv(BookTitle, vbProperCase)

End Sub

[image: Image]

This example uses the vbProperCase constant to capitalize the first letter of each word.

WeekDayName, WeekDayNumber

Function WeekdayName(Weekday As Long, _

[Abbreviate As Boolean = False], _

[FirstDayOfWeek As VbDayOfWeek = vbUseSystemDayOfWeek]) _

As String

Each day of the week (Sunday through Saturday) has a number assigned to it. The WeekdayName function takes that number and converts it to the day’s name.

Sub TextWork05()

Dim TodaysDate As Date

Dim WeekDayNumber As Long

TodaysDate = Now

WeekDayNumber = Weekday(TodaysDate)

MsgBox WeekdayName(WeekDayNumber)

MsgBox WeekdayName(WeekDayNumber, True)

End Sub

The first parameter supplied to WeekdayName is the day number. The second parameter, 'Abbreviate', is optional with a default of false. When we supply a value of true, the WeekDayName is abbreviated.

[image: Image]

MonthName

Function MonthName(Month As Long, _

[Abbreviate As Boolean = False]) As String

The MonthName function is similar to the WeekdayName function but as the name implies, it returns the name of the month instead of the name of the day.

[image: Image]

 Sub TextWork05B()

Dim MonthNum As Long

For MonthNum = 1 To 12

Debug.Print MonthName(MonthNum)

Next MonthNum

End Sub

LTrim, RTrim, Trim

Function LTrim(String)

Function RTrim(String)

Function Trim(String)

Use the Trim functions to remove spaces from the beginning, end, and both beginning and end of a string.

Sub TextWork06()

Dim StringToTrim As String

StringToTrim = " Trim Functions Trim Space Characters. "

Debug.Print LTrim(StringToTrim)

Debug.Print RTrim(StringToTrim)

Debug.Print Trim(StringToTrim)

End Sub

[image: Image]

StrComp

Function StrComp(String1, String2, _

[Compare As VbCompareMethod = vbBinaryCompare])

The need to compare two pieces of text is common. Is "Sidewalk" the same as "SIDEWALK"? Not always.

Sub TextWork07()

Dim strNewLevel As String

Dim lvlExistLevel As Level

strNewLevel = InputBox("Enter New Level Name:")

For Each lvlExistLevel In Application.ActiveDesignFile.Levels

If StrComp(strNewLevel, lvlExistLevel.Name, _

vbTextCompare) = 0 Then

MsgBox "The level " & strNewLevel & " already exists."

Exit Sub

End If

Next

Application.ActiveDesignFile.AddNewLevel strNewLevel

End Sub

This procedure asks the user for a new level name. It compares the newly-entered name with the name of each existing level name. If it finds a match, a MessageBox displays and we exit the procedure.

StrComp allows us to specify how the provided text is to be compared. In the above example, the constant 'vbTextCompare' returns a value of zero (0) when the characters are the same, independent of the capitalization. With 'vbTextCompare', "SWalk" and "swalk" are the same.

Sub TextWork08()

Debug.Print StrComp("SWalk", "swalk", vbTextCompare)

Debug.Print StrComp("swalk", "SWalk", vbTextCompare)

Debug.Print StrComp("SWalk", "swalk", vbBinaryCompare)

Debug.Print StrComp("swalk", "SWalk", vbBinaryCompare)

End Sub

[image: Image]

StrComp lets us know whether the provided text is the same but it also tells us which text comes before the other. It is often used for sorting text alphabetically.

Here is one more example of StrComp, called a bubble sort. It takes an array of strings and sorts them alphabetically. This technique is a little more advanced, so it may be good to return to it after we have learned more VBA programming.

Sub BubbleSort()

Dim strNms(0 To 7) As String

strNms(0) = "Jerry"

strNms(1) = "Candice"

strNms(2) = "Brandon"

StrNms(3) = "Kyle"

strNms(4) = "Benjamin"

strNms(5) = "Jacob"

strNms(6) = "Nathan"

strNms(7) = "Olivia"

Dim MadeChange As Boolean

Dim tmpName As String

Dim I As Long

MadeChange = True

While MadeChange = True

MadeChange = False

For I = LBound(strNms) To UBound(strNms) - 1

If StrComp(strNms(I), strNmsd + 1), _

vbBinaryCompare) = 1 Then

tmpName = strNms(I)

strNms(I) = strNms(I + 1)

strNms(I + 1) = tmpName

MadeChange = True

End If

Next I

Wend

For I = LBound(strNms) To UBound(strNms) Debug.Print I & " " & strNms(I)

Next I

End Sub

Let’s break down this procedure into segments.

Dim strNms(0 To 7) As String

strNms(0) = "Jerry"

strNms(1) = "Candice"

strNms(2) = "Brandon"

strNms(3) = "Kyle"

strNms(4) = "Benjamin"

strNms(5) = "Jacob"

strNms(6) = "Nathan"

strNms(7) = "Olivia"

The first thing we do is declare an array of strings and give each element in the array a value.

Dim MadeChange As Boolean

Dim tmpName As String

Dim I As Long

MadeChange = True

Now we are setting up for the sorting portion of our routine. We want to run through the sorting portion at least once so we set the MadeChange variable to True and then immediately begin a While … Wend routine.

While MadeChange = True

MadeChange = False

For I = LBound(strNms) To UBound(strNms) - 1

If StrComp(strNms(I), strNms(I + 1), _

vbBinaryCompare) = 1 Then

tmpName = strNms(I)

strNms(I) = strNms(I + 1)

strNms(I + 1) = tmpName

MadeChange = True

End If

Next I

Wend

The above section is the heart of the routine. We continue to look at each value in the strNms array and compare it to the value in the array just after it. If the value we are looking at is alphabetically greater than the one after it, we swap the two elements in the array and set the MadeChange variable to True. Only after each value is examined and a swap is not made do we continue with the next segment of our code.

For I = LBound(strNms) To UBound(strNms)

Debug.Print I & " " & strNms(I)

Next I

The last little segment of code prints out the elements in the strNms variable array in their sorted condition.

Come back to this procedure after we have spent a little more time working with VBA and it will be easier to follow. Sorting text is accomplished easily and quickly using a Bubble Sort with the StrComp function.

Len

Function Len(Expression)

The Len function tells us how many characters are in a string.

Sub TextWork09()

Dim LevelName As String

LevelName = InputBox("Enter new level name: " & _ (Must be 8 characters)")

If Lent Level Name) <> 8 Then MsgBox "The level name must be 8 characters. Try again."

End If

End Sub

In this example, we ask the user for a new level name. We also request that the name be eight characters long. After the value is entered, we use the Len function to check the length. If it is not eight characters (<> means not equal to), we ask the user to try again.

Left

Function Left(String, Length As Long)

The Left function allows us to provide a string and specify how many characters we want returned to us beginning with the first character (left) of the string.

Sub TextWork10()

Dim FilePath As String

Dim FileDrive As String

FilePath = Application.ActiveDesignFile.Path

FileDrive = Left(FilePath, 1)

MsgBox "The current file is on the " & FileDrive & " drive."

End Sub

Here, we get the path of the active design file. We then look at the first character of the FilePath variable and put it into the FileDrive variable. A MessageBox then displays the FileDrive variable with some other text.

Right

Function Right(String, Length As Long)

You guessed it. The Right function is a companion to the Left function. It gives us the number of characters we ask for beginning with the last (right) character.

Sub TextWork11()

Dim FileName As String

FileName = Dir("C:\Program Files\Bentley\MicroStation*.*", vbArchive) While FileName <> ""

MsgBox FileName & " is a " & Right(FileName, 3) & " file."

FileName _ Dir

Wend

End Sub

This procedure displays all of the files in the C:\Program Files\Bentley\MicroStation folder and their file extensions in message boxes. Since there are quite a few, it will take a long time to click the OK button on each message box.

[image: Image] HINT: When a program is executing, we can break into the execution of the code by holding down the Control key (<CTRL>) and press the <Break> key. The break key is normally in the upper right-hand corner of the keyboard.

Mid

Function Mid(String, Start As Long, [Length])

The Mid function allows us to specify a string and the index of the starting character we want to have returned to us. We have the option of specifying how many characters we want to have returned or we can leave the Length parameter empty and have Mid return all of the characters following the specified 'Start' character index.

Sub TextWorkl2()

Dim BookTitle As String

BookTitle = "Learning MicroStation VBA"

Debug.Print Mid(BookTitle , 3, 6)

Debug.Print Mid(BookTitle, 6)

Debug.Print Mid(BookTitle, InStr(1, BookTitle, " ") + 1)

End Sub

[image: Image]

We used the Mid function three times in the above example, each time a little differently. The first time we asked Mid to begin at the third character and to return six characters in all. The second time we asked for the sixth character and each character after it. Notice how we leave out the Length parameter entirely. The third time we did not hard-code the beginning character. We used the InStr function to look for the first space in the variable BookTitle and added one (1) to the character number so we began with the character after the first space. The length is not provided so we get everything after the space.

Replace

Function Replace(Expression As String, Find As String, _ Replace As String, _

[Start As Long = 1], [Count As Long = -1], _

[Compare As VbCompareMethod = vbBinaryCompare]) As String

The Replace function allows us to provide a string, a character or characters to look for, and a replacement for the character(s) we are looking for.

Sub TextWork13()

Dim FilePath As String

Dim FilePath2 As String

FilePath = Application.ActiveDesignFile.FullName

FilePath2 = Replac(FilePath, "\", "//")

MsgBox FilePath & vbCr & "turns into" & vbCr & FilePath2

End Sub

In this example we look for a backslash then replace each one found with two forward slashes.

[image: Image]

InStr

Function InStr([Start], _

[String1], [String2],_

[Compare As VbCompareMethod = vbBinaryCompare])

InStr helps us identify where a character or group of characters appear in a string. For example, if we look in the string "ABCD" for string "C", InStr returns the number 3 because "C" is the third character in"ABCD". If the character(s) we are looking for is not found, InStr returns a value of zero (0).

Sub TextWorkl4()

Dim FullName As String

Dim FirstSpace As Long

Dim FirstName As String

FullName = InputBox("Enter your full name.")

FirstSpace = InStr(1, FullName, " ")

FirstName = Left(FullName, FirstSpace - 1)

MsgBox "Your first name is " & FirstName & "."

End Sub

Here is another simple example of the use of the InStr function. We ask the user to enter his/her full name. We look for the first space in the entered name, then get everything beginning from the start of the FullName up to the character before the FirstSpace.

Sub TextWorkl5()

Dim FilePath As String

Dim FirstFolderPath As String

Dim SecondBackSlash As Long

FilePath = ActiveDesignFile.FullName

SecondBackSlash = InStr(4, FilePath, "\")

FirstFolderPath = Left(FilePath, SecondBackSlash)

MsgBox FilePath & vbCr & FirstFolderPath

End Sub

[image: Image]

Often when we use InStr we begin looking at the first character. This is why the number one (1) appears as the first parameter. In this example, however, we begin by looking at the fourth character. This is because we know that the third character of a file path will likely be a backslash. The goal with TextWork15 is to get the path of the root folder of the active DGN file.

One more example:

Sub TextWork16()

Dim TextElem As TextElement

Dim MyMod As Model Reference

Set MyMod = Application.ActiveModel Reference

Dim MyElems As ElementEnumerator

Set MyElems = MyMod.GetSelectedElements

Dim MyElem As Element

While MyElems.MoveNext

Set MyElem = MyElems.Current

Select Case MyElem.Type

Case msdElementTypeText

Set TextElem = MyElem

If InStr(1, TextElem.Text, "[BY]") > 0

Then TextElem.Text = Replace(TextElem.Text, _ "[BY]", "JKW")

TextElem. Rewrite

End If

End Select

Wend

End Sub

In this example we look at each selected element in the active file. If we find a text element selected, we use InStr to see if a particular string is in the text element. If it is, InStr returns a number greater than zero (0). When we know the search string is inside the text element, we use the Replace function to replace "[BY]" with "JKW".

This is one way to perform 'Search and Replace' operations on our files. You could use this when you need to place the name of a contractor in your file but the file is created before the contract is awarded. Simply use a tag, such as [CONTRACTOR], then replace it later with the name of the contractor.

InStrRev

Function InStrRev(StringCheck As String, _

StringMatch As String, _

[Start As Long = -1], _

[Compare As VbCompareMethod = vbBinaryCompare]) As Long

InStrRev, as the name implies, looks at the end of a string first instead of the beginning. This is the reverse of InStr which begins looking at the beginning. Here is one way to use it:

Sub TextWork17()

Dim FilePath As String

Dim FolderName As String

FilePath = ActiveDesignFile.Path

FolderName = MidiFilePath, InStrRevtFilePath, "\") + 1)

MsgBox "The current file is in the " & FolderName & _ "folder."

End Sub

We get the path of the current file, then use the InStrRev function inside a Mid function to get the location of the first backslash we find. Since we don’t want to display the folder name beginning with the backslash, we add one (1) in our Mid function to get the characters following the backslash.

Split and Join

Function Split(Expression As String, [Delimiter], _

[Limit As Long = -1], _

[Compare As VbCompareMethod = vbBinaryCompare])

Function Join(SourceArray, [Delimiter]) As String

Split is used to take a String and split it into a text array.

Join takes an array and joins it into a String. We specify a delimiter for each call. Let’s take a look at one way to use Split and Join.

Sub TextWork18()

Dim FilePath As String

Dim NewTextFilePath As String

Dim xSplit As Variant

FilePath = ActiveDesignFile.FullName

xSplit = SplittFilePath, "\")

xSplit(UBound(xSplit)) = xSplit(UBound(xSplit)) & ".extract"

NewTextFilePath = Join(xSplit, "\")

Open NewTextFilePath For Output As #1 Print #1, FilePath

Close #1

End Sub

In this example we want to create a new ASCII text file with an extension "extract" in the same folder as our active design file. Split the path of the active design file into an array using the Split function. Specify the backslash as the delimiter. When you step through the code, this is what we have after the string is Split:

[image: Image]

The variable FilePath contains the path to the active design file. The variable xSplit is an array Split from FilePath using the backslash (\) as the delimiter. Take the last element in the array (using the UBound function) and add a new file extension of ".extract" to it.

Next, Join the array with the backslash (\) as the delimiter into the variable NewTextFilePath.

Lastly, create an ASCII Text file using the NewTextFilePath variable as the file name. Inside this new file print the contents of the FilePath variable.

Here is what the file looks like when it is opened in Notepad.

[image: Image]

Asc and Chr

Function Asc(String As String) As Integer

Function Chr(CharCode As Long)

The characters on our computer keyboards have an ASCII number associated with them. Upper case "A" has its own unique number different from lower case "a". Some characters not on our keyboards have their own ASCII number. You get the ASCII number of a character with the Asc function. If you know the ASCII number of a character, you can use the Chr function to get the character.

Sub TextWork19()

Dim strCharacter As String

For I = 0 To 255

Debug.Print I & vbTab & Chr(I)

Next I

End Sub

This code takes each ASCII character from 0 to 255 and prints it to the Debug (Immediate) window. Now, why would we want to do this? Because some of the ASCII characters that are not on your keyboard can come in handy. For example, character number 169 is the copyright symbol. Character number 174 is the registered symbol. Character 176 is the degrees symbol. Character 177 is the plus/minus symbol used for geometric tolerances.

[image: Image]

Now that you know that character 169 is the copyright symbol, you can use it in a message box:

Sub TextWork20()

Dim strCopyrightNotice As String

strCopyrightNotice = "Learning MicroStation VBA " & _ Chr(169) & "2005"

MsgBox strCopyrightNotice

End Sub

[image: Image]

The Asc function does the opposite of the Chr function. You provide a character and get back the ASCII number — something you might do when creating graphical user interfaces (GUIs).

Private Sub TextBox1_KeyPress(ByVal KeyAscii As _ MSForms.ReturnInteger)

Select Case KeyAscii

Case Asc("0") To Asc("9")

Case Else

KeyAscii = 0

End Select

End Sub

The preceding code is the KeyPress Event of a TextBox. The KeyPress Event gives the ASCII number of the character the user attempted to type into the TextBox. In this example, if the KeyAscii property contains a number 0 through 9, then do nothing. Otherwise give the KeyAscii property a value of zero (0). The net result is that only numbers 0 to 9 can be entered into the TextBox.

FormatCurrency

Function FormatCurrency(Expression, _

[NumDigitsAfterDecima1 As Long = -1], _

[IncludeLeadingDigit As VbTriState = vbUseDefault], _

[UseParensForNegativeNumbers As VbTriState = _

vbUseDefault], _

[GroupDigits As VbTriState = vbUseDefault]) As String

Use FormatCurrency to take a number or string then display it as currency. In some countries, such as the U.S., this places a dollar symbol in front of it. Other parameters include the grouping numbers with commas, etc.

Sub TextWork21()

Dim MySalary As Double

Dim MySalary2 As Double

MySalary = 123456.78

MySalary2 = 0.1234

MsgBox FormatCurrency(MySalary, 2, vbFalse, vbFalse, vbTrue)

MsgBox FormatCurrency(MySalary, 0, vbFalse, vbFalse, vbTrue)

MsgBox FormatCurrency(MySalary2, 2, vbFalse, vbFalse, vbTrue)

MsgBox FormatCurrency(MySalary2, 2, vbTrue, vbFalse, vbTrue)

End Sub

[image: Image]

FormatNumber

Function FormatNumber(Expression, _

[NumDigitsAfterDecima1 As Long = -1], _

[IncludeLeadingDigit As VbTriState = vbUseDefault], _

[UseParensForNegativeNumbers As VbTriState =

vbUseDefault], _

[GroupDigits As VbTriState = vbUseDefault]) As String

FormatNumber looks the same as FormatCurrency. The main difference is that FormatCurrency places a currency character in front of the number, whereas FormatNumber returns only a formatted number.

Sub TextWork22()

Dim MySalary As Double

Dim MySalary2 As Double

MySalary = 123456.78

MySalary2 = 0.1234

MsgBox FormatNumber(MySalary, 2, vbFalse, vbFalse, vbTrue)

MsgBox FormatNumber(MySalary, 0, vbFalse, vbFalse, vbTrue)

MsgBox FormatNumber(MySalary2, 2, vbFalse, vbFalse, vbTrue)

MsgBox FormatNumber(MySalary2, 2, vbTrue, vbFalse, vbTrue)

End Sub

[image: Image]

FormatDateTime

Function FormatDateTime(Expression, _

[NamedFormat As VbDateTimeFormat = vbGeneralDate]) _

As String

Use FormatDateTime to specify a date/time and how format it. Here are your options and the results:

Sub TextWork23()

Dim DateToFormat As Date

DateToFormat = "1/1/2005 4:45 PM"

MsgBox FormatDateTime(DateToFormat, vbGeneralDate)

MsgBox FormatDateTime(DateToFormat, vbLongDate)

MsgBox FormatDateTime(DateToFormat, vbLongTime)

MsgBox FormatDateTime(DateToFormat, vbShortDate)

MsgBox FormatDateTime(DateToFormat, vbShortTime)

End Sub

[image: Image]

Format

Function Format(Expression, [Format], _

[FirstDayOfWeek As VbDayOfWeek = vbSunday], _

[FirstWeekOfYear As VbFirstWeekOfYear = vbFirstJan1])

We already have examples of specific types of formatting: FormatCurrency, FormatNumber, FormatDateTime. These functions work great for standard formatting situations. However, VBA does not provide a FormatPhoneNumber function. So, how do we take ten digits and turn them into a fully formatted phone number?

Sub TextWork24()

Dim MyPhone As String

MyPhone = "8005551212"

MsgBox Format(MyPhone, "(###) ##-###")

End Sub

The Format parameter in the Format function allows a great deal of flexibility. See the VBA Help file for more formatting options.

[image: Image]

&

Use the Ampersand (&) symbol to concatenate strings. I use the ampersand extensively in this book to take multiple strings and combine them into one.

vbCr

We have a few constants available for use with strings, such as vbCr constant, which is for a Carriage Return. It is similar to pressing the <Enter> key on the keyboard. Look at previous examples of the vbCr constant and the results it generated.

vbTab

Use the vbTab constant to simulate the user pressing the <Tab> key on the keyboard.

REVIEW

Strings refer to text. Letters, numbers, and other characters combine to form a single piece of text. This section focused on working with these strings of characters. You learned to capitalize, make lowercase, get the left-most or right-most characters, split them, join them back together, format them, and a number of other things.

Take time to work through all of the examples accompanying each of the functions. Remember, you can step through the code one line at time by using the <F8> button.

The next section deals with numbers.

[image: Image]

8Working With Numbers

For hundreds and even thousands of years, the worlds greatest mathematicians attempted to calculate an accurate value for Pi. When asked about this value today, we casually state 3.14159 or something close to it. A2 + B2 = C2. This formula is second nature to children on our school’s playgrounds today, whereas not long ago the equality of the sum of the squares of the sides of a right triangle to the square of the hypotenuse was a great unknown.

While software development, in general, deals in large part with logic, add MicroStation to the mix and the need to manipulate numbers increases exponentially. After all, what is a line? The shortest distance between two points. Each of these points is composed of three numeric values: an X, a Y, and a Z. To draw a circle at the midpoint of that line in VBA, we need to calculate the line’s midpoint. How do we do that? Find the phone number of a math teacher? Not so, my friend.

NUMERIC FUNCTIONS

VBA makes working with numbers a breeze. It doesn’t do all of the work for us, but we can do a great deal with very little pain.

Addition

1 + 1 = 2. We learned this many, many years ago. The plus symbol (+) is used in VBA to add numbers. Take a look:

Sub TestAdditionSubtraction()

Dim SelPt As Point3d

Dim CenPt As Point3d

Dim CadMsg As CadInputMessage

Dim TextElem As TextElement

Dim RotMatrix As Matrix3d

Set CadMsg = Application.CadInputQueue.GetInput

Do While True

Select Case CadMsg.InputType

Case msdCadInputTypeDataPoint

SelPt = CadMsg.Point

Exit Do

End Select

Loop

CenPt = SelPt

CenPt.X = CenPt.X + 1

Set TextElem = Application.CreateTextElement1(Nothing, "1", _ CenPt, RotMatrix)

ActiveModelReference.AddElement TextElem

CenPt = SelPt

CenPt.Y = CenPt.Y + 1

Set TextElem = Application.CreateTextElement1(Nothing, "2", _ CenPt, RotMatrix)

ActiveModelReference.AddElement TextElem

CenPt = SelPt

CenPt.X = CenPt.X - 1

Set TextElem = Application.CreateTextElement1(Nothing, "3", _ CenPt, RotMatrix)

ActiveModelReference.AddElement TextElem

CenPt = SelPt

CenPt. Y = CenPt. Y - 1

Set TextElem = Application.CreateTextElement1(Nothing, "4", _ CenPt, RotMatrix)

ActiveModelReference.AddElement TextElem

End Sub

[image: Image]

We let the user select a point in MicroStation. We then use the selected point as a basis for the insertion of each of the text elements we add to the model. We add 1 to the X element of the selected point to get the location for the text "1". We add 1 to the Y element of the selected point to get the location for the text "2". Points 3 and 4 require us to subtract from the X and Y respectively.

Subtraction

10 - 3 = 7. Use the minus symbol (-) to subtract values in VBA, as in the example in the procedure TestAdditionSubtraction.

Multiplication

2 X 6 = 12. Use the asterisk (*) symbol to multiply in VBA. The previous reference works when in a math book but in VBA it is written 2*6 = 12.

Sub TestMultiplication()

Dim DistanceInInches As Double

Dim DistanceInMM As Double

DistanceInInches = CDbl(InputBox("Enter distance in inches:"))

DistanceInMM = DistanceInInches * 25.4

MsgBox DistanceInInches & " is equal to " & _ DistanceInMM & " Millimeters."

End Sub

Multiplying the entered value by 25.4 converts the entered value from inches to millimeters.

Division

There are two ways to divide numbers in VBA. No, not long division and short division. The first method returns a very precise number. When you want precision (and you usually do), use the forward slash (/) symbol like this: 5 / 2 = 2.5

Function ToMiles(DistanceInFeet as Double) As Double

ToMiles = DistanceInFeet / 5280

End Function

The function ToMiles allows us to supply a distance in feet that returns the distance in miles. Actually, the return value is in decimal miles.

Another way to divide numbers is using the backslash symbol (\). This returns a whole number instead of a decimal number. 5 \ 2 = 2.

Squares and Exponents

Remember A2 + B2 = C2? The little twos shown above the A, B, and C square the values of A, B, and C.

In VBA, we write the expression like this:

A^2 + B^2 = C^2. The caret symbol allows an exponent. If you were to cube (raise to the power of 3) a number, you would use D^3.

Function GetCircleArea(CircleRadius As Double) As Double

Dim Pi As Double

Pi = Atn(1) * 4

GetCircleArea = Pi * CircleRadius ^ 2

End Function

Square Root

Use the Sqr function to get the square root of a number. Here’s one way to use it:

Sub GetLineLength()

Dim SelElem As Element

Dim LineElem As LineElement

Dim SelElems As ElementEnumerator

Set SelElems = ActiveModelReference.GetSelectedElements

While SelElems.MoveNext

Set SelElem = SelElems.Current

Select Case SelElem.Type

Case msdElementTypeLine

Set LineElem = SelElem

Dim StPt As Point3d

Dim EnPt As Point3d

StPt = LineElem.StartPoint

EnPt = LineElem.EndPoint

LineLength = Sqr((StPt. X - EnPt.X) ^ 2 + _ (StPt.Y - EnPt.Y) ^ 2)

MsgBox "Line found with length of " & LineLength

End Select

Wend

End Sub

Pythagorean’s theorem is used in this example. We get the change in X and the change in Y of the selected line. We square these values, add them together, then get the square root of the total.

Sine, Cosine, Tangent

The Sin, Cos, and Tan functions require an angle in radians.

Sub TestSinCos()

Dim XChange As Double

Dim YChange As Double

Dim Pi As Double

Dim HypLength As Double

Dim HypAngleDegrees As Double

Dim HypAngleRadians As Double

Pi = Atn(1) * 4

HypLength = CDbl(InputBox("Enter Hypotenuse Length:"))

HypAngleDegrees = CDbl(InputBox("Enter Angle:"))

HypAngleRadians = HypAngleDegrees * Pi / 180

YChange = HypLength * Sin(HypAngleRadians)

XChange = HypLength * Cos(HypAngleRadians)

Debug.Print "TestSinCos()"

Debug.Print "HypLength = " & HypLength

Debug.Print "HypAngleDegrees = " & HypAngleDegrees

Debug.Print "HypAngleRadians = " & HypAngleRadians

Debug.Print "XChange = " & XChange

Debug.Print "YChange = " & YChange

End Sub

To calculate the change in X and the change in Y, we need hypotenuse length and an angle, as long as we have access to the Sin and Cosine of the angle. After getting the user input, convert the supplied angle in degrees to radians. Then use the angle in radians with the Sin and Cos functions to give change in X and change in Y

[image: Image]

Let’s use the Tan function now. The first example supposes you know the leg of the triangle along the X axis.

Sub TestTan1()

Dim XChange As Double

Dim YChange As Double

Dim Pi As Double

Dim HypAngleDegrees As Double

Dim HypAngleRadians As Double

Pi = Atn(1) * 4

XChange = CDbl(InputBox("Enter X Side Length:"))

HypAngleDegrees = CDbl(InputBox("Enter Angle:"))

HypAngleRadians = HypAngleDegrees * Pi / 180

YChange = Tan(HypAngleRadians) * XChange

Debug.Print "TestTan1()"

Debug.Print "XChange = " & XChange

Debug.Print "HypAngleDegrees = " & HypAngleDegrees

Debug.Print "HypAngleRadians = " & HypAngleRadians

Debug.Print "YChange = " & YChange

End Sub

[image: Image]

Sub TestTan2()

Dim XChange As Double

Dim YChange As Double

Dim Pi As Double

Dim HypAngleDegrees As Double

Dim HypAngleRadians As Double

Pi = Atn(1) * 4

YChange = CDbl(InputBox("Enter Y Side Length:"))

HypAngleDegrees = CDbl(InputBox("Enter Angle:"))

HypAngleRadians = HypAngleDegrees * Pi / 180

XChange = YChange / Tan(HypAngleRadians)

Debug.Print "TestTan2()"

Debug.Print "YChange = " & YChange

Debug.Print "HypAngleDegrees = " & HypAngleDegrees

Debug.Print "HypAngleRadians = " & HypAngleRadians

Debug.Print "XChange = " & XChange

End Sub

[image: Image]

The values used for the previous examples make use of the right triangle:

[image: Image]

As we write code, it is common to make little mistakes along the way. The world calls these "bugs" but we could call them "creative programming." The net result is the same: the code doesn’t work. It is helpful to test our calculations with numbers that give us predictable results.

Arc Tangent

Sin, Cos, and Tan help when we know the angle involved. If we do not know the angle, we can get the angle by using Atn (ArcTangent).

[image: Image]

Sub TestATan()

Dim Pi As Double

Dim AngleDegrees As Double

Dim AngleRadians As Double

Pi = Atn(1) * 4

AngleRadians = Atn(3 / 4)

AngleDegrees = AngleRadians / Pi * 180

MsgBox AngleDegrees

End Sub

Absolute Value

The Abs function gives us the Absolute Value of the supplied number.

Sub TestAbs()

Debug.Print "The absolute value of 4 is " & Abs(4)

Debug.Print "The absolute value of -5 is " & Abs(-5)

End Sub

[image: Image]

Convert to Integer, to Long, to Double, and Value

We have discussed declaring types of variables. VBA gives us the ability to convert values from one type to another.

One of the most common conversions is from a string to a number.

YChange = CDbl(InputBox("Enter Y Side Length:"))

Above we use the CDbl function to convert the results of the InputBox to a double.

Sub TestCInt()

Debug.Print CInt(4.56)

Debug.Print CInt(4.23)

Debug.Print CInt(-4.56)

Debug.Print CInt(-4.23)

End Sub

When converting from a double to an integer, something needs to be done with the decimal portion of the number because an integer is a whole number. It is important that you understand how this works. CInt arrives at an integer by rounding the number. Take a look at the code in "TestCInt" and the results shown in the Immediate window.

[image: Image]

CLng

The CLng function works just like the CInt function, except it converts the provided number to a long. You could ask, "If CLng does the same thing as CInt, which one should I use?" That is a good question. Remember, that a long number can be significantly larger than an integer. To use CInt on a number such as 40,000.123 would create an overflow error. CInt and CLng are often used when assigning a value to a variable. So, if you assign a value to a variable declared as an integer, you should use CInt. If you are assigning a value to a variable declared as a long, use CLng.

[image: Image]

Sub TestCLng()

Debug.Print CLng(40000.56)

Debug.Print CLng(40000.23)

Debug.Print CLng(-40000.56)

Debug.Print CLng(-40000.23)

End Sub

Fix

The Fix function looks like it works the same as the CInt or the CLng function. It returns a number without the decimal portion of the number. However, it works a little differently. Let’s look at the results of the code below.

Sub TestFix()

Debug.Print Fix(40000. 56)

Debug.Print Fix(40000.23)

Debug.Print Fix(-40000.56)

Debug.Print Fix(-40000.23)

End Sub

The Fix function simply drops the decimal portion of the provided number. It does not do any rounding. Fix can return numbers that fall within the integer and long range.

[image: Image]

CDbl

CDbl converts the supplied parameter to a double.

Sub TestDouble()

Dim LineLength As Double

LineLength = CDbl (InputBoxt"Enter the line length:"))

End Sub

Val

CInt, CLng, and CDbl work well if the supplied parameter is numeric, providing the number 3.14159 works with any of these functions. However, if you pass the parameter as 2.5", an error pops up. The Val function has the ability to give us the numeric value of a supplied parameter. The best way to understand how it works is to run some code and look at the results.

Sub TestVal()

Debug.Print Val("4.5""")

Debug.Print Val("4.5 inches")

Debug.Print Val("$5,000")

Debug.Print Val("45 degrees")

Debug.Print Val("Approx. 5280 feet")

Debug.Print Val("23 feet 12 inches")

End Sub

[image: Image]

Notice that when the parameter supplied to the Val function begins with a numeric value, Val returns all of the numeric characters until it finds a non-numeric character and returns the numeric values it found.

IsNumeric

Many of the functions we have just reviewed return numeric values. IsNumeric returns a Boolean value (True or False). It looks at the parameter and determines if it is numeric.

Sub TestIsNumeric()

Debug.Print IsNumeric("4.5""")

Debug.Print IsNumeric("4.5 inches")

Debug.Print IsNumeric("$5,000")

Debug.Print IsNumeric("45 degrees")

Debug.Print IsNumeric("Approx. 5280 feet")

Debug.Print IsNumeric("23 feet 12 inches")

End Sub

IsNumeric looks at the entire parameter and determines if it is numeric. If any portion of the parameter is not numeric, we get a false value returned. Notice how the dollar sign ($) is a numeric sign.

[image: Image]

Round

CInt and CLng round decimal numbers to whole numbers. The Round function lets us specify how many numbers we want to appear after the decimal point. Take a look:

Sub TestRound()

Debug.Print Round(3.14159, 4)

Debug.Print Round(3.14159, 3)

Debug.Print Round(3.14159, 2)

Debug.Print Round(3.14159, 1)

Debug.Print Round(3.14159, 0)

Debug.Print Round(1.455, 2)

Debug.Print Round(1.455, 1)

Debug.Print Round(1.4, 0)

Debug.Print Round(1.5, 0)

End Sub

[image: Image]

Mod - Find the Remainder

The Mod function gives the remainder value of two numbers, but you use it quite differently than most other functions. Where most functions call the function then provide parameters separated by commas,. in the Mod function you supply the numerator, call Mod, then supply the denominator.

[image: Image]

Sub TestMod1()

Debug.Print 5 Mod 2

Debug.Print 7 Mod 3

Debug.Print 23 Mod 7

Debug.Print 280 Mod 2

End Sub

Sgn-Show me a sign

Is a number positive or negative? Or is it neither? The Sgn function returns a value of -1, 0, or 1 depending on whether the supplied value is negative, zero, or positive.

[image: Image]

Sub TestSgn()

Debug.Print Sgn(-4.5)

Debug.Print Sgn(0)

Debug.Print Sgn(4.5)

End Sub

Rnd and Randomize

Once in a while you need to generate a random number. This example shows how to create a random number between a lower and higher number. The result is a random point cloud consisting of 300 points between (25,25) and (50, 50).

Sub TestRnd()

Dim I As Long

Dim Lower As Long

Dim Higher As Long

Dim PointCen(0 To 1) As Point3d

Dim PointElem As PointStringElement

Lower = 25

Higher = 50

Randomize

For I = 1 To 300

PointCen(0).X = Round((Higher - Lower + 1) * Rnd(1), 2)

PointCen(0).Y = Round((Higher - Lower + 1) * Rnd(1), 2)

PointCen(1).X = PointCen(0).X

PointCen(1).Y = PointCen(0).Y

Set PointElem = _

Application.CreatePointStringElement1(Nothing, _ PointCen, True)

ActiveModelReference.AddElement PointElem

Next I

End Sub

Order of Operations

2 + 5 * 8 / 12 + 13 = ?

(2 + 5) * 8 / (12 + 13) = ?

2+ (5* 8 / (12 + 13)) = ?

Each of these expressions returns a different result. The numbers are the same and the operations are the same but the results are different.

The order in which numeric operations are carried out is important to understand. Multiplication and division come first, addition and subtraction come second. If there is any question, place parenthesis around the operations you want grouped to make it clear how VBA should calculate your expressions.

REVIEW

Many software developers can work for extended periods of time without using mathematical functions. When we are programming MicroStation, however, we are always using numeric functions. We can add, subtract, multiply, and divide. We can use other functions that aid in the location of elements in MicroStation or compute lengths, angles, etc.

[image: Image]

9Standard VBA Calls

While introducing various concepts, we used a number of standard VBA calls without discussing them, so let’s cover them now. Again, you can use these VBA calls with other VBA-enabled applications such as Microsoft Excel.

MESSAGEBOXES

We used MessageBoxes to display some text with an OK button. By default, the code pauses until the user clicks the OK button.

Sub TestMessageBox1()

MsgBox "Your hard drive will now be formatted."

End Sub

This is just what we all want to see: A MessageBox informing us something drastic is about to happen and all we have is an OK button to click on.

[image: Image]

You can specify the prompt of the MessageBox (the text that shows up) as well as which buttons display.

Sub TestMessageBox2()

Dim MsgResp As VbMsgBoxResult

MsgResp = MsgBox("Unable to open file.", vbAbortRetryIgnore)

MsgResp = MsgBox("Format Hard Drive?", vbOKCancel)

MsgResp = MsgBox("New Level Added.", vbOKOnly)

MsgResp = MsgBox("Not Connected to Internet.", vbRetryCancel)

MsgResp = MsgBox("Do you want to continue?", vbYesNo)

MsgResp = MsgBox("Continue Reading File?", vbYesNoCancel)

Select Case MsgResp

Case VbMsgBoxResult.vbAbort

'Place Code Here

Case VbMsgBoxResult.vbCancel

'Place Code Here

Case VbMsgBoxResult.vbIgnore

'Place Code Here

Case VbMsgBoxResult.vbNo

'Place Code Here

Case VbMsgBoxResult.vbOK

'Place Code Here

Case VbMsgBoxResult.vbRetry

'Place Code Here

Case VbMsgBoxResult.vbYes

'Place Code Here

End Select

End Sub

[image: Image]

The ability to have more than an OK button makes the MessageBox much more powerful. Now, however, you are asking a question of the user. Yes? No? Retry? Abort? Ignore? Cancel? OK? When you ask a question, you need an answer. So, we use the MessageBox as a function and get its return value.

In the example above, which is only for illustration purposes, each MessageBox returns a value into the variable MsgResp that tell us which button the user clicked. We use a Select Case statement to determine the button pressed, then execute code based on the button. The Select Case Statement is placed after the "YesNoCancel" MessageBox so previous button clicks are not considered, only the "YesNoCancel" MessageBox.

[image: Image]

Here is a Microsoft Windows MessageBox that appears when you attempt to change a file’s extension (say from .txt to .dgn). Note the Yes and No buttons. We now know how to specify buttons but what about the exclamation point in the triangle? How do we do that?

When you display a MessageBox, use constants that specify which buttons to display, such as vbOKCancel, vbYesNo, and vbOKOnly. These constants have numeric values. There are other constants that specify which icon to display, such as vbExclamation. When you add the constant specifying the buttons to display with the constant for the icon to display, VBA displays the buttons and the icon in the MessageBox.

Sub TestMessageBox3()

Dim MsgResp As VbMsgBoxResult

MsgResp = MsgBox("Unable to open file.", _

vbAbortRetryIgnore + vbCritical)

MsgResp = MsgBox("Format Hard Drive?", _ vbOKCancel + vbExclamation)

MsgResp = MsgBox("New Level Added.", vbOKOnly + vbInformation)

MsgResp = MsgBox("Do you want to continue?", vbYesNo + _ vbQuestion)

End Sub

[image: Image]

When using these icon constants with button constants, Windows displays the buttons and the icon and plays specific sounds.

Let’s look at another available parameter when using the MessageBox.

Sub TestMessageBox4()

MsgBox "Testing Title", vbCritical, "Title Goes Here"

MsgBox "Testing Title", , "Title Goes Here"

End Sub

[image: Image]

The Title parameter displays at the top of the MessageBox. It is the third parameter. The MessageBox only has one required parameter, the prompt. So, to display a prompt and a title and the default button, place a comma after the prompt, a space, another comma, and then the prompt. When you bypass an optional parameter, leave the parameter blank and use commas to indicate that you are providing the next parameter(s).

INPUTBOX

InputBoxes let users enter text. If a user clicks the Cancel button or enters nothing and clicks the OK button, the InputBox returns an empty string. An empty string is denoted in VBA as two quotation symbols with no other character between them ("").

Sub TestInputBox1()

Dim InpRet As String

InpRet = InputBox("Enter Level Name:")

Debug.Print "User entered " & InpRet

End Sub

[image: Image]

The InputBox has additional parameters we can use. We will discuss four of them here.

Sub TestInputBox2()

Dim InpRet As String

InpRet = InputBox("Enter Level Name:", _ "Level Creator", "Striping", 0, 0)

Debug.Print "User entered " & InpRet

End Sub

[image: Image]

Looking at the code and the result reveals most of the new parameters. After the prompt and title, a default value for the InputBox is provided, then the X, Y location where the InputBox is displayed. The X and Y values are in pixels and are system-dependent. This means if you use 0, 0 as your coordinates, the InputBox displays in the upper-left corner of the monitor independent of where the MicroStation window is placed.

Be careful with the X and Y location parameters because it is possible to place the InputBox entirely off screen. It would surely confuse the user if he could not see the InputBox and the code is waiting for a click on a button or the <Enter> key.

Now!

The Now function gives the current system date and time. This is useful to make a date/time stamp. Now returns a Date type value.

Sub TestNow()

MsgBox Now

End Sub

[image: Image]

DateAdd

Now tells us the current date/time. DateAdd allows us to look into the future or into the past. Here are a few examples of how to use DateAdd:

Sub TestDateAdd()

Dim NowDate As Date

NowDate = Now

Debug.Print NowDate & vbTab & DateAdd("d", 4, NowDate) 'Day

Debug.Print NowDate & vbTab & DateAdd("h", 4, NowDate) 'Hour

Debug.Print NowDate & vbTab & DateAdd("n", 4, NowDate) 'Minute

Debug.Print NowDate & vbTab & DateAdd("s", 4, NowDate) 'Second

Debug.Print NowDate & vbTab & DateAdd("m", 4, NowDate) 'Month

Debug.Print NowDate & vbTab & DateAdd("w", 4, NowDate) 'Week

Debug.Print NowDate & vbTab & DateAdd("yyyy", 4, NowDate) 'Year

Debug.Print NowDate & vbTab & DateAdd("q", 1, NowDate) 'Quarter

End Sub

[image: Image]

In the above example, we declare a variable as a Date then set its value to Now. We could use the function Now in each DateAdd function. Because Now changes from second to second, it is a good idea to set a variable to Now and then use that variable throughout a procedure to make sure you are basing all of your calculations on the same date/time. Use a positive number as the second argument to move the result into the future. Use a negative number to return a value in the past.

DateDiff

If you have two dates and want to know the time interval between them, use DateDiff. Use the same interval parameters with DateAdd and DateDiff.

Sub TestDateDiff()

Dim NowDate As Date

NowDate = Now

Debug.Print "Days" & vbTab & DateDiff("d", NowDate, "1/1/3000")

Debug.Print "Hours" & vbTab & DateDiff("h", NowDate, "1/1/3000")

Debug.Print "Minutes" & vbTab & DateDiff("n", NowDate, "1/1/3000")

Debug.Print "Seconds" & vbTab & DateDiff("s", NowDate, "1/1/3000")

Debug.Print "Months" & vbTab & DateDiff("m", NowDate, "1/1/3000")

Debug.Print "Weeks" & vbTab & DateDiff("w", NowDate, "1/1/3000")

Debug.Print "Years" & vbTab & DateDiff("yyyy", NowDate, "1/1/3000")

Debug.Print "Quarters" & vbTab & DateDiff("q", NowDate, "1/1/3000")

End Sub

[image: Image]

The Y2K scare was nothing more than a scare for most of us. This example looks forward to Y3K. How many days, hours, minutes, seconds, months, weeks, years, and quarters before the dreaded January 1st, 3000 comes our way? Only 31,386,398,632 seconds.

The interval is the first parameter. The next two parameters are the dates we are looking at. If the first date comes before the second date, we get a positive return value. If the first date comes after the second date, we are returned a negative value.

Timer

The Timer function tells us how many seconds have transpired since midnight. This can be useful when testing our applications to find bottlenecks in the code. If you are working late at night, however, be careful. At the strike of midnight, the timer function returns a value of 0 (zero) and starts counting seconds all over again.

Sub TestTimer()

MsgBox Timer

End Sub

[image: Image]

FileDateTime

FileDateTime gives the date/time the specified file was last modified

Sub TestFileDateTime()

Dim exeDate As Date

exeDate = FileDateTime _

("C:\Program Files\Bentley\MicroStation\ustation.exe")

MsgBox "MicroStation Date/Time: " & exeDate

End Sub

[image: Image]

FileLen

FileLen tells the size (in bytes) of a given file.

Sub TestFileLen()

Dim exeSize As Long

exeSize = FileLen _

("C:\Program Files\Bentley\MicroStation\ustation.exe")

MsgBox "MicroStation Size: " & exeSize

End Sub

[image: Image]

MkDir

rUse MkDir to create a new directory. All parent directories must exist for MkDir to work. For example, to make a directory (also called a folder) named c:\MicroStation VBA\Chapters\09\Samples but the Chapters directory does not exist, you must create the "Chapters" directory, then the "09" directory, then the "Samples" directory.

Sub TestMkDir()

MkDir "c:\MicroStation VBA\Source Code"

End Sub

RmDir

RmDir removes a directory from the file system. The directory must be empty, otherwise an error occurs.

Sub TestRmDir()

RmDir "c:\MicroStation VBA\Source Code"

End Sub

Dir

The Dir function allows us to look for files and folders (directories). The first time you use it, specify a path and file name (wildcards are acceptable). Dir only returns one file/folder at a time. If you are looking for a group of files or folders, call Dir again and leave the parameters empty. When Dir returns an empty string (""), you know it has returned all of the file or folder names requested. In addition to specifying a file or folder path/name to look for, you can specify the type of file/folder. Since there is a great deal that you can do with the Dir function, we will look at several examples and the results of the code.

Sub TestDir1()

Dim RootPath As String

Dim DirReturn As String

RootPath = "C:\Program Files\Bentley"

DirReturn = Dir(RootPath & "*.*", vbDirectory)

While DirReturn <> ""

Debug.Print RootPath & "\" & DirReturn

DirReturn = Dir

Wend

End Sub

[image: Image]

Our first example retrieves Directories under the "C:\Program Files\Bentley" directory. Notice how the first directory is named"." and the second, "..". This occurs with all calls when looking for directories and they should be ignored in your code. They refer to the current folder and the parent folder.

Sub TestDir2()

Dim RootPath As String

Dim DirReturn As String

RootPath = "C:\Program Files\Bentley\MicroStation"

DirReturn = Dir(RootPath & "*.*")

While DirReturn <> ""

Debug.Print RootPath & "\" & DirReturn

DirReturn = Dir

Wend

End Sub

[image: Image]

Now we are looking in the "C:\Program Files\Bentley\MicroStation" folder for all files (*.*).

Writing file names to the Immediate window works well for demonstration but is not practical. Let’s do another variation this time putting the file names into a variable.

Sub TestDir3()

Dim RootPath As String

Dim DirReturn As String

Dim DgnFiles() As String

ReDim DgnFiles(0) As String

RootPath = "C:\MicroStation VBA\Docs"

DirReturn = Dir(RootPath & "*.dgn")

While DirReturn <> ""

DgnFiles(UBound(DgnFiles)) = RootPath & "\" & DirReturn

ReDim Preserve DgnFiles(UBound(DgnFiles) + 1)

DirReturn = Dir

Wend

ReDim Preserve DgnFiles(UBound(DgnFiles) - 1)

End Sub

[image: Image]

We look in the directory "C:\MicroStation VBA\Docs" for files with the extension .dgn. Place the paths of these files into a dynamic array variable named DgnFiles. When the code gets to the "End Sub" line of code, six files have been found and placed into the array. You could write additional code to work with the files before "End Sub".

Kill

WARNING: The Kill function is permanent. Files that are 'Killed' are not sent to the recycle bin. They are destroyed totally and completely. Use with extreme caution.

Sub TestKill()

Kill "C:\MicroStation VBA\Docs\killtest.txt"

End Sub

This code kills a file named C:\MicroStation VBA\Docs\killtest.txt.

The ability to delete a file is useful and necessary but must be used with caution.

Beep

Beep beeps. It offers a quick, audible clue to the user as our code executes. Although useful to draw the user’s attention to the program, it can become annoying to have an application beep every time a user does something.

Sub TestBeep()

Beep

End Sub

SaveSetting

Working with the Windows registry can save settings the user has set in our software. Microsoft has created a registry path for VBA program settings that we can easily write to, edit, and delete.

Sub TestSaveSetting()

SaveSetting "Learning MicroStation VBA", "Chapter 9", _ "SaveSetting", "It Works"

End Sub

[image: Image]

After this code is run, the necessary registry folders are added and a registry entry named "SaveSetting" is created with a value of "It Works".

GetSetting

When a setting is in the registry, we can get it by using GetSetting.

Sub TestGetSetting()

Dim RegSetting As String

RegSetting = GetSetting("Learning MicroStation VBA", "Chapter 9",_

"SaveSetting")

Debug.Print "The Key SaveSetting value is " " " & RegSetting & " " " "

End Sub

[image: Image]

DeleteSetting

We can save and get settings and we can delete them. As with any other API call that deals with the removal of files or data, be careful with this one.

Sub TestDeleteSetting1()

DeleteSetting "Learning MicroStation VBA", _ "Chapter 9", "SaveSetting"

End Sub

When the above code is run, the Key "SaveSetting" is deleted.

Sub TestDeleteSetting2()

DeleteSetting "Learning MicroStation VBA", "Chapter 9"

End Sub

TestDeleteSetting2 deletes the Registry Section "Chapter 9".

Sub TestDeleteSetting3()

DeleteSetting "Learning MicroStation VBA"

End Sub

TestDeleteSetting3 deletes the entire "Learning MicroStation VBA" Application Name from the Registry and all of its sub-entries.

GetAllSettings

GetAllSettings, as the name implies, gets all keys under the specified app name and section and places them into a multi-dimensional array.

Sub TestGetSettings()

Dim AllSettings As Variant

AllSettings = GetAllSettings("Learning MicroStation VBA", _ "Chapter 9")

End Sub

[image: Image]

Adding a watch to the AllSettings variable allows us to see the structure and values of the results of the GetAllSettings call.

READING AND WRITING TO ASCII FILES

Give me a text file and I will move the world. Or is it supposed to be a "Lever"? The ability to read and write ASCII text files gives us powerful leverage in our programming efforts. Many programs and databases can read and write these files. So, what are ASCII files?

An ASCII text file is composed entirely of ASCII characters. It can be opened in Notepad or Wordpad and is readable by humans.

Sub TestWriteASCIIA()

Open "C:\output.txt" For Output As #1

Print #1, "First line."

Print #1, "Second line."

Close #1

End Sub

[image: Image]

Here is our file in Notepad. Let’s examine the code now.

First, identify a file with which to work. The above example works with the file C:\output.txt. You can use any file extension but be careful. If you write a new ASCII file and supply a file extension of .dgn, Microsoft Windows will think it is a MicroStation file and attempt to open it with MicroStation when you double-click on it.

You have two options to use when writing files. Use the "Output" keyword, which means the file will be created if it does not exist or it will be overwritten if it does exist. Or use "Append" if you want to add to the end of an existing file or create a new file if one does not already exist.

When you open a file, a number is assigned to it. That number is then used whenever you read from or write to the file. In the above example, we are using a file number "#1". The number symbol must be in front of the number each time it is used.

Next, write some text to the file. In the above example we use the Print function. You can also use the Write function (an example appears below) but it gives slightly different results.

Last, Close the file.

Sub TestWriteASCIIB()

Open "C:\output.txt" For Output As #1

Write #1, "First line."

Write #1, "Second line."

Close #1

End Sub

[image: Image]

The Write function places quotation marks at the beginning and end of each line which may be helpful if you need it.

Sub TestWriteASCIIC()

Open "C:\output.txt" For Append As #1

Print #1, "Another line 1."

Print #1, "Another line 2."

Close #1

End Sub

[image: Image]

Use "For Append" when opening a file to add text to an existing file. The above screen shot is the result of running TestWriteASCIIA and then running TestWriteASCIIC.

FreeFile

It is important to provide VBA a file number that points to the file in which you want to work. In previous examples where I used "#1" as a file number, the code works fine because the examples are simple. If your programs open multiple files simultaneously, you could become confused as to which number should be used. This is where FreeFile comes in handy.

Sub TestWriteASCIID()

Dim FFileA As Long

Dim FFileB As Long

FFileA = FreeFile

Open "C:\outputa.txt" For Append As #FFileA

Print #FFileA, "Another line 1."

Print #FFileA, "Another line 2."

FFileB = FreeFile

Open "C:\outputb.txt" For Append As #FFileB

Print #FFileA, "Another line 3."

Print #FFileB, "Another line 3."

Print #FFileA, "Another line 4."

Print #FFileB, "Another line 4."

Close #FFileB

Close #FFileA

End Sub

The above example works with two files at the same time. When you use FreeFile, assign the return value to a variable. In this example, I used FFileA and FFileB as our variable names.

Be careful if you use FreeFile for multiple variables as we have done here. If you assign FFileA and FFileB file numbers with FreeFile one right after another, they will both hold the same value. FreeFile returns a different number only after a file has been opened. So, use FreeFile, open the file it was used for, then use it again to open the next file. This keeps us from getting the same number and accidentally reading from or writing to the same file when we meant to read/write to two separate files.

Here is a more advanced application of writing to ASCII Text Files. An XML document is an ASCII text document with specific formatting. Our next example creates a Microsoft Excel XML document that contains all of the EXE files in the "C:\Windows\System32" folder, as well as the date and time the file was last modified. After the XML file is written, you can open it in Microsoft Excel.

Sub TestWriteASCIIE ()

Dim FFileA As Long

Dim exeFile As String

FFileA = FreeFi1e

Open "c:\exefiles.xml" For Output As #FFileA

Print #FFileA, "<?xml version= ""l.O"" ?>"

Print #FFileA, "<?mso-application progid=""Excel .Sheet""?)"" "

Print #FFileA, _

"<Workbook xmlns= "" urn:schemas-microsoft- H & _

"com:office:spreadsheet "" > "

Print #FFileA, " <Worksheet ss:Name= ""EXE Files" ">"

Print #FFileA, " <Table> "

exeFile = Dir("C:\Windows\System32*.exe ")

While exeFile <> ""

Print #FFileA, " <Row> "

Print #FFileA, _

" <Cell><Data ss:Type= "" String"">" & exeFile &

" </Data></Cell>"

Print #FFileA, _

" <Cell><Data ss:Type=""String"")" & _

FileDateTime("C:\Windows\System32\" & exeFile) & _

"</Data></Cell >"

Print #FFi1eA, " </Row> "

exeFile = Dir

Wend

Print #FFileA, " </Table>"

Print #FFileA, " </Worksheet>"

Print #FFileA, "</Workbook>

Close FFi1eA

End Sub

Excel is particular about the formatting of the XML document, so if you encounter problems copying this code from this book, open and run the code on the included CD.

[image: Image]

Here is a portion of the results of this XML file shown in Excel.

Reading from ASCII Files

It is easy to write to ASCII files. Reading them is just as easy. Let’s take it one line at a time.

Sub ReadASCIIA()

Dim FFile As Long

Dim TextLine As String

FFile = FreeFile

Open "C:\MicroStation VBA\TextPoints.txt" For Input As #FFile

While EOF(FFile) = False

Line Input #FFile, TextLine

Debug.Print TextLine

Wend

Close #FFile

End Sub

[image: Image]

The example above left uses the Immediate window to show each line in the file we read. Above right is the file in Notepad. Use Line Input and the file number to read a text file one line at a time. Continue reading until you reach the End Of File (EOF). It’s time to expand on this example.

Sub ReadASCIIB()

Dim FFile As Long

Dim TextLine As String

Dim TextPoint As Point3d

Dim XSplit As Variant

Dim TextElem As TextElement

Dim RotMat As Matrix3d

FFile = FreeFile

Open "C:\MicroStation VBA\TextPoints.txt" For Input As #FFile

While EOF(FFile) = False Line Input #FFile, TextLine XSplit = Split(TextLine, ",")

TextPoint.X = XSplit(0)

TextPoint.Y = XSplit(1)

TextPoint.Z = XSplit(2)

Set TextElem = Application.CreateTextElement1(Nothing, _ XSplit(3), TextPoint, RotMat)

ActiveModelReference.AddElement TextElem

Wend

Close #FFile

End Sub

We expanded "ReadASCIIA." Now, instead of writing the information from the text file to the Immediate window, let’s create new text elements at the X, Y, Z location specified in each line of text.

[image: Image]

Here are our notes placed exactly where the ASCII file specified.

CONTROLLING CODE EXECUTION

It is essential that we know how to loop through code multiple times and execute code based on certain conditions.

For … Next

When you know how many times to loop through a particular block of code, use a For … Next statement. Here’s a simple example:

Sub ForNextA()

Dim I As Long

For I = 1 To 10

ActiveDesignFile.AddNewLevel "NewLevel " & I

Next I

End Sub

After this code is run, 10 new levels are created named "NewLevel 1" through "NewLevel 10".

For … Next requires a variable. This example uses a variable named I declared as a long. The first time you create a new level, I holds a value of 1 (one). The next time, I holds a value of 2 (two). This continues from 1 to 10.1 eventually holds a value of 11 (eleven) which, since it is out of the range specified, exits the For … Next loop and then VBA continues to execute the code below the For … Next loop.

Sub ForNextB()

Dim I As Long

For I = 1 To 10 Step 2

ActiveDesignFile.AddNewLevel "NewLevelB " & I

Next I

End Sub

I added an optional parameter to our For … Next statement. It is a Step parameter. By default, For … Next loops increase the index parameter by a value 1 (one) each time it is run. When this code is run, however, "I" gets values of 1, 3, 5, 7, 9, then ends with a value of 11 and exits the loop because we are using "Step 2".

Sub ForNextC()

Dim I As Long

For I = 10 To 1 Step -1

ActiveDesignFile.AddNewLevel "NewLevelC " & I

Next I

End Sub

I just changed our Step parameter to -1. This means "I" gets the following values: 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 and then has a value of 0 and exits the loop because 0 is outside the bounds of the loop.

Sub ForNextD()

Dim X As Double

Dim Y As Double

Dim InsPt As Point3d

Dim CellElem As CellElement

For X = 0 To 10 Step 0.25

For Y = 0 To 10 Step 0.25

InsPt.X = X

IrsPt.Y = Y

Set CellElem = Application.CreateCellElement3("Column", _

InsPt, True)

ActiveModelReference.AddElement CellElem

Next Y

Next X

End Sub

[image: Image]

This routine requires the definition of a cell named "Column" prior to running it. Embed one For … Next statement inside another. The Step statement increases the variable by 0.25 each time it is executed. Note that I declared our index variables as double so they can hold decimal values.

While… Wend

When using While … Wend we are uncertain how many times we need to repeat a block of code. The code between the While and Wend statements continues to execute as long as the While statement is true Here is a portion of a procedure we already looked at in this chapter.

While EOF(FFile) = False

Line Input #FFile, TextLine

XSplit = Split(TextLine, ",")

TextPoint.X = XSplit(0)

TextPoint.Y = XSplit(1)

TextPoint.Z = XSplit(2)

Set TextElem = Application.CreateTextElement1(Nothing, _ XSplit(3), TextPoint, RotMat)

TextElem.TextStyle.Height = 4

TextElem.TextStyle.Width = 4

ActiveModelReference.Add Element TextElem

Wend

When we open a file to read it, we may find 1 line, 10 lines, 100 lines, or any other number of lines to read in the file. So we keep looking at the EOF (End of File) condition of the file. While we have not reached the End Of File, we execute the code between the While and Wend lines.

Do … Loop

Do … Loop is very similar to the While … Wend statement. However, it is more versatile. Here is one example:

Sub TestDoWhileA()

Dim CadMsg As CadInputMessage

Dim InsPt As Point3d

Dim CellElem As CellElement

Do While True

Set CadMsg = CadInputQueue.GetInput

Select Case CadMsg.InputType

Case msdCadInputTypeDataPoint

InsPt = CadMsg.Point

Exit Do

End Select

Loop

Set CellElem = Application.CreateCellElement3("Column", _

InsPt, True)

ActiveModelReference.AddElement CellElem

End Sub

One of the great things about a Do … Loop statement is we can use "Exit Do" to get out of the loop at any time. This example allows the user to select a point in MicroStation. When that happens, we capture the point and exit the Do Loop. Then we use the captured point to insert a new cell.

Here is another variation of the above procedure. In this next example, the code will continue inserting cells until the user hits a key on the keyboard.

Sub TestDoWhileB()

Dim CadMsg As CadInputMessage

Dim InsPt As Point3d

Dim CellElem As CellElement

Do While True

Set CadMsg = CadInputQueue.GetInput

Select Case CadMsg.InputType

Case msdCadInputTypeDataPoint

InsPt = CadMsg.Point

Set CellElem = _ Application.CreateCellElement3("Column", _ InsPt, True)

ActiveModelReference.AddElement CellElem

Case msdCadInputTypeCommand

Exit Do

End Select

Loop

End Sub

When using "Do While True", we remain in the loop until we either "Exit Do" or "Exit Sub" or "Exit Function". "Exit Do" to get out of the loop and continue to execute the code in the procedure or function. Use "Exit Sub" and "Exit Function" to exit the procedure or function.

Sub TestDoWhileC()

Dim TextToPlace As String

Dim LineNumber As Long

Dim NotePt As Point3d

Dim CadMsg As CadInputMessage

Dim TextElem As TextElement

Dim RotMat As Matrix3d

Do While True

Set CadMsg = CadInputQueue.GetInput

Select Case CadMsg.InputType

Case msdCadInputTypeDataPoint NotePt = CadMsg.Point

Set TextElem = Application.CreateTextElement1(Nothing, _ "# Note", NotePt, RotMat)

ActiveModelReference.AddElement TextElem

Exit Do

End Select

Loop

TextToPlace = "The following notes supercede all prior notes."

LineNumber = 1

Do

NotePt.Y = NotePt.Y - 0.375

Set TextElem = Application.CreateTextElement1(Nothing , _ LineNumber & ". " & TextToPlace, _ NotePt, RotMat)

ActiveModelReference.AddElement TextElem

LineNumber = LineNumber + 1

TextToPlace = InputBox("Enter Note:")

Loop While TextToPlace <> ""

End Sub

This procedure uses two separate Do Loop statements. Let’s focus on the second one. When using "Do" by itself, the code inside the loop executes at least once. Then, rather than placing the conditional statement at the beginning of the "Loop", place the conditional statement at the end of the "Loop." This example allows the user to select a point. We automatically enter "# Note" where the user selected the point and enter "1. The following notes supersede all prior notes." below the "# Note" text.

Now that we added a header and a standard note, we allow the user to begin entering additional notes. Each additional note is placed 0.375 units below the prior note. When the user presses the OK button without entering anything in the InputBox, the Loop completes because TextToPlace is an empty string and the "Loop" condition is no longer true.

For Each … Next

Some objects are in collections. For example, each document has a Levels collection composed of Level objects. Use For Each … Next statements to look at each object in a collection.

Sub TestForNextA()

Dim dgnLevel As Level

For Each dgnLevel In ActiveDesignFile.Levels

Debug.Print dgnLevel.Name

Next

End Sub

[image: Image]

When we use For Each … Next, we specify a variable to use for each object and then the collection to look in when we begin the For Each … Next statement.

If … Then

Use If … Then statements to execute a particular block of code only if a specific condition evaluates to a value of true.

Sub TestIfThenA()

Dim LevelName As String

LevelName = InputBox(" Enter Level Name (3 letters only)")

If Lent LevelName) = 3 Then

ActiveDesignFile.AddNewLevel Level Name

End If

End Sub

If the user enters something with three characters, add the new level. A very simple implementation of an If … Then statement.

Sub TestIfThenB()

Dim LevelName As String

LevelName = InputBox("Enter Level Name (3 letters only)")

If Len(Level Name) = 3 Then

ActiveDesignFile.AddNewLevel Level Name

Else

MsgBox LevelName & " has " & Len(LevelName) & _ " characters."

End If

End Sub

In this example, look at the number of characters and create the new level if it is three characters in length. Also add an "Else" statement to handle situations when the length is not equal to three. Display a MessageBox showing the number of characters entered when the entry has anything other than three characters in it.

Sub TestIfThenC()

Dim LevelName As String

LevelName = InputBox("Enter Level Name (3 letters only)")

If Len(Level Name) = 3 Then

ActiveDesignFile.AddNewLevel LevelName

ElseIf Len(Level Name) > 3 Then

ActiveDesignFile.AddNewLevel Left(Level Name, 3)

Else

MsgBox LevelName & " has " & Len(Level Name) & _ " characters."

End If

End Sub

TestIfThenC introduces an ElseIf statement. You can use ElseIf statements inside If … Then statements and provide a secondary If statement. You can use multiple ElseIf statements before an Else statement.

Select Case

Imagine asking a user to enter a level name then looking at the first character of the level name. You could use an If … Then statement with multiple ElseIf statements or a Select Case statement.

Select Case lets us provide the condition and then multiple possible matches for the condition.

Sub TestSelectCaseA()

Dim LevelName As String

LevelName = InputBox("Enter Level Name:")

Select Case UCase(Left(Level Name , 1))

Case "A"

ActiveDesignFile.AddNewLevel "A_" & LevelName

Case " B"

ActiveDesignFile.AddNewLevel "B_B_" & LevelName

Case "C", "D", "E"

ActlveDesignFile.AddNewLevel "CDE_" & LevelName

Case Else

MsgBox "Not a valid level name."

End Select

End Sub

In this example, look at the first character of the level name entered. There are multiple possible blocks of code we may want to execute based on the first character. If the first character is not A, B, C, D, or E, display a MessageBox and do not add a new level. If the first character does meet our criteria, prepend characters to the entered level name as you add the level name.

Error Handling

In a perfect world with perfect developers, errors would never occur. We, however, are not perfect, so errors do pop up once in a while. VBA gives us some tools to deal with errors.

Sub TestErrorHndA()

On Error GoTo errhnd

Dim LineLength As Double

LineLength = CDbl(InputBox("Enter Line Length:"))

Exit Sub

errhnd:

Select Case Err.Number

Case 13 'Type Mismatch

MsgBox "Line Lengths must be numeric."

Err.Clear

End Select

End Sub

In TestErrorHndA, ask the user for a line length. As you write code assume the user knows to enter a numeric value but if the user enters something like "10 meters", you run into problems. If you don’t handle the error, the user sees this:

[image: Image]

As you become more experienced in programming, you are better able to anticipate potential data entry problems and other issues that cause errors.

So, if you do not handle the Type Mismatch error when asking the user to enter a length, he sees an unhandled error MessageBox. If the users click the Debug button, he is taken to the code that shows the line where the error occurred. However, if you handle the error as shown in the above macro, the user sees this:

[image: Image]

When handling errors, you can display MessageBoxes to let the user know an error occurred, or you can handle the specific error so the user does not know anything happened.

Now, let’s take another look at the code in detail. The first thing to do in the procedure is state:

On Error GoTo errhnd

This tells VBA that if an error is encountered jump to the area of code labeled "errhnd". Here it is:

errhnd:

Select Case Err.Number

Case 13 'Type Mismatch

MsgBox "Line Lengths must be numeric."

Err.Clear

End Select

Each error has a number associated with it. Use a Select Case statement to handle different types of errors differently. In this example, only look at error number 13. If any other error occurs, it is not handled by our Select Case statement and the procedure finishes with End Sub.

So, how do we know what error numbers we need to deal with? This is an excellent question. Let’s go back to TestSelectCaseA covered a few pages ago. Run that macro and enter "aaa". Everything should run fine. Run it again and enter "aaa". What happens?

[image: Image]

If you enter the same level name twice, the code attempts to create a duplicate level. We see this MessageBox which gives us some good information. First, it tells us the error number. -2147221504 and a description that "Level name is duplicate". That is good to know because we can add that number in the error handling portion of our code. We can also hit the Debug button to go to the line of code in question to see exactly where the error occurs.

Sub TestErrorHndB()

On Error GoTo errhnd

Dim LineLength As Double

LineLength = CDbl(InputBox("Enter Line Length:"))

Exit Sub

errhnd:

Select Case Err.Number

Case 13 'Type Mismatch

MsgBox "Line Lengths must be numeric."

Err.Clear

Resume Next

End Select

End Sub

TestErrorHndB is identical to TestErrorHndA except for one line. Adding a Resume Next statement in TestErrorHndB executes our procedure to continue the line after the error occurred.

Sub TestErrorHndC()

On Error GoTo errhnd

Dim LineLength As Double

LineLength = CDbl(InputBox("Enter Line Length:"))

Exit Sub

errhnd:

Select Case Err.Number

Case 13 'Type Mismatch

MsgBox "Line Lengths must be numeric."

Err.Clear

Resume

End Select

End Sub

Here is another slight modification that uses a Resume statement instead of Resume Next. Resume asks VBA to again try the line of code where the error occurred, whereas Resume Next ignores the line of code where the error occurred and moves to the next line.

Sub TestErrorHndD()

On Error Resume Next

Dim LineLength As Double

LineLength = CDbl(InputBox("Enter Line Length:"))

End Sub

Instead of attempting to trap errors as they occur, you can tell VBA to ignore errors altogether and move to the next line using "On Error Resume Next".

Although "On Error Resume Next" appears to be somewhat sloppy (and it can be), it can be useful. Consider this next procedure:

Sub TestErrHndE()

On Error Resume Next

Dim MyExcel As Object

Set MyExcel = GetObject(, "Excel.Application")

If Err.Number <> 0 Then

Err. Clear

Set MyExcel = CreateObject("Excel.Application")

End If

On Error GoTo errhnd

MyExcel.Visible = True

MsgBox MyExcel.ActiveSheet.Name

Exit Sub

errhnd:

MsgBox "Error " & Err.Number & " has occurred." & vbCr & _

Err.Description, vbCritical, "Error In TestErrHndE"

Err.Clear

End Sub

In this example, we use On Error Resume Next because we are anticipating the potential for a specific error.

Set MyExcel = GetObject(, "Excel.Application")

GetObject assumes the object we are getting has already been created by starting Excel (in this example). If Excel is not started, however, we normally get an error when using GetObject. Use the Err object to get error numbers and descriptions. After calling GetObject, check the Err.Number value. If it is non-zero, an error occurred. Use Err.Clear to clear the previous error from memory.

Then we move to the next method of working with Excel, using CreateObject which launches the Excel application. On Error GoTo errhnd tells VBA to move to the "errhnd" area if an error is encountered. Set the Visible property of the Excel application to true. This can cause an error if Excel did not start, most often because it isn’t installed. If Excel is running and visible, display the name of the active sheet in a MessageBox. This can throw an error because even though Excel is running, an Excel workbook (.xls file) file is not open.

Now to the errhnd section of our code. A review of the above suggests that a number of things could cause errors. Showing the error number and description in a MessageBox lets us know which error has been raised.

Sub TestErrorHndF()

On Error GoTo errhnd

Dim LineLength As Double

On Error GoTo 0

LineLength = CDbl(InputBox("Enter Line Length:"))

Exit Sub

errhnd:

MsgBox "Error " & Err.Number & " has occurred." & vbCr & _ Err.Description, vbCritical, "Error In TestErrHndE"

Err.Clear

End Sub

"On Error Goto 0" (that’s a zero after Goto) tells VBA to ignore the previous "On Error" statements and continue as if there is no error handling. This comes in handy because you will see an error dialog box showing the error number and description plus a Debug button.

Clicking Debug takes you to the line of code that has the problem. Once you find and fix the bug, you can comment out the "On Error Goto 0" line so your Error Handling code is at work again.

[image: Image]

We covered a number, although not a comprehensive list, of useful and commonly used VBA calls. You can use the Object Browser in VBA to display all VBA calls natively available to us. We will discuss the Object Browser later in this book. Here is a snapshot of what you will see if you filter on the VBA Reference, the DateTime Class, and the DateDiff member.

After selecting an item in the Object browser, you can get additional information and, at times, sample code, by pressing the <F1> key

[image: Image]

REVIEW

Many procedures and functions are built into VBA. You do not need to write a function that tells the current date and time because we have the Now function. Similarly, you do not need to write complex code that stores your application information in the Windows registry as you can use the SaveSetting and GetSetting procedures.

[image: Image]

10Visual Interface

[image: Image]

It is time to begin working with the "Visual" side of VBA. Let’s consider the form shown. It is composed of labels (Level, Cells, X, Y, and Z), two combo boxes (with SIDEWALK and column selected), three text boxes (for X, Y, and Z values), and two CommandButtons labeled Insert and Cancel.

Creating a good graphical user interface (GUI) can be one of the most challenging elements of software development. Anyone can throw buttons on a form, but making the interface user friendly and intuitive takes thought, effort, and being open to the ideas of others.

Let’s discuss the form shown above. The goal is to allow the user to insert cells on a specific level at a specific point. Which should come first? The Cell Name ComboBox? If we know which cell we want to insert, perhaps it should appear first. What if the list of cells is dependent on the selected level? This would keep us from inserting a cell on the wrong level. So, perhaps the level should be first. Then we have the insertion point. Perhaps it would be best if the insertion point appeared after the level and cells combo boxes. And perhaps we should allow the user to pick the insertion point in addition to being able to enter the insertion point by hand. Let’s move things around a little.

How does this look? Better? OK. We have the visual elements arranged now. After you create the basic interface, you can begin writing code behind the interface. We'll get into that a little later. First, let’s talk about the controls we can add to our user forms.

[image: Image]

The toolbox shows us the controls we can place on our forms. Except for the pointer arrow, each of the items shown are visual elements we can use in our interface design.

[image: Image]

PROPERTIES, METHODS, AND EVENTS

Controls have properties, methods, and events. A property describes how a control looks or behaves. Methods tell controls to do something. For example, using the ComboBox "AddItem" method adds an item to its list. Most events occur when the user interacts with our GUI. For example, when a user clicks a button, the click event of the button is triggered and executes any code we place in that event.

Properties

You can set properties at design time (that is while you are designing your interface and writing code) or at run-time (when the program is being run). Control properties are modified at design time by using the Properties window.

You can display or hide the Properties window. If a CommandButton is selected but you cannot see the Properties window, right-click on the button and select "Properties" from the context menu or press the <F4> key.

[image: Image]

At run-time, properties can be set as follows:

CommandButton1.Enabled = True

We enabled the control named "CommandButton1" by setting its Enabled property to true.

We can also get property values at run-time.

MsgBox CheckBox1.Value

NewLevelName = txtLevelName.Text

Notice how we begin by addressing the control by name, typing a period, and then typing the property to work with. After you press the period key, VBA shows a list of the available properties and methods.

[image: Image]

In the above example, I typed the name of a TextBox txtLevelName and the period key so the helper window displays the available properties and methods. As you begin typing the name of the property or method, VBA automatically selects the first matching item in the list. When the "txtLevelName.te" has been typed, if you press the <Enter> VBA fills in the rest of the text and moves to the next line. If you press the <Tab>, VBA fills in the rest of the text and moves to the end of the current line of code. Letting VBA finish our sentences lets us develop applications very rapidly.

Control Events

Now, let’s look at using control events. You write code for control events in the form’s code area, which looks identical to a code module but is a little different. All controls currently inserted into the form are itemized in the left-hand ComboBox. When a control is selected in the left ComboBox (CommandButton1 is selected below), we can then select an event in the right-hand ComboBox (the click event is selected below).

[image: Image]

To work with a different event, simply drop down the procedure ComboBox (on the right) and select another event. As we can see here, there are quite a few events from which to choose.

[image: Image]

When you select an event not previously selected, VBA fills in the framework of the event for us.

[image: Image]

This is KeyPress event occurs when a key is pressed. Some events pass parameters we can look at, such as the KeyPress event passing the "KeyAscii" parameter. We can use this parameter as a variable to see which key was pressed.

[image: Image]

Here the MouseDown event tells which mouse button was pressed (The button parameter), the state of the <Shift>, <Control>, and <Alt> keys when the button was pressed down (the Shift parameter), and the location on the mouse (X, Y parameters) when the mouse button was pressed.

In addition to supplying us with values, some parameters can be modified. For example, the KeyAscii parameter in the KeyPress event can be assigned a value of 0 (zero) inside the event to cause our program to act as though no key was pressed.

COMMON CONTROL PROPERTIES

Before discussing each control individually, let’s talk about properties and events that nearly all controls have in common.

Name

What’s in a name? We work with controls by addressing them by name. We then identify the property we want to get or set, or the method we want to use. The name and property (or method) are separated by a period. Take a look:

Label1.Caption = "Enter Level Name:"

Change the Caption property of the control named "Label1" by calling the control by name, typing a period, and then typing "Caption" which is the property we want to modify. When you want to SET a property value, the "Control.Property" is on the left-hand side of the equal sign and the value you are assigning it is on the right-hand side, as shown. To GET the "Control.Property", put it on the right-hand side of the equal sign and place a variable on the left-hand side of the equal sign like this:

XVal = txtXValue.Text

The variable XVal now holds the value of the Text property of the txtXValue control.

Since we are discussing control names, we should say a word or two about naming conventions. Control names follow the same rules as variable names. They must begin with a letter, cannot contain spaces, etc. Some naming conventions suggest that TextBox names should begin with "txt", Labels should begin with "lbl", ComboBoxes should begin with "cmb", etc. As with variable naming, if a convention needs to be followed, you should follow it. If not, at least name the controls something that makes sense. By default, controls are named such as "TextBox1", "TextBox2", "TextBox3" and so on.

Left, Top

All controls have a Left property and a Top property. These properties dictate where to place the control on the form. The top left corner of the form is (0, 0). So, if a TextBox is given a Left value of 0 and a Top value of 0, it appears in the upper left corner of the form.

Width, Height

All controls have Width and Height properties. These properties determine the size of the control. We should consider the size and shape of the controls we use. Just because a TextBox can have a width of 20 and a height of 20 doesn’t mean it should. If a TextBox is a set to be a single-line TextBox, it may make little sense to have its height greater than is necessary to display a line of text. If on the other hand, you want to display a square CommandButton, make the width and height properties the same.

Visible

Why would you want to place a control on a form and then set its Visible property to false? Controls are to be seen, right? There are times when you may want to make a control visible or invisible based on other conditions. Setting a control’s Visible property to false makes it invisible at run-time but it is still visible at design-time. The Visible property can be changed at run-time between true and false as needed.

Enabled

When a control has its Enabled property set to true, you can interact with the control at run-time. When Enabled is false, the control turns gray and you we are unable to interact with it. The Enabled property does not affect the visibility of the control, only the interaction.

TabStop

Pressing the <Tab> key at run-time moves from control to control. If the TabStop property of a control is true, the control receives focus in its turn. If TabStop is false, the control does not receive focus during tabbing.

TabIndex

The TabIndex property determines the order in which controls receive focus as you Tab from control to control.

Tag

Use the Tag property to do as you see fit. One thing you can do with the tag is assign it a default value for a TextBox and give the user the ability to click a "Load Defaults" button, causing the Tag property to populate the Text property.

ControlTipText

The ideal interface gives the user the controls necessary to perform the proper functions without needing to refer to a user manual each time the program is used. You could place a lengthy Label next to each control explaining details about why the control is there and how to use it, but this would clutter the interface. Hold the mouse cursor over a control for more than a second or two to make VBA display the control tip text.

[image: Image]

This example shows the ControlTipText property value. An experienced user learns that the level name should be four characters long, while new users benefit from having a little help on what they should enter.

Enough with the common control properties. Let’s talk about each of the standard controls one at a time, highlighting its primary properties, methods, and events. Also shown will be its icon in the toolbox.

[image: Image]Label

Labels help users know what to enter or select. Properties of note are as follows:

	Caption
	The text displayed to the user.

	Font
	The font used to display the Caption.

[image: Image]TextBox

The TextBox allows users to enter text or display text, often in single-line mode so text is displayed in one line. You can stretch a TextBox vertically to display multiple lines.

Properties

	Text
	The text displayed in the TextBox.

	Locked
	When "False", users can type into a TextBox; when "True", users cannot. When set to "True", text in the TextBox can be selected and copied to the Windows Clipboard even though the text cannot be changed by the user. When Locked, you change the text property with code.

	MaxLength
	The maximum number of characters that can be entered. Default is 0, which means no maximum. If asking for a Canadian postal code, you could set the MaxLength property to 6, to enter "V4A5M2", but would be prohibited from entering "85302-1234".

	MultiLine and Wordwrap
	When True, text inside the TextBox is wrapped to the next line. When False, text is scrolled on one line.

	PasswordChar
	To type in a TextBox without others being able to see what is being typed, supply a password character. Enter an asterisk (*) in this property to make an asterisk appear each time a keyboard key is pressed. This can keep others from seeing what is being typed (if they are looking over our shoulder), but is not highly secure. It takes very little code for a seasoned developer to find out exactly what is behind the password characters displayed on screen.

Events

	KeyPress
	Gives the ASCII code of the character pressed on the keyboard. Use this to restrict users from entering specific characters, such as allowing only numeric values to be entered.

	KeyDown, KeyUp
	Gives the keyboard key pushed down and released as well as the state of the <Shift>, <Control>, and <Alt> keys. For example, we know if the <F1> key was hit by using the KeyDown or KeyUp event but cannot see the <F1> key in the KeyPress event because it is not an ASCII character. This differs from the KeyPress event which tells which character was pressed (A or a).

[image: Image]COMBOBOX

Use ComboBoxes to allow users to drop down a list of items to choose from, or depending on the Style property, users can type into a ComboBox if the item is not listed.

Properties

	Text
	Text selected or entered in the ComboBox.

	Style
	0=Combo (select from list or type into a ComboBox) or 2=List (user must select from list).

	ListIndex
	Index of the selected item in ComboBox.

-1 = Nothing selected. 0 = First item in list is selected.

1 = Second item in list is selected and so on.

	ListCount
	Number of items in the ComboBox.

	ColumnCount
	Number of columns per row in the list.

Methods

	AddItem
	Adds a List Item to the ComboBox.

	RemoveItem
	Removes an item from the ComboBox. Specify the list index of the item to remove.

	Clear
	Clears all items from the ComboBox list.

Events

	Click
	Occurs when user clicks on an item in the ComboBox.

	Change
	Occurs when the selected item changes. This is different from the Click event because it is possible to change the selected item in the ComboBox by using arrow keys and other keyboard keys.

[image: Image]LISTBOX

Use ListBoxes to allow one or more items to be selected from a list. ComboBoxes are similar but limit selection to one item at a time and, of course, ListBoxes do not "drop down".

Properties

	Text
	Text of the Selected Item in the List.

	MultiSelect
	ListIndex - Index of selected item in list.

	Selected
	True or False returned when we specify the List Index of the item we want to check on.

	ColumnCount
	The number of columns per row in the list.

Methods

	AddItem
	Same as ComboBox

	RemoveItem
	Same as ComboBox

	Clear
	Same as ComboBox

Events

	Click
	Same as ComboBox

	Change
	Same as ComboBox

 [image: Image] CHECKBOX

CheckBoxes allow us to specify the selection of an item. Multiple CheckBoxes can be on one form and behave independently from one another. Using a pizza order analogy, you could use a CheckBox to specify each topping.

Properties

	Caption
	Text displayed next to the CheckBox.

	TrippleState
	True or False. When true, CheckBox has possible values of true, false, or null. When TripleState is false, possible values are either true or false.

	Value
	True, False, or Null.

Events

	Click
	When user clicks on a CheckBox, the value is set to either true or false. Click events do not fire when the user clicks the CheckBox and the value is set to Null (in TripleState mode).

	Change
	Value of the CheckBox changes.

[image: Image] OPTIONBUTTON

Use OptionButtons when you want the user to make a single choice between several possible items, such large, medium, or small. You could use three OptionButtons for each selection.

Properties

	Caption
	Text that is displayed next to the OptionButton.

	Group Name
	OptionButtons work in groups where only one can be selected. To allow a user to select "Large", "Medium", "Small" for a size and to allow them to select "Red", "White", "Blue" for the color, use two group names for each group of OptionButtons.

Events

	Click
	See CheckBox Click Event.

	Change
	See CheckBox Change Event.

	DblClick
	This event is triggered when a user double-clicks the control.

[image: Image] TOGGLE BUTTON

The toggle button looks like a CommandButton but it behaves more like a CheckBox. When selected, it looks indented. You typically see toggle buttons used to specify whether a font is bolded, underlined, or italicized.

Properties

	Caption
	Text displayed on the Toggle Button.

	TrippleState
	See CheckBox.

	Value
	See CheckBox.

Events

	Click
	See OptionButton.

	Change
	See OptionButton.

	DblClick
	See OptionButton.

[image: Image] FRAME

Frames are control containers. This means that controls can be placed inside of them. If a frame’s Visible property is set to false, all controls inside it become invisible. When a frame is moved, all controls in it move with it. Use frames to organize groups of controls.

Properties

	Caption
	The Caption shown in the upper left-hand corner of the frame.

	Visible
	True or False.

[image: Image]COMMANDBUTTON

Use CommandButtons to give users something to click on, such as these (commonly captioned): "OK", "Cancel", "Print", "Open", and "Close".

Properties

	Caption
	Text displayed in the Button.

	TakeFocusOnClick
	Determines whether the Button receives focus when the user clicks the button or if focus remains with the previously selected control.

Events

	Click
	Triggered when the user clicks the button.

[image: Image] TAB STRIP

Use tab strips to present "Tab" selections. Do not confuse these with the MultiPage Control even though they look alike. Tab strips are not control containers. Rather tab strip buttons are a cross between toggle buttons and OptionButtons. Only one tab on a tab strip can be selected at any given time.

Properties

	MultiRow
	When set to True, multiple rows are displayed when the number of tabs exceeds the width of the Tab Strip. When set to False, the Tabs are all displayed on one row.

	SelectedItem
	Which tab is selected?

	Style
	0 = Tabs, 1 = Buttons. Style controls how the Tab Strip is to be displayed.

	TabOrientation
	0 = Top, 1 = Bottom, 2 = Left, 3 = Right.

Methods

	Tabs.Add
	Used to add Tabs to the Tab Strip.

Events

	Change
	Triggered when the active Tab changes.

[image: Image] MULTIPAGE

The MultiPage control is a control container where each page has its own collection of controls. Right-click a tab and select a function to add, rename, delete, and reorder pages.

Properties

	Value
	0 = First Tab, 1 = Second Tab, etc.

	Pages.Count
	The Number of Pages.

	MultiRow
	See TabStrip.

Methods

	Pages.Add
	Used to add pages to the MultiPage control.

Events

	Change
	Triggered when the Active Page changes.

[image: Image] SCROLLBAR

Scroll Bars allow the user to select and change numeric values. The rectangle that moves as the value changes is called the Thumb.

Properties

	LargeChange
	The amount the Value property changes when the user clicks inside the ScrollBar area.

	SmallChange
	The amount the Value property changes when the user clicks on the outside Scroll Bar Arrows.

	Min
	The Minimum Value the Scroll Bar can have when the Scroll Bar is Horizontal.

	Max
	The Maximum Value the Scroll Bar can have.

	Value
	The Numeric value of the Scroll Bar.

Events

	Change
	Triggered when the value changes by clicking in the Large Change area or on the Small Change arrows and after the Thumb is released.

	Scroll
	Triggered as the Thumb is dragged. If we are allowing the user to enter a number and are displaying the number in a Label, for example, and do not implement the Scroll event, the Label will not change until the Thumb is dropped. The Scroll event allows us to see the number change as the Thumb is dragged from one end of the ScrollBar to the other.

[image: Image] SPINBUTTON

Use the spin button to allow users to change numeric values. It is similar to the scroll bar but does not have a Thumb.

Properties

	Delay
	Time in milliseconds after the user begins holding down a button before the value begins scrolling up or down

	Min
	Minimum Spin Button Value.

	Max
	Maximum Spin Button Value.

	Small Change
	Amount value changes as user clicks buttons.

	Value
	The Value of the Spin Button.

Events

	Change
	Triggered when value changes.

	SpinUp
	Triggered when the value increases.

	SpinDown
	Triggered when the value decreases.

[image: Image] IMAGE

Use the image control to display images in your interface. Acceptable file formats are .bmp, .gif, .jpg, .wmf, and .ico.

Properties

	BorderStyle
	0 = None, 1 = Single.

	Picture
	The file to display in the Image Control.

	PictureSizeMode
	0 = Clip, 1 = Stretch, 3 = Zoom.

	PictureTiling
	True to tile pictures inside the Image Control, False for no tiling.

USER INTERFACE EXERCISES

We started this chapter by discussing the importance of creating a useful and intuitive interface, then introduced the standard controls. Now let’s create a few interfaces to demonstrate the properties, methods, and events we covered. To accomplish this, you will insert a few new forms in a new project. Begin by inserting one new form and working with it. After it is finished, insert another new form, and so forth.

Here is the first interface you are going to work with. Add the controls beginning at the top and working down.

[image: Image]

The first controls are two ComboBoxes. By default they are inserted with the names ComboBox1 and ComboBox2. Change the names to cmbLevelS and cmbCells. Next, insert two labels and place them on the left-hand side of the ComboBoxes. Make the caption properties for these labels "Level" and "Cells".

The next section is a group of controls inside a frame. Insert the frame and change the frame caption to "Insertion Point". Then insert the text boxes, labels, and CommandButton. Change the TextBox names to txtX, txtY, and txtZ. Name the CommandButton cmdPick and the caption "Pick".

The last controls you will add are two CommandButtons named cmdlnsert and cmdCancel with captions of "Insert" and "Cancel".

Placing controls in the form is only the beginning. The Levels ComboBox needs to be filled with all of the levels in the active drawing and the Cells ComboBox needs to be filled with all of the cells available. Fill these ComboBoxes before the user sees the form. To accomplish this, go to the Initialize Event of the User form.

Right-click on the form and select View Code in the pop-up menu. By default we are taken to the Click event of the form. Select Initialize in the Procedure ComboBox.

Private Sub UserForm_Initialize()

Dim MyLevel As Level

Dim MyCellEnum As CellInformationEnumerator

Dim MyCell As CellInformation

For Each MyLevel In ActiveDesignFile.Levels

cmbLevels.AddItem MyLevel.Name

Next

Set MyCellEnum = _

Application.GetCellInformationEnumerator(True. True)

While MyCellEnum.MoveNext

Set MyCell = MyCellEnum.Current

cmbCells.AddItem MyCell.Name

Wend

End Sub

Here is the code in the Initialize Event of the UserForm. It should look like this:

[image: Image]

We are using the AddItem method to populate the Levels and Cells ComboBoxes with the names of the levels and cells in the ActiveDesignFile.

Now that code is in place to populate the ComboBoxes, press <F5> to run the code and make sure everything works. The ComboBoxes should have the names of the levels and cells in them. Click the "X" in the upper right-hand corner of the form to close it and go back into VBA.

One more thing needs to be done to the ComboBoxes. We want the user to select the level or cell but we do not want the user to be able to type anything into these two ComboBoxes. To accomplish this, change the Style properties of the ComboBoxes to 2 - fmStyleDropDownList.

The next thing is to write some code so only numeric values can be entered into the text boxes. Do this by working with the KeyPress event of the text boxes.

Right-click on the top TextBox and select View Code. This takes us to the Change event of the TextBox by default. Selecting KeyPress in the Procedure ComboBox takes us to the KeyPress event.

[image: Image]

"KeyAscii" is passed to us in the KeyPress event. It tells us the ASCII value of the character that was pressed. If the ASCII code is for the numbers 0 through 9, the code will do nothing to the KeyAscii parameter. This allows the value to be entered into the TextBox just as it was typed.

Next look at the period symbol. If there is already a period in the TextBox, set KeyAscii to zero which keeps another period from being entered. If a period is not in the TextBox, do nothing to the KeyAscii parameter so the period can be added.

If any other KeyAscii value is encountered, set the KeyAscii parameter to zero (0) which causes the event to act as though nothing was pressed.

We need to put the same code into the KeyPress events of the txtY and txtZ controls. Simply copy and paste the code. One little change is all it takes. When looking for a period, use the control name. After copying and pasting the Select Case code, change the name of the control in the InStr function to match the control of the KeyPress event.

Private Sub txtX_KeyPress(ByVal_

KeyAscii As MSForms.ReturnInteger)

Select Case KeyAscii

Case Asc("0") To Asc("9")

Case Asc(".")

If InStr(1, txtX.Text, ".") > 0 Then

KeyAscii = 0

End If

Case Else

KeyAscii = 0

End Select

End Sub

Private Sub txtY_KeyPress(ByVal _

KeyAscii As MSForms.ReturnInteger)

Select Case KeyAscii

Case Asc("0") To Asc("9")

Case Asc(".")

If InStr(1, txtY.Text, ".") > 0 Then

KeyAscii = 0

End If

Case Else

KeyAscii = 0

End Select

End Sub

Private Sub txtZ_KeyPress(ByVal_

KeyAscii As MSForms.ReturnInteger)

Select Case KeyAscii

Case Asc("0") To Asc("9")

Case Asc(".")

If InStr(1, txtZ.Text, ".") > 0 Then

KeyAscii = 0

End If

Case Else

KeyAscii = 0

End Select

End Sub

Let’s handle the Cancel button next. When the user clicks the Cancel button, we want to close the form. We have been right-clicking on controls and selecting View Code to get into the events of the controls. Double-click on the Cancel button now. This is another way to get into the form’s code area.

Private Sub cmdCancel_Click()

Unload Me

End Sub

One line of code is all it takes to close the form.

That’s it for the easy functionality; now for something more difficult. When a user clicks the CommandButton, insert the selected cell on the selected level at the entered insertion point.

Private Sub cmdInsert_Click()

If cmbLevels.Text = "" Then

MsgBox "Please select a level."

Exit Sub

End If

If cmbCells.Text = "" Then

MsgBox "Please select a cell."

Exit Sub

End If

Dim InsPt As Point3d

Dim CellElem As CellElement

InsPt.X = CDbl(txtX.Text)

InsPt.Y = CDbl(txtY.Text)

InsPt.Z = CDbl(txtZ.Text)

Set CellElem = CreateCellElement3(cmbCells.Text, InsPt, True)

CellElem.Level = ActiveDesignFile.Levels(cmbLevels.Text)

ActiveModelReference.AddElement CellElem

End Sub

Before inserting, make sure the user selected a level and a cell to insert. Use the txtX, txtY, and txtZ text boxes to get X, Y, Z values for the cell origin. After creating the cell element, set its layer to the value of the cmbLevels ComboBox Text property. The last thing to do is add the element to the active model.

We have only one button left, the "PICK" button used for selecting the cell origin. What do we want it to do? The button should be used to allow the user to select a point in MicroStation instead of entering the X, Y, and Z values by hand. To make the program work even better, if the user has already selected the level and cell, we will insert the cell at the selected point automatically. This keeps the user from needing to click the "Insert" button after clicking the "PICK" button.

In short, we want the user to click inside MicroStation. This could present a problem because, by default, VBA forms are modal. That is, the form is active and thus prevents us from interacting with MicroStation until the form is unloaded. To get around this potential problem, display the form as modeless.

Sub DoCellInsertion()

frmCellInsertion.Show vbModeless

End Sub

Place "DoCellInsertion" in a code module where it will be used to display our form.

Now for the "PICK" CommandButton, we want the user to pick a point. If the Level and Cell ComboBoxes are not empty, insert the selected cell on the selected level at the selected point.

Private Sub cmdPick_Click()

Dim MyMsg As CadInputMessage

Dim MyQue As CadInputQueue

Dim SelPt As Point3d

Dim CellElem As CellElement

On Error GoTo errhnd

Set MyQue = Application.CadInputQueue

Do

Set MyMsg = MyQue.GetInput

Select Case MyMsg.InputType

Case msdCadInputTypeDataPoint

SelPt = MyMsg.Point

txtX.Text = SelPt.X

txtY.Text = SelPt.Y

txtZ.Text = SelPt.Z

If cmbLevels.Text <> "" And cmbCells.Text <> "" Then

Set CellElem = _ CreateCellElement3(cmbCells.Text, _ SelPt, True)

CellElem.Level = _

ActiveDesignFile.Levels(cmbLevels.Text)

ActiveModelReference.AddElement CellElem

End If

Exit Do

Case Else

Exit Do

End Select

Loop

Exit Sub

errhnd:

Err.Clear

End Sub

Let’s look through the code slowly. First, we declare some variables. That’s the easy one. Second, we begin listening to the Input Queue. If the user picks a point, we do the following:

[image: Image] Place the selected X, Y, and Z point elements into the three text boxes.

[image: Image] If both the Levels ComboBox and Cells ComboBox are not empty, insert the selected cell at the selected point and then change its Level property to reflect the selected level.

If any other Input occurs or an error occurs, we exit the procedure.

If there is any concern about typing in all of the code shown for this project, the VBA Project named Chapter10.mvba can be found on the CD included with this book.

POINT LIST READER

This program concentrates on the ListBox control. Use the AddItem method to add items to the ListBox. Then use the List property to place values in the other columns of the ListBox. Use "Remove" to allow the user to manually remove items from the ListBox.

We read a text file to get the points into the ListBox of our interface. The text file looks like this:

[image: Image]

Each line in the text file gives us the X, Y, Z elements of the text insertion as well as the label we want placed at the X, Y, Z point.

[image: Image]

Here is the interface.

We are using two labels, one TextBox named txtPointFile, a ListBox named IstPoints, and four CommandButtons named btnRead, btnRemove, btnPlotPoints, and btnCancel.

ListBoxes, by default, use only one column. We want four columns, so set the 'ColumnCount' property to 4. Specify the width of each column in the ColumnWidths property using the value "60 pt;60 pt;60 pt;60 pt". Set the last property, "MultiSelect", to "2 - fmMultiSelectExtended". This allows the user to select multiple items in the list by using the <Shift> and <Control> keys while clicking on items in the listbox.

It’s time now to look at the code beginning with the Read button.

Private Sub btnReacd_Click()

Dim PointText As String

Dim PointSplit As Variant

Dim FFile As Long

FFile = FreeFile

Open txtPointFile.Text For Input As #FFile

While EOF(FFile) = False

Line Input #FFile, PointText

If PointText <> "" Then

PointSplit = Split(PointText, ",")

lstPoints.AddItem PointSplit(0)

lstPoints.Lis(lstPoints.ListCount - 1,1) = PointSplit(1)

lstPoints.List(lstPoints.ListCount - 1,2) = PointSplit(2)

lstPoints.List(lstPoints.ListCount - 1,3) = PointSplit(3)

End If

Wend

End Sub

When the user clicks the Read button, we open the file specified in the TextBox "txtPointFile" for input (this means we are going to read the file). Since we have not reached the End Of File, we read the next line from the file, split it into its elements, and add the elements to the ListBox. Notice how we use "AddItem" to add the X component of the point. AddItem is only used to add items to the first column of the ListBox. Each additional column’s value is set by using the List property. When using 'List', specify the line index and the column, then give it the value you want to put into the column.

The Remove button is meant to remove any items selected in the ListBox. Since multiple items can be selected at once, be careful as you remove the items.

Private Sub btnRemove_Click()

Dim I As Long

For I = lstPoints.ListCount To 1 Step -1

If lstPoints.Selected(I - 1) Then

lstPoints.RemoveItem I - 1

End If

Next I

End Sub

By beginning at the last item in the list and working to the first, you avoid potential problems as you remove selected items.

Private Sub btnPlotPoints_Click()

Dim TextIns As Point3d

Dim TextVal As String

Dim I As Long

Dim PT As TextElement

Dim RotMat As Matrix3d

For I = 1 To lstPoints.ListCount

TextIns.X = lstPoints.List(I - 1, 0)

TextIns.Y = lstPoints.List(I - 1, 1)

TextIns.Z = lstPoints.List(I - 1, 2)

Set PT = Application.CreateTextElement1(Nothing, _ lstPoints.List(I - 1, 3), TextIns, RotMat)

ActiveModelReference.AddElement PT

Next I

End Sub

The 'btnPlotPoints' button looks at each item in the list and from it we get the X, Y, and Z elements of the text origin as well as the text to display.

When the user clicks the 'Cancel' button, execute the following code:

Private Sub btnCancel_Click()

Unload frmPointList

End Sub

That’s it for the buttons in the form. Now, how do we display the form in the first place? In a code module, we place the following code:

Sub DoPointListReader()

frmPointList.Show

End Sub

The macro DoPointListReader is now used to display the form and all of the great functionality we have just put in.

WRITE OUT FILE

The next macro we are going to write utilizes CheckBoxes and OptionButtons. Here’s the visual interface:

[image: Image]

We have seven CheckBoxes named chkLevels, chkLineStyles, chkTextStyles, chkViews, chkAuthor, chkSubject, and chkTitle. We also have two OptionButtons named optASCII and optHTML. To round things out, we have two CommandButtons named cmdOK and cmdCancel.

We want to allow the user to select any of the "Items To Write". CheckBoxes are perfect for this.

As for the file format, only one selection should be made. This is why we use OptionButtons.

Before we get into the code, it is important to understand that this program is not as simple as the previous ones. Let’s plan before we jump in.

We want to write to two file formats: ASCII and HTML. This meets our needs today but what about tomorrow? We should think about future uses as we develop applications to allow for scalability. We could place all of the code in the Click event of the cmdOK button, however, breaking the code into more manageable chunks makes it easier for us to add file formats tomorrow.

Let’s look at three procedures for writing the file sections: headers, lines, and footers.

Sub PrintHeader(HeaderIn As String, FileNum As Long, _ Optional Columns As Long = 1)

If optASCII.Value = True Then

Print #FileNum. "[" & HeaderIn & "]"

ElseIf optHTML.Value = True Then

Print #FileNum, "<table width=660>"

Print #FileNum, "<tr><td colspan=" & Columns & _ " align=center>" & HeaderIn & "</td></tr>"

End If

End Sub

Use an If and ElseIf statement to handle the two file formats for today. Another ElseIf statement is all it takes to add another file format tomorrow.

Sub PrintLine(LineIn As String, FileNum As Long)

If optASCII.Value = True Then

Print #FileNum, LineIn

ElseIf optHTML.Value = True Then

Dim XSplit As Variant

Dim I As Long

XSplit = Split(LineIn, vbTab)

Print #FileNum, "<tr>"

For I = LBound(XSplit) To UBound(XSplit)

Print #FileNum, vbTab & "<td>" & XSplit(I) & "</td>"

Next I

Print #FileNum, "</tr>"

End If

End Sub

Use the procedure PrintLine for each of the selected items found. Use another If and ElseIf statement for the file formats.

Sub PrintFooter(FileNum As Long)

If optHTML.Value = True Then

Print #FileNum, "</table>" & vbCrLf

End If

End Sub

We only need to print a footer if the HTML option is selected.

Now it is time to look at the Click Event of the cmdOK button. There are two sections in the Click Event. The first sets up the export. The second section is a series of If … Then statements, each directly related to a CheckBox. Here it is:

Private Sub cmdOK_Click()

Dim MyFile As String

Dim FFile As Long

Dim myLevel As Level

Dim myLStyle As LineStyle

Dim myTStyle As TextStyle

Dim myView As View

FFile = FreeFile

If optASCII.Value = True Then

MyFile = "c:\output.txt"

ElseIf optHTML.Value = True Then

MyFile = "c:\output.htm"

End If

Open MyFile For Output As #FFile

PrintHeader "FILE NAME", FFile, 1

PrintLine ActiveDesignFile.FullName, FFile

PrintFooter FFile

If chkLevels.Value = True Then

PrintHeader "LEVELS", FFile, 3

For Each myLevel In ActiveDesignFile.Levels

PrintLine myLevel.Name & vbTab &

myLevel.Description & vbTab & _

myLevel.ElementColor, FFile

Next

PrintFooter FFile

End If

If chkLineStyles.Value = True Then

PrintHeader "LINE STYLES", FFile, 2

For Each myLStyle In ActiveDesignFile.LineStyles

PrintLine myLStyle.Name & vbTab & _

myLStyle.Number, FFile

Next

PrintFooter FFile

End If

If chkTextStyles.Value = True Then

PrintHeader "TEXT STYLES", FFile, 3

For Each myTStyle In ActiveDesignFile.TextStyles

PrintLine myTStyle.Name & vbTab & _

myTStyle.Color & vbTab & _

myTStyle.BackgroundFillColor, FFile

Next

PrintFooter FFile

End If

If chkViews.Value = True Then

PrintHeader "VIEWS", FFile, 5

For Each myView In ActiveDesignFile.Views

PrintLine myView.Origin.X & vbTab & _

myView.Origin.Y & vbTab & _

myView.Origin.Z & vbTab & _

myView.CameraAngle & vbTab & _

myView.Camera Focal Length, FFile

Next

PrintFooter FFile

End If

If chkAuthor.Value = True Then

PrintHeader "AUTHOR", FFile

PrintLine ActiveDeslgnFile.Author, FFile

PrintFooter FFile

End If

If chkSubject.Value = True Then

PrintHeader "SUBJECT", FFile

PrintLine ActiveDesignFile.Subject, FFile

PrintFooter FFile

End If

If chkTitle.Value = True Then

PrintHeader "TITLE", FFile

PrintLine ActiveDesignFile.Title, FFile

PrintFooter FFile

End If

Close #FFile

End Sub

We have saved the easiest event for last.

Private Sub cmdCancel_Click()

Unload frmWriteDgnSettings

End Sub

We add the following procedure to a Module to display the Form.

SubDoWriteOutFile()

frmWriteDgnSettings.Show

End Sub

ZOOM AND PAN

Here is a little program that provides real-time interactive panning and zooming of the views of the ActiveDesignFile.

[image: Image]

I use the MultiPage control here. This provides tabs and unique interfaces on each tab. I also use a few labels, a ComboBox, and three scroll bars with Min values of -500 and max values of 500. When the form is initialized, I populate the ComboBox with the View indexes. I also set an initial value for the Pan scroll bars.

When you right-click on an existing tab in the MultiPage, you access controls to add tabs (select "New Page"), to rename, delete, or move the order of the pages.

[image: Image]

This is what the MultiPage looks like when a right-click is performed on an existing page.

Let’s start with the Initialize event of the User form.

Private Sub UserForm_Initialize()

Dim ViewCen As Point3d

Dim MyView As View

For Each MyView In ActiveDesignFile.Views

cmbViews.AddItem MyView.Index

Next

cmbViews.ListIndex = 0

ViewCen = ActiveDesignFile.Views(1).Center

scrX.Value = ViewCen.X

scrY.Value = ViewCen.Y

End Sub

Here is the Initialize event of the UserForm. We add each Views Index to the ComboBox named cmbViews. Select the first element by assigning the ListIndex value to 0. The last step is to get the current center of view 1 and apply the X and Y values to the scroll bars srcX and srcY.

Scroll bars have two events with which we will be working. The first, Change event, is triggered each time the value of the scroll bar changes except for when the Thumb is being scrolled. The scroll event is triggered as the Thumb is dragged between the min value and max value.

We are going to create two procedures for performing the zoom and pan operations:

Sub SetZoom(ZoomValue As Long, OldZoomValue As Long)

ActiveDesignFile.Views(cmbViews.Text).Zoom 1 + _ (ZoomValue - OldZoomValue) / 100

ActiveDesignFile.Views(cmbViews.Text).Redraw

End Sub

Sub SetPan(XPan As Long, YPan As Long)

Dim ViewOrigin As Point3d

ViewOrigin.X = XPan

ViewOrigin.Y = YPan

ViewOrigin.Z = 0

ActiveDesignFile.Views (cmbViews.Text).Center = ViewOrigin

ActiveDesignFile.Views(cmbViews.Text).Redraw

End Sub

When we use the zoom method of a view, providing a number greater than 1 zooms in. A number less than 1 zooms out. The Zoom Method zooms relatively. If we provide a zoom factor of 1.1 three times, the view zooms in each time. Subtract the previous value from the current value and divide the result by 100. Add that value to the number 1. This allows us to zoom in and out as we move the scroll bar left and right. After performing the zoom, issue a Redraw to see the result of the zoom.

Panning is performed by adjusting the view’s center.

You can see the code that is used to zoom in and out. Now let’s look at the events that call these procedures.

Private Sub scrZoom_Change()

SetZoom scrZoom.Value, scrZoom.Tag

scrZoom.Tag = scrZoom.Value

End Sub

Private Sub scrZoom_Scroll()

SetZoom scrZoom.Value, scrZoom.Tag

scrZoom.Tag = scrZoom.Value

End Sub

The Change and Scroll events for the scroll bar named scrZoom is shown above. The code inside these events is the same. The Tag property (as discussed previously) is there for whatever use we have for it. Here is one way: use the tag to store the previous value. After we call SetZoom, we set the tag value.

Now, let’s talk about panning. We are using two scroll bars to set the X and Y elements of the view’s center.

Private Sub scrX_Change()

SetPan scrX.Value, scrY.Value

End Sub

Private Sub scrX_Scroll()

SetPan scrX.Value, scrY.Value

End Sub

Private Sub scrY_Change()

SetPan scrX.Value, scrY.Value

End Sub

Private Sub scrY_Scroll()

SetPan scrX.Value, scrY.Value

End Sub

REVIEW

We will use user interfaces in a number of areas in the remainder of this book as we learn more about MicroStation VBA. Keep the following points in mind:

[image: Image] All controls have properties, methods, and events.

[image: Image] Address a control’s properties and methods by the control name, typing a period, typing the property or method, and then providing parameters when required.

[image: Image] At run-time, events are triggered as the user interacts with your interface.

[image: Image] Display user forms using the Show method.

[image: Image] Use the Initialize event to set values and populate controls prior to the form being displayed.

[image: Image]

11The MicroStation Object Model - Objects

Objects are the basis for much of our VBA programming. Object Models are hierarchal structures of objects. Rather than examine in this chapter all of the objects, we will look at the tools available to work with the MicroStation Object Model. After we look at the tools, we will look at some of the Objects frequently used when working with MicroStation VBA.

In this Chapter:

[image: Image] The Object Browser

[image: Image] Auto List Members

[image: Image] The MicroStation VBA Help File

[image: Image] Adding Watches

[image: Image] The MicroStation Object Model

THE OBJECT BROWSER

[image: Image]

One of the best tools to work with Object Models is the Object Browser.

Click on the Object Browser toolbar button to display the Object Browser. The Object Browser can also be displayed by using the VBA menu View > Object Browser or by pressing the <F2> key on the keyboard.

[image: Image]

The Object Browser has two combo boxes at the top. The top-most combo box allows us to narrow the classes to a specific Library. In the image above, the MicroStationDGN Library has been selected. The only classes now shown belong to the MicroStationDGN Library.

When we select "Application" in the Classes ListBox, the "Members of 'Application'" show up in the Members ListBox. The Members ListBox displays the Properties, Methods, and Events of the selected Class.

[image: Image]

Three primary member types are shown in the Members ListBox.

First are Properties. "Name" and "Path" are properties of the Application Object.

Methods "OpenDesignFile", "OpenDesignFileForProgram" and "Pi" belong to the Application Object.

Events "OnDesignFileClosed" and "OnDesignFileOpened" also belong to the Application Object.

When we select a member in the list, we are shown the Declaration for the selected member at the bottom of the Object Browser.

[image: Image]

The Declaration shows us the Parameters for the Function or Procedure as well as the return value type of Functions.

In addition to clicking on the Classes and Members we are familiar with, we can search Object Models using the Object Browser.

[image: Image]

Notice the cursor over the Hide/Show Search Results button in the Object Browser. A search for "text" in the MicroStationDGN Type Library results in numerous results. So, if we do not know the specific Class or Member we need, we can use the Object Browser to search for it.

AUTO LIST MEMBERS

VBA gives us help as we write our code at design time.

[image: Image]

The "List Members" list displays as we work in VBA. Once the list displays, we can use the arrow keys and page up/down keys to scroll through the list. If we select "ActiveDesignFile" at this time and press the period key, we see the following:

[image: Image]

The "Auto List Members" list allows us to 'drill down' through an Object Model.

MICROSTATION VBA HELP FILE

If we see something in the Object Browser and would like to see more detail on it, we can select it in the Object Browser and press the <F1> key on the keyboard. We are then presented with information about the Object, Property, Method, or Event that was selected in the Object Browser.

[image: Image]

Once in the MicroStation VBA Help File, we can click on the Index tab and type "Application Structure" in the 'Search' box. Selecting "Application Structure" from the Index list displays the MicroStation Application Object structure. Select "Application Object" from the list to display a description of the object with hyperlinks to Properties, Methods, Events, Example Code, and See Also which displays a list of associated objects.

ADDING WATCHES

We have introduced adding Watches previously. Adding a watch to a variable is an excellent way to see its Properties. Some of the Properties are actually other objects that we can continue to traverse by expanding the item in the tree. Others in the list are Collections of Objects that we can examine in the Watch window.

[image: Image]

THE MICROSTATION OBJECT MODEL

Let’s begin looking at the MicroStation Object Model by examining the Application Object.

Application Object

The Application Object points to the MicroStation Application.

Accessors

Sub TestApplicationA()

Dim MyApp As New Application

MsgBox MyApp.Path

End Sub

Sub TestApplicationB()

Dim MyApp As Application

Set MyApp = Application

MsgBox MyApp.Path

End Sub

Both examples shown here result in the variable MyApp pointing to the MicroStation Application Object. Once a variable is pointing to the Application, we can use that variable to manipulate the Application Object through its Properties and Methods.

The Application Object is always available through the exposed Object named "Application". This means when we are in VBA, we can use the Object named Application at any time.

In addition to accessing the Applications properties and methods, additional objects and collections under the Application object can be accessed by traversing the object model. Do this by typing "Application", the period key, and then the next level of the Object Model.

Sub TestApplicationC()

MsgBox Application.Path

End Sub

In this example, we have not declared any variables or set any variables. We just use the Object named "Application" because it is always exposed to us.

A comprehensive list of objects in the MicroStation Object Model is available on the CD that accompanies this book. It is not feasible to give the entire Object Model here in print but you will get an understanding as to how large the Object Model is. Let’s take a look at a selection of the Properties and Methods of a few of the Objects we deal with on a regular basis in MicroStation. Some read-only properties are marked with "{read-only}".

Application

[image: Image] Property ACSManager As ACSManager {read-only}

[image: Image] Property ActiveDesignFile As DesignFile {read-only}

[image: Image] Property ActiveModelReference As Model Reference {read-only}

[image: Image] Property ActiveSettings As Settings {read-only}

[image: Image] Property ActiveWorkspace As Workspace {read-only}

[image: Image] Sub AddAttachmentEventsHandler(EventHandler As IAttachmentEvents)

[image: Image] Sub AddChangeTrackEventsHandler(EventHandler As IChangeTrackEvents)

[image: Image] Sub AddLevelChangeEventsHandler(EventHandler As I LevelChangeEvents)

[image: Image] Sub AddModalDialogEventsHandler(EventHandler As IModalDialogEvents)

[image: Image] Sub AddModelActivateEventsHandler(EventHandler As IModelActivateEvents)

[image: Image] Sub AddModelChangeEventsHandler(EventHandler As IModelChangeEvents)

[image: Image] Sub AddSaveAsEventsHandler(EventsHandler As ISaveAsEvents)

[image: Image] Sub AddViewUpdateEventsHandler(EventHandler As IViewUpdateEvents)

[image: Image] Sub AppendXDatum(XData() As XDatum, Type As MsdXDatumType, Value As Variant)

[image: Image] Function

ApplyHorizontalScalingFixForEMF(PixelCoordinat e As Double) As Long

[image: Image] Function

ApplyVerticalScalingFixForEMF(PixelCoordinate As Double) As Long

[image: Image] Function

AssembleComplexStringsAndShapes(ChainableEleme nts() As ChainableElement, [GapTolerance As Double = -1]) As ElementEnumerator

[image: Image] Function Atn2(Y As Double, X As Double) As Double

[image: Image] Sub AttachCellLibrary(CellLibraryName As String, [ConvertFromV7 As MsdConversionMode = msdConversionModeAlways])

[image: Image] Property AttachedCellLibrary As CellLibrary {read-only}

[image: Image] Property Bspline As Bspline {read-only}

[image: Image] Function ByCellColor() As Long

[image: Image] Function ByCellLineStyle() As LineStyle

[image: Image] Function ByCellLineWeight() As Long

[image: Image] Function By Level Color() As Long

[image: Image] Function By Level LineStyle() As LineStyle

[image: Image] Function By Level LineWeight() As Long

[image: Image] Property CadInputQueue As CadInputQueue {read-only}

[image: Image] Property Caption As String

[image: Image] Property CommandState As CommandState {read-only}

[image: Image] Function

ConstructCirclesTangentToThreeElements (Element 1 As Element, Element2 As Element, Element3 As Element, Template As Element, [OutputType As MsdTangentElementOutputType = msdTangentCircles], [SamplesCount As Long = 10]) As ElementEnumerator

[image: Image] Sub CopyDesignFile(ExistingDesignFileName As String, NewDesignFileName As String, [Overwrite As Boolean])

[image: Image] Function

CreateApplicationElement(ApplicationID As Long, ApplicationData As DataBlock) As ApplicationElement

[image: Image] Function CreateArcElement1(Tempi ate As Element, StartPoint As Point3d, CenterPoint As Point3d, EndPoint As Point3d) As ArcElement

[image: Image] Function CreateArcElement2(Template As Element, CenterPoint As Point3d, PrimaryRadius As Double, SecondaryRadius As Double, Rotation As Matrix3d, StartAngle As Double, SweepAngle As Double) As ArcElement

[image: Image] Function CreateArcElement3(Template As Element, StartPoint As Point3d, PointOnCurve As Point3d, EndPoint As Point3d) As ArcElement

[image: Image] Function CreateArcElement4(Template As Element, StartTangent As Ray3d, EndPoint As Point3d) As ArcElement

[image: Image] Function CreateArcElement5(Template As Element, Chord As Segment3d, ArcLength As Double, PlanePoint As Point3d) As ArcElement

[image: Image] Function CreateAreaPattern(RowSpacing As Double, ColSpacing As Double, Angle As Double, CellName As String, Scale As Double) As AreaPattern

[image: Image] Function CreateBsplineCurveElement1(Template As Element, Curve As BsplineCurve) As BsplineCurveElement

[image: Image] Function CreateBsplineCurveElement2(Template As Element, Curve As InterpolationCurve) As BsplineCurveElement

[image: Image] Function CreateBsplineSurfaceElement1(Template As Element, Surface As BsplineSurface) As BsplineSurfaceElement

[image: Image] Function CreateCellElement1(Name As String, Elements() As _Element, Origin As Point3d, [IsPointCell As Boolean]) As CellElement

[image: Image] Function CreateCellElement2(CellName As String, Origin As Point3d, Scale As Point3d, TrueScale As Boolean, Rotation As Matrix3d) As CellElement

[image: Image] Function CreateCellElement3(CellName As String, Origin As Point3d, TrueScale As Boolean) As CellElement

[image: Image] Function

CreateComplexShapeElement1(ChainableElements() As ChainableElement, [FillMode As MsdFillMode = msdFillModeUseActive]) As ComplexShapeElement

[image: Image] Function

CreateComplexShapeElement2(ChainableElements() As ChainableElement, [FillMode As MsdFillMode = msdFillModeUseActive], [GapTolerance As Double = -1]) As ComplexShapeElement

[image: Image] Function

CreateComplexStringElement1(ChainableElements() As ChainableElement) As ComplexStringElement

[image: Image] Function

CreateComplexStringElement2(Chai nabl eEl ements() As ChainableElement, [GapTolerance As Double = -1]) As ComplexStringElement

[image: Image] Function CreateConeElement1(Tempi ate As Element, BaseRadius As Double, BaseCenterPoint As Point3d, TopRadius As Double, TopCenterPoint As Point3d, Rotation As Matrix3d) As ConeElement

[image: Image] Function CreateConeElement2(Template As Element, Radius As Double, BaseCenterPoint As Point3d, TopCenterPoint As Point3d) As ConeElement

[image: Image] Function CreateCrossHatchPattern(Spacel As Double, Space2 As Double, Angle1 As Double, Angle2 As Double) As CrossHatchPattern

[image: Image] Function CreateCurveElement1(Tempi ate As Element, Points() As Point3d) As CurveElement

[image: Image] Function CreateDatabaseLink(Mslink As Long, Entity As Long, LinkType As MsdDatabaseLinkage, IsInformation As Boolean, DisplayableAttributeType As Long) As DatabaseLi nk

[image: Image] Function CreateDesignFile(SeedFileName As String, NewDesignFileName As String, Open As Boolean) As DesignFile

[image: Image] Function CreateDimensionElement1(Tempi ate As Element, Rotation As Matrix3d, Type As MsdDimType, [TextOrientationView As View]) As DimensionElement

[image: Image] Function CreateEllipseElement1(Tempi ate As Element, PerimeterPoint1 As Point3d, PerimeterPoint2 As Point3d, PerimeterPoint3 As Point3d, [Fill Mode As MsdFillMode = msdFillModeUseActive]) As EllipseElement

[image: Image] Function CreateEllipseElement2(Template As Element, Origin As Point3d, PrimaryRadius As Double, SecondaryRadius As Double, Rotation As Matrix3d, [FillMode As MsdFillMode = msdFillModeUseActive]) As EllipseElement

[image: Image] Function CreateEllipticalElement1(Template As Element, Ellipse As Ellipse3d, [FillMode As MsdFillMode = msdFillModeUseActive]) As Element

[image: Image] Function CreateHatchPattern1(Space As Double, Angle As Double) As HatchPattern

[image: Image] Function CreateLineElement1(Template As Element, Vertices() As Point3d) As LineElement

[image: Image] Function CreateLineElement2(Template As Element, StartPoint As Point3d, EndPoint As Point3d) As LineElement

[image: Image] Function CreateObjectInMicroStation(ProgID As String) As Unknown

[image: Image] Function CreatePointStringElement1(Tempiate As Element, Vertices() As Point3d, Disjoint As Boolean) As PointStringElement

[image: Image] Function CreateSavedViewElement(ViewSpecifier As Variant, Name As String, [Description As String]) As SavedViewElement

[image: Image] Function CreateShapeElement1(Tempi ate As Element, Vertices() As Point3d, [FillMode As MsdFillMode = msdFillModeUseActive]) As ShapeElement

[image: Image] Function CreateSharedCellElement1(Name As String, Elements() As _Element, Origin As Point3d, [IsPointCell As Boolean]) As SharedCellElement

[image: Image] Function CreateSharedCellElement2(CellName As String, Origin As Point3d, Scale As Point3d, TrueScale As Boolean, Rotation As Matrix3d) As SharedCellElement

[image: Image] Function CreateSharedCellElement3(CellName As String, Origin As Point3d, TrueScale As Boolean) As SharedCellElement

[image: Image] Function CreateTextElement1(Tempi ate As Element, Text As String, Origin As Point3d, Rotation As Matrix3d) As TextElement

[image: Image] FunctionCreateTextNodeElement1(Template As Element, Origin As Point3d, Rotation As Matrix3d) As TextNodeElement

[image: Image] Function CreateTextNodeElement2(Template As Element, Origin As Point3d, Rotation As Matrix3d, [IncrementNodeNumber As Boolean = True], [Reserved As Unknown]) As TextNodeElement

[image: Image] Property CurrentGraphicGroup As Long {read-only}

[image: Image] Property CursorInformation As CursorInformation {read-only}

[image: Image] Function

DataEntryRegionFromCriteria(StartPosition As Long, Length As Long, Justification As MsdDataEntryRegionJustitication) As DataEntryRegion

[image: Image] Function Degrees(Radians As Double) As Double

[image: Image] Sub DeleteXDatum(XData() As XDatum, Index As Long)

[image: Image] Sub DetachCellLibrary()

[image: Image] Function DLongAbs(Value As DLong) As DLong

[image: Image] Function DLongAdd(Terml As DLong, Term2 As DLong) As DLong

[image: Image] Function DLongComp(Value1 As DLong, Value2 As DLong) As Long

[image: Image] Function DLongDivide(Numerator As DLong, Denominator As DLong) As DLong

[image: Image] Function DLongFromDouble(Value As Double) As DLong

[image: Image] Function DLongFromHexString(Value As String) As DLong

[image: Image] Function DLongFromInt64(Value As Empty) As DLong

[image: Image] Function DLongFromLong(Value As Long) As DLong

[image: Image] Function DLongFromString(Value As String) As DLong

[image: Image] Function DLongMod(Numerator As DLong, Denominator As DLong) As DLong

[image: Image] Function DLongMultiply(Factorl As DLong, Factor2 As DLong) As DLong

[image: Image] Function DLongNegate(Value As DLong) As DLong

[image: Image] Function DLongSubtract(Minuend As DLong, Subtrahend As DLong) As DLong

[image: Image] Function DLongToHexString(Value As DLong) As String

[image: Image] Sub DLongToInt64(Value As DLong)

[image: Image] Function DLongToLong(Value As DLong) As Long

[image: Image] Function DLongToString(Value As DLong) As String

[image: Image] Function

Ellipse3dFromEllipticalElement(Element As EllipticalElement) As Ellipse3d

[image: Image] Property ExecutingVBProject As Object {readonly}

[image: Image] Property FullName As String {read-only}

[image: Image] Function

GetCellInformationEnumerator(IncludeSharedCells As Boolean, IncludeFullPath As Boolean) As CellInformationEnumerator

[image: Image] Function GetCExpressionValue(CExpression As String, [MdlApplicationName As String]) As Variant

[image: Image] Function

GetCExpressionValueAsDLong(CExpression As String, [MdlApplicationName As String]) As DLong

[image: Image] Function GetFloodBoundary(CandidateElements() As _Element, Template As Element, SeedPoint As Point3d, [ViewSpecifier As Variant], [FindHoles As Boolean = True], [Tolerance As Double = -1], [Fill Mode As MsdFillMode = msdFillModeUseActive]) As Element

[image: Image] Function GetRegionDifference(RegionSolid() As _Element, RegionHoles() As _Element, Template As Element, [FillMode As MsdFillMode = msdFillModeUseActive]) As ElementEnumerator

[image: Image] Function GetRegionIntersection(Region1() As _Element, Region2() As _Element, Template As Element, [FillMode As MsdFillMode = msdFillModeUseActive]) As ElementEnumerator

[image: Image] Function GetRegionUnion(Regionl() As _Element, Region2() As _Element, Template As Element, [Fill Mode As MsdFill Mode = msdFillModeUseActive]) As ElementEnumerator

[image: Image] Property HasActiveDesignFile As Boolean {read-only}

[image: Image] Property HasActiveModelReference As Boolean {read-only}

[image: Image] Property Height As Long

[image: Image] Sub InsertXDatum(XData() As XDatum, Index As Long, Type As MsdXDatumType, Value As Variant)

[image: Image] Property IsAcademicVersion As Boolean {readonly}

[image: Image] Property IsCellLibraryAttached As Boolean {read-only}

[image: Image] Property IsRegistered As Boolean {read-only}

[image: Image] Property IsSerialized As Boolean {read-only}

[image: Image] Property KeyinArguments As String

[image: Image] Property LeftPosition As Long

[image: Image] Function Matrix3dAdd2Scaled(Matrix0 As Matrix3d, Matrix1 As Matrix3d, Scale1 As Double, Matrix2 As Matrix3d, Scale2 As Double) As Matrix3d

[image: Image] Function Matrix3dDeterminant(Matrix As Matrix3d) As Double

[image: Image] Function Matrix3dEqual(Matrix1 As Matrix3d, Matrix2 As Matrix3d) As Boolean

[image: Image] Function Matrix3dEqualTolerance(Matrix1 As Matrix3d, Matrix2 As Matrix3d, Tolerance As Double) As Boolean

[image: Image] Function Matrix3dFromAxisAndRotationAngle(Axis As Long, Radians As Double) As Matrix3d

[image: Image] Function Matrix3dFromDirectionAndScale(Vector As Point3d, Scale As Double) As Matrix3d

[image: Image] Function Matrix3dFromMatrix3dTimesMatrix3d(A As Matrix3d, B As Matrix3d) As Matrix3d

[image: Image] Function

Matrix3dFromMatrix3dTimesMatrix3dTimesMatrix3d (A As Matrix3d, B As Matrix3d, C As Matrix3d) As Matrix3d

[image: Image] Function Matrix3dFromPoint3dColumns(XVector As Point3d, YVector As Point3d, ZVector As Point3d) As Matrix3d

[image: Image] Function Matrix3dFromPoint3dRows(XVector As Point3d, YVector As Point3d, ZVector As Point3d) As Matrix3d

[image: Image] Function

Matrix3dFromRotationBetweenVectors(Vector0 As Point3d, Vector1 As Point3d) As Matrix3d

[image: Image] Function Matrix3dFromRowValues(X00 As Double, X01 As Double, X02 As Double, X10 As Double, X11 As Double, X12 As Double, X20 As Double, X21 As Double, X22 As Double) As Matrix3d

[image: Image] Function Matrix3dFromScale(Scale As Double) As Matrix3d

[image: Image] Function Matrix3dFromScaleFactors(Xscale As Double, Yscale As Double, Zscale As Double) As Matrix3d

[image: Image] Function Matrix3dFromTransform3d(Transform As Transform3d) As Matrix3d

[image: Image] Function

Matrix3dFromVectorAnd RotationAngle(Axis As Point3d, Radians As Double) As Matn'x3d

[image: Image] Function

Matrix3dFromXYRotationSkewAndScale(XAxi sAngle As Double, YAxisSkewAngle As Double, Xscale As Double, Yscale As Double, Zscale As Double) As Matrix3d

[image: Image] Function

Matrix3dGetComponent ByRowAndColumn(Matrix As Matrix3d, Row As Long, Col As Long) As Double

[image: Image] Function Matrix3dHasInverse(Matrix As Matrix3d) As Boolean

[image: Image] Function Matrix3dIdentity() As Matrix3d

[image: Image] Function Matrix3dInverse(Forward As Matrix3d) As Matrix3d

[image: Image] Function Matrix3dIsIdentity(Matrix As Matrix3d) As Boolean

[image: Image] Function Matrix3dIsOrthogonal(Matrix As Matrix3d) As Boolean

[image: Image] Function Matrix3dIsRigicKMatrix As Matrix3d) As Boolean

[image: Image] Function Matrix3dIsRotateScaleRotate(Matrix As Matrix3d, Rotation1 As Matrix3d, ScaleFactors As Point3d, Rotation2 As Matrix3d) As Boolean

[image: Image] Function Matrix3dIsSignedPermutation(Matrix As Matrix3d) As Boolean

[image: Image] Function

Matrix3dIsXRotationYRotationZRotationScale(Mat rix As Matrix3d, RadiansX As Double, RadiansY As Double, RadiansZ As Double, Scale As Double) As Boolean

[image: Image] Function Matrix3dIsXYRotation(Matrix As Matrix3d, XYRotationRadians As Double) As Boolean

[image: Image] Function

Matrix3dIsXYRotationSkewAndScale(Matrix As Matrix3d, XAxisAngle As Double, YAxisSkewAngle As Double, Xscale As Double, Yscale As Double, Zscale As Double) As Boolean

[image: Image] Function Matrix3dMaxAbs(Matrix As Matrix3d) As Double

[image: Image] Function Matrix3dMaxDiff(Matrix1 As Matrix3d, Matrix2 As Matrix3d) As Double

[image: Image] Function Matrix3dRotationFromColumnZ(Normal As Point3d) As Matrix3d

[image: Image] Function

Matrix3dRotationFromPoint3dOriginXY(Origin As Point3d, XPoint As Point3d, YPoint As Point3d) As Matrix3d

[image: Image] Function Matrix3dRotationFromRowZ(Normal As Point3d) As Matrix3d

[image: Image] Sub Matrix3dSetComponentByRowAndColumn(Matrix As Matrix3d, RowIndex As Long, ColumnIndex As Long, Value As Double)

[image: Image] Function Matrix3dSumSquares(Matrix As Matrix3d) As Double

[image: Image] Function Matrix3dTranspose(Matrix As Matrix3d) As Matrix3d

[image: Image] Function Matrix3dZero() As Matrix3d

[image: Image] Function

MdlCreateElementFroniElementDescrP(ElementDescr P As Long) As Element

[image: Image] Function

MdlGetDesignFileFromModelRefP(ModelRefP As Long) As DesignFile

[image: Image] Function

MdlGetModelReferenceFromModelRefP(ModelRefP As Long) As Model Reference

[image: Image] Property MessageCenter As MessageCenter {read-only}

[image: Image] Property Name As String {read-only}

[image: Image] Sub OnDesignFileClosed(DesignFileName As String)

[image: Image] Sub OnDesignFileOpened(DesignFileName As String)

[image: Image] Function OpenDesignFile(DesignFileName As String, [Readonly As Boolean], [V7Action As MsdV7Action = msdV7ActionAskUser]) As DesignFile

[image: Image] Function

OpenDesignFileForProgram(DesignFileName As String, [Readonly As Boolean]) As DesignFile

[image: Image] Property Path As String {read-only}

[image: Image] Function Pi() As Double

[image: Image] Function

Plane3dIntersectsPlane3d(IntersectionRay As Ray3d, Plane0 As Plane3d, Plane1 As Plane3d) As Boolean

[image: Image] Function

Plane3dIntersectsRay3d(IntersectionPoint As Point3d, Parameter As Double, Plane As Plane3d, Ray As Ray3d) As Boolean

[image: Image] Function Point2dAdd(Point1 As Point2d, Point2 As Point2d) As Point2d

[image: Image] Function Point2dAdd2Scaled(Origin As Point2d, Vector1 As Point2d, Scale1 As Double, Vector2 As Point2d, Scale2 As Double) As Point2d

[image: Image] Function Point2dAdd3Scaled(Origin As Point2d, Vector1 As Point2d, Scale1 As Double, Vector2 As Point2d, Scale2 As Double, Vector3 As Point2d, Scale3 As Double) As Point2d

[image: Image] Function Point2dAddScaled(Origin As Point2d, Vector As Point2d, Scale As Double) As Point2d

[image: Image] Function Point2dAreVectorsParallel(Vector1 As Point2d, Vector2 As Point2d) As Boolean

[image: Image] Function

Point2dAreVectorsPerpendicular(Vectorl As Point2d, Vector2 As Point2d) As Boolean

[image: Image] Function Point2dCrossProduct(Vector1 As Point2d, Vector2 As Point2d) As Double

[image: Image] Function Point2dCrossProduct3Points(Origin As Point2d, Target1 As Point2d, Target2 As Point2d) As Double

[image: Image] Function Point2dDistance(Point0 As Point2d, Point1 As Point2d) As Double

[image: Image] Function Point2dDistanceSquared(Point1 As Point2d, Point2 As Point2d) As Double

[image: Image] Function Point2dDotDifference(TargetPoint As Point2d, Origin As Point2d, Vector As Point2d) As Double

[image: Image] Function Point2dDotProduct(Vector1 As Point2d, Vector2 As Point2d) As Double

[image: Image] Function Point2dDotProduct3Points(Origin As Point2d, Target1 As Point2d, Target2 As Point2d) As Double

[image: Image] Function Point2dEqual(Vector1 As Point2d, Vector2 As Point2d) As Boolean

[image: Image] Function Point2dEqualTolerance(Vector1 As Point2d, Vector2 As Point2d, Tolerance As Double) As Boolean

[image: Image] Function Point2dFromXY(X As Double, Y As Double) As Point2d

[image: Image] Function Point2dGetComponent(Point As Point2d, Index As Long) As Double

[image: Image] Function Point2dInterpolate(Point0 As Point2d, S As Double, Point1 As Point2d) As Point2d

[image: Image] Function Point2dMagnitude(Vector As Point2d) As Double

[image: Image] Function Point2dMagnitudeSquared(Vector As Point2d) As Double

[image: Image] Function Point2dMaxAbs(Vector As Point2d) As Double

[image: Image] Function Point2dNegate(Vector As Point2d) As Point2d

[image: Image] Function Point2dNormalize(Vector As Point2d) As Point2d

[image: Image] Function Point2dOne() As Point2d

[image: Image] Function

Point2dSignedAngleBetweenVectors(Vector1 As Point2d, Vector2 As Point2d) As Double

[image: Image] Function Point2dSubtract(Point1 As Point2d, Point2 As Point2d) As Point2d

[image: Image] Function Point2dZero() As Point2d

[image: Image] Function Point3dAdd(Point1 As Point3d, Point2 As Point3d) As Point3d

[image: Image] Function Point3dAdd2Scaled(Origin As Point3d, Vector1 As Point3d, Scale1 As Double, Vector2 As Point3d, Scale2 As Double) As Point3d

[image: Image] Function Point3dAdd2ScaledVector3d(Origin As Point3d, Vector1 As Vector3d, Scale1 As Double, Vector2 As Vector3d, Scale2 As Double) As Point3d

[image: Image] Function Point3dAdd3Scaled(Origin As Point3d, Vector1 As Point3d, Scale1 As Double, Vector2 As Point3d, Scale2 As Double, Vector3 As Point3d, Scale3 As Double) As Point3d

[image: Image] Function Point3dAdd3ScaledVector3d(Origin As Point3d, Vector1 As Vector3d, Scale1 As Double, Vector2 As Vector3d, Scale2 As Double, Vector3 As Vector3d, Scale3 As Double) As Point3d

[image: Image] Function Point3dAddAngleDistance(Point1 As Point3d, AngleRadians As Double, DistanceXY As Double, Dz As Double) As Point3d

[image: Image] Function Point3dAddPoint3dVector3d(Base As Point3d, Vector As Vector3d) As Point3d

[image: Image] Function Point3dAddScaled(Origin As Point3d, Vector As Point3d, Scale As Double) As Point3d

[image: Image] Function Point3dAddScaledVector3d(Origin As Point3d, Vector As Vector3d, Scale As Double) As Point3d

[image: Image] Function Point3dAngleBetweenVectors(Vector1 As Point3d, Vector2 As Point3d) As Double

[image: Image] Function Point3dAngleBetweenVectorsXY(Vector1 As Point3d, Vector2 As Point3d) As Double

[image: Image] Function Point3dAreVectorsParallel(Vector1 As Point3d, Vector2 As Point3d) As Boolean

[image: Image] Function

Point3dAreVectorsPerpendicular(Vector1 As Point3d, Vector2 As Point3d) As Boolean

[image: Image] Function Point3dCrossProduct(Vector1 As Point3d, Vector2 As Point3d) As Point3d

[image: Image] Function Point3dCrossProduct3Points(Origin As Point3d, Target1 As Point3d, Target2 As Point3d) As Point3d

[image: Image] Function Point3dCrossProduct3PointsXY(Origin As Point3d, Target1 As Point3d, Target2 As Point3d) As Double

[image: Image] Function Point3dCrossProductXY(Vector1 As Point3d, Vector2 As Point3d) As Double

[image: Image] Function Point3dDistance(Point1 As Point3d, Point2 As Point3d) As Double

[image: Image] Function Point3dDistanceSquared(Point1 As Point3d, Point2 As Point3d) As Double

[image: Image] Function Point3dDistanceSquaredXY(Point1 As Point3d, Point2 As Point3d) As Double

[image: Image] Function Point3dDistanceXY(Point1 As Point3d, Point2 As Point3d) As Double

[image: Image] Function Point3dDotDifferencedarget As Point3d, Origin As Point3d, Vector As Point3d) As Double

[image: Image] Function Point3dDotDifferenceVector3d(Target As Point3d, Origin As Point3d, Vector As Vector3d) As Double

[image: Image] Function Point3dDotProduct(Vector1 As Point3d, Vector2 As Point3d) As Double

[image: Image] Function Point3dDotProduct3Points(Origin As Point3d, Target1 As Point3d, Target2 As Point3d) As Double

[image: Image] Function Point3dDotProduct3PointsXY(Origin As Point3d, Target1 As Point3d, Target2 As Point3d) As Double

[image: Image] Function Point3dDotProductXY(Vector1 As Point3d, Vector2 As Point3d) As Double

[image: Image] Function Point3dEqual(Vector1 As Point3d, Vector2 As Point3d) As Boolean

[image: Image] Function Point3dEqualTolerance(Vector1 As Point3d, Vector2 As Point3d, Tolerance As Double) As Boolean

[image: Image] Function Point3dFromAngleDistance(AngleRadians As Double, DistanceXY As Double, Z As Double) As Point3d

[image: Image] Function Point3dFromMatrix3dColumn(Matrix As Matrix3d, Col As Long) As Point3d

[image: Image] Function

Point3dFromMatrix3dInverseTimesPoint3d(Matrix As Matrix3d, Point As Point3d) As Point3d

[image: Image] Function

Point3dFromMatrix3dInverseTransposeTimesPoint3 d(Matrix As Matrix3d, Point As Point3d) As Point3d

[image: Image] Function Point3dFromMatrix3dRow(Matrix As Matrix3d, Row As Long) As Point3d

[image: Image] Function

Point3dFromMatrix3dTimesPoint3d(Matrix As Matrix3d, Point As Point3d) As Point3d

[image: Image] Function Point3dFromMatrix3dTimesXYZ(Matrix As Matrix3d, X As Double, Y As Double, Z As Double) As Point3d

[image: Image] Function

Point3dFromMatrix3dTransposeTimesPoint3d(Matrix As Matrix3d, Point As Point3d) As Point3d

[image: Image] Function

Point3dFromMatrix3dTransposeTimesXYZ(Matrix As Matrix3d, X As Double, Y As Double, Z As Double) As Point3d

[image: Image] Function Point3dFromRay3dFractionParameter(Ray As Ray3d, Fraction As Double) As Point3d

[image: Image] Function Point3dFromRay3dTangent(Ray As Ray3d) As Point3d

[image: Image] Function

Point3dFromSegment3dFractionParameter(Segment As Segment3d, Fraction As Double) As Point3d

[image: Image] Function Point3dFromSegment3dTangent(Segment As Segment3d) As Point3d

[image: Image] Function Point3dFromTransform3d(Transform As Transform3d) As Point3d

[image: Image] Function

Point3dFromTransform3dTimesPoint3d(Transform As Transform3d, Point As Point3d) As Point3d

[image: Image] Function

Point3dFromTransform3dTimesXYZ(Transform As Transform3d, X As Double, Y As Double, Z As Double) As Point3d

[image: Image] Function Point3dFromVector3d(Vector As Vector3d) As Point3d

[image: Image] Function Point3dFromXY(Ax As Double, Ay As Double) As Point3d

[image: Image] Function Point3dFromXYZ(Ax As Double, Ay As Double, Az As Double) As Point3d

[image: Image] Function Point3dGetComponent(Point As Point3d, Index As Long) As Double

[image: Image] Function Point3dInPolygonXY(Point As Point3d, PolygonVertices() As Point3d, [Tolerance As Double = -1]) As Long

[image: Image] Function Point3dInterpolate(Point0 As Point3d, FractionParameter As Double, Point1 As Point3d) As Point3d

[image: Image] Function Point3dIsPointInCCWSector(TestPoint As Point3d, Origin As Point3d, Target0 As Point3d, Target1 As Point3d, UpVector As Point3d) As Boolean

[image: Image] Function

Point3dIsPointInSmallerSector(TestPoint As Point3d, Origin As Point3d, Target1 As Point3d, Target2 As Point3d) As Boolean

[image: Image] Function Point3dIsVectorInCCWSector(TestVector As Point3d, Vector0 As Point3d, Vector1 As Point3d, UpVector As Point3d) As Boolean

[image: Image] Function

Point3dIsVectorInSmallerSector(TestVector As Point3d, Vector0 As Point3d, Vector1 As Point3d) As Boolean

[image: Image] Function Point3dMagnitude(Vector As Point3d) As Double

[image: Image] Function Point3dMagnitudeSquared(Vector As Point3d) As Double

[image: Image] Function Point3dMaxAbs(Vector As Point3d) As Double

[image: Image] Function Point3dNegate(Vector As Point3d) As Point3d

[image: Image] unction Point3dNormalize(Vector As Point3d) As Point3d

[image: Image] Function Point3dOne() As Point3d

[image: Image] Function

Point3dPlanarAngleBetweenVectors(Vector1 As Point3d, Vector2 As Point3d, PlaneNormal As Point3d) As Double

[image: Image] Function Point3dPolarAngle(Vector As Point3d) As Double

[image: Image] Function Point3dProjectToPlane3d(Point As Point3d, Plane As Plane3d, [ViewSpecifier As Variant], [UseAuxiliaryCoordinateSystem As Boolean = False]) As Point3d

[image: Image] Function Point3dProjectToRay3d(Parameter As Double, Point As Point3d, Ray As Ray3d, [ViewSpecifier As Variant], [UseAuxiliaryCoordinateSystem As Boolean = False]) As Point3d

[image: Image] Function Point3dRotateXY(Vector As Point3d, Theta As Double) As Point3d

[image: Image] Function Point3dScale(Vector As Point3d, Scale As Double) As Point3d

[image: Image] Sub Point3dSetComponent(Point As Point3d, Index As Long, Value As Double)

[image: Image] Function

Point3dSignedAngleBetweenVectors(Vector1 As Point3d, Vector2 As Point3d, OrientationVector As Point3d) As Double

[image: Image] Function

Point3dSmallerAngleBetweenUnorientedVectors(Vector1 As Point3d, Vector2 As Point3d) As Double

[image: Image] Function

Point3dSmallerAngleBetweenUnorientedVectorsXY(Vector1 As Point3d, Vector2 As Point3d) As Double

[image: Image] Function Point3dSubtract(Point1 As Point3d, Point2 As Point3d) As Point3d

[image: Image] Function Point3dSubtractPoint3dVector3d(Base As Point3d, Vector As Vector3d) As Point3d

[image: Image] Function Point3dTripieProduct(Vector1 As Point3d, Vector2 As Point3d, Vector3 As Point3d) As Double

[image: Image] Function Point3dTripi eProduct4Points(Origin As Point3d, Target1 As Point3d, Target2 As Point3d, Target3 As Point3d) As Double

[image: Image] Function Point3dZero() As Point3d

[image: Image] Function PointsToPixelsX(PointCoordinate As Double) As Long

[image: Image] Function PointsToPixelsY(PointCoordinate As Double) As Long

[image: Image] Property ProcessID As Long {read-only}

[image: Image] Sub Quito

[image: Image] Function Radians(Degrees As Double) As Double

[image: Image] Function Range3dContainsPoint3d(Range As Range3d, Point As Point3d) As Boolean

[image: Image] Function Range3dContainsXYZ(Range As Range3d, X As Double, Y As Double, Z As Double) As Boolean

[image: Image] Function Range3dEqual(Range1 As Range3d, Range2 As Range3d) As Boolean

[image: Image] Function Range3dEqualTolerance(Range0 As Range3d, Range1 As Range3d, Tolerance As Double) As Boolean

[image: Image] Function Range3dExtentSquared(Range As Range3d) As Double

[image: Image] Function Range3dFromPoint3d(Point As Point3d) As Range3d

[image: Image] Function Range3dFromPoint3dPoint3d(Point0 As Point3d, Point1 As Point3d) As Range3d

[image: Image] Function

Range3dFromPoint3dPoint3dPoint3d(Point0 As Point3d, Point1 As Point3d, Point2 As Point3d) As Range3d

[image: Image] Function Range3dFromRange3dMargin(Range As Range3d, Margin As Double) As Range3d

[image: Image] Function Range3dFromXYZ(X As Double, Y As Double, Z As Double) As Range3d

[image: Image] Function Range3dFromXYZXYZ(X1 As Double, Y1 As Double, Z1 As Double, X2 As Double, Y2 As Double, Z2 As Double) As Range3d

[image: Image] Function Range3dInit() As Range3d

[image: Image] Function Range3dIntersect(Range1 As Range3d, Range2 As Range3d) As Range3d

[image: Image] Function Range3dIntersect2(ResultRange As Range3d, Range1 As Range3d, Range2 As Range3d) As Boolean

[image: Image] Function

Range3dIsContainedInRange3d(Inner Range As Range3d, OuterRange As Range3d) As Boolean

[image: Image] Function Range3dIsNull(Range As Range3d) As Boolean

[image: Image] Function Range3dScaleAboutCenter(RangeIn As Range3d, Scale As Double) As Range3d

[image: Image] Function Range3dUnion(Range0 As Range3d, Range1 As Range3d) As Range3d

[image: Image] Function Range3dUnionPoint3d(Range As Range3d, Point As Point3d) As Range3d

[image: Image] Function Range3dUnionXYZ(Range As Range3d, X As Double, Y As Double, Z As Double) As Range3d

[image: Image] Property RasterManager As RasterManager {read-only}

[image: Image] Sub Ray3dClosestPoint(Ray As Ray3d, SpacePoint As Point3d, ClosePoint As Point3d, CloseFraction As Double)

[image: Image] Sub Ray3dClosestPointBounded(Ray As Ray3d, SpacePoint As Point3d, ClosePoint As Point3d, CloseFraction As Double)

[image: Image] Sub Ray3dClosestPointBoundedXY(Ray As Ray3d, SpacePoint As Point3d, ClosePoint As Point3d, CloseFraction As Double) Sub Ray3dClosestPointXY(Ray As Ray3d, SpacePoint As Point3d, ClosePoint As Point3d, CloseFraction As Double)

[image: Image] Function Ray3dFromPoint3dStartEnd(Point0 As Point3d, Point1 As Point3d) As Ray3d

[image: Image] Function Ray3dFromPoint3dStartTangent(Point0 As Point3d, Tangent As Point3d) As Ray3d

[image: Image] Function Ray3dFromSegment3d(Segment As Segment3d) As Ray3d

[image: Image] Function

Ray3dFromTransform3dTimesRay3d(Transform As Transform3d, Ray As Ray3d) As Ray3d

[image: Image] Function Ray3dFromXYZXYZStartEnd(X0 As Double, Y0 As Double, Z0 As Double, X1 As Double, Y1 As Double, Z1 As Double) As Ray3d

[image: Image] Function Ray3dLength(Ray As Ray3d) As Double

[image: Image] Function Ray3dLengthSquared(Ray As Ray3d) As Double

[image: Image] Function Ray3dPlane3dIntersect(Ray As Ray3d, Plane As Plane3d, Point As Point3d, Fraction As Double) As Boolean

[image: Image] Function Ray3dRay3dClosestApproach(Ray0 As Ray3d, Ray1 As Ray3d, Point0 As Point3d, Fraction0 As Double, Point1 As Point3d, Fraction1 As Double) As Boolean

[image: Image] Function Ray3dRay3dIntersectXY(Ray0 As Ray3d, Ray1 As Ray3d, Point0 As Point3d, Fraction0 As Double, Point1 As Point3d, Fraction1 As Double) As Boolean

[image: Image] Sub RedrawAllViews([DrawMode As MsdDrawingMode = msdDrawingModeNormal])

[image: Image] Sub RegisterV8ToV7Filter(Handler AsIConvertV8ToV7)

[image: Image] Sub RemoveAttachmentEventsHandler(EventHandler As IAttachmentEvents)

[image: Image] Sub

RemoveChangeTrackEventsHandler(EventHandler As IChangeTrackEvents)

[image: Image] Sub

RemovetevelChangeEventsHandler(EventHandler As I LevelChangeEvents)

[image: Image] Sub

RemoveModalDialogEventsHandler(EventHandlerAs IModalDialogEvents)

[image: Image] Sub

RemoveModelActivateEventsHandler(EventHandler As IModelActivateEvents)

[image: Image] Sub

RemoveModelChangeEventsHandler(EventHandler As IModelChangeEvents)

[image: Image] Sub RemoveSaveAsEventsHandler(EventsHandler As ISaveAsEvents)

[image: Image] Sub RemoveViewUpdateEventsHandler(EventHandler As IViewUpdateEvents)

[image: Image] Sub ResetDisplaySet(ShowEverything As Boolean)

[image: Image] Sub SaveSettings()

[image: Image] Sub Segment3dClosestPoint(Segment As Segment3d, SpacePoint As Point3d, ClosePoint As Point3d, CloseFraction As Double)

[image: Image] Sub Segment3dClosestPointBounded(Segment As Segment3d, SpacePoint As Point3d, ClosePoint As Point3d, CloseFraction As Double)

[image: Image] Sub Segment3dClosestPointBoundedXY(Segment As Segment3d, SpacePoint As Point3d, ClosePoint As Point3d, CloseFraction As Double)

[image: Image] Sub Segment3dClosestPointXY(Segment As Segment3d, SpacePoint As Point3d, ClosePoint As Point3d, CloseFraction As Double)

[image: Image] Function Segment3dFromPoint3dStartEnd(Point0 As Point3d, Point1 As Point3d) As Segment3d

[image: Image] Function

Segment3dFromPoint3dStartTangent(Point0 As Point3d, Tangent As Point3d) As Segment3d

[image: Image] Function Segment3dFromRay3d(Ray As Ray3d) As Segment3d

[image: Image] Function

Segment3dFromTransform3dTimesSegment3d(Transform As Transform3d, Segment As Segment3d) As Segment3d

[image: Image] Function Segment3dFromXYZXYZStartEnd(X0 As Double, Y0 As Double, Z0 As Double, X1 As Double, Y1 As Double, Z1 As Double) As Segment3d

[image: Image] Function Segment3dLength(Segment As Segment3d) As Double

[image: Image] Function Segment3dLengthSquared(Segment As Segment3d) As Double

[image: Image] Function Segment3dPlane3dIntersect(Segment As Segment3d, Plane As Plane3d, Point As Point3d, Fraction As Double) As Boolean

[image: Image] Function

Segment3dSegment3dClosestApproach(Segment0 As Segment3d, Segment1 As Segment3d, Point0 As Point3d, Fraction0 As Double, Point1 As Point3d, Fraction1 As Double) As Boolean

[image: Image] Function

Segment3dSegment3dIntersectXY(Segment0 As Segment3d, Segment1 As Segment3d, Point0 As Point3d, Fraction0 As Double, Point1 As Point3d, Fraction1 As Double) As Boolean

[image: Image] Sub SetCExpressionValue(CExpression As String, NewValue As Variant, [MdlApplicationName As String])

[image: Image] Sub SetCExpressionValueAsDLong(CExpression As String, NewValue As DLong, [MdlApplicationName As String])

[image: Image] Sub ShowCommand([Command As String])

[image: Image] Sub ShowError([Error As String])

[image: Image] Sub ShowPrompt([Prompt As String])

[image: Image] Sub ShowStatus([Status As String])

[image: Image] Sub ShowTempMessage(Area As MsdStatusBarArea, Message As String, [Details As String])

[image: Image] Property StandardsCheckerController As StandardsCheckerController {read-only}

[image: Image] Sub StartBusyCursor()

[image: Image] Sub StopBusyCursor()

[image: Image] Property TopPosition As Long

[image: Image] Function Transform3dEqual(Transform1 As Transform3d, Transform2 As Transform3d) As Boolean

[image: Image] Function Transform3dEqualTolerance(Transform1 As Transform3d, Transform2 As Transform3d, MatrixTolerance As Double, PointTolerance As Double) As Boolean

[image: Image] Function Transform3dFactorMirror(Transform As Transform3d, ResidualTransform As Transform3d, MirrorTransform As Transform3d, FixedPoint As Point3d , PlaneNormal As Point3d) As Boolean

[image: Image] Function

Transform3dFromLineAndRotationAngle(Point0 As Point3d, Point1 As Point3d, Radians As Double) As Transform3d

[image: Image] Function Transform3dFromMatrix3d(Matrix As Matrix3d) As Transform3d

[image: Image] Function

Transform3dFromMatrix3dAndFixedPoint3d(Matrix As Matrix3d, Origin As Point3d) As Transform3d

[image: Image] Function Transform3dFromMatrix3dPoint3d(Matrix As Matrix3d, Translation As Point3d) As Transform3d

[image: Image] Function

Transform3dFromMatrix3dTimesTransform3d(Matrix As Matrix3d, Transform As Transfortn3d) As Transform3d

[image: Image] Function Transform3dFromMirrorPlane(Origin As Point3d, Normal As Point3d) As Transform3d

[image: Image] Function Transform3dFromPlane3dToWorld(Plane As Plane3d) As Transform3d

[image: Image] Function Transform3dFromPoint3d(Translation As Point3d) As Transform3d

[image: Image] Function Transform3dFromRowValues(X00 As Double, X01 As Double, X02 As Double, Tx As Double, X10 As Double, X11 As Double, X12 As Double, Ty As Double, X20 As Double, X21 As Double, X22 As Double, Tz As Double) As Transform3d

[image: Image] Function

Transform3dFromSquaredTransform3d(Transform As Transform3d, PrimaryAxis As Long, SecondaryAxis As Long) As Transform3d

[image: Image] Function

Transform3dFromTransform3dTimesMatrix3d(Transf orm As Transform3d, Matrix As Matrix3d) As Transform3d

[image: Image] Function

Transform3dFromTransform3dTimesTransform3d(Tra nsform1 As Transform3d, Transform2 As Transform3d) As Transform3d

[image: Image] Function

Transform3dFromTransform3dTimesTransform3dTime sTransform3d(Transforml As Transform3d, Transform2 As Transform3d, Transform3 As Transform3d) As Transform3d

[image: Image] Function Transform3dFromWorldToPlane3d(Plane As Plane3d) As Transform3d

[image: Image] Function Transform3dFromXYZ(X As Double, Y As Double, Z As Double) As Transform3d

[image: Image] Function

Transform3dGetMatrixComponentByRowAndCol umn(Transform As Transform3d, Row As Long, Col As Long) As Double

[image: Image] Function

Transform3dGetPointComponent(Transform As Transform3d, Row As Long) As Double

[image: Image] Function Transform3dHasInverse(Transform As Transform3d) As Boolean

[image: Image] Function Transform3dIdentity() As Transform3d

[image: Image] Function Transform3dInverse(In As Transform3d) As Transform3d

[image: Image] Function Transform3dIsIdentity(Transform As Transform3d) As Boolean

[image: Image] Function

Transform3dIsMirrorAboutPlane(Transform As Transform3d, PlanePoint As Point3d, PlaneNormal As Point3d) As Boolean

[image: Image] Function Transform3dIsPlanar(Transform As Transform3d, Normal As Point3d) As Boolean

[image: Image] Function Transform3dIsRigid(Transform As Transform3d) As Boolean

[image: Image] Function

Transform3dIsRotateAroundLine(Transform As Transform3d, FixedPoint As Point3d, DirectionVector As Point3d, Radians As Double) As Boolean

[image: Image] Function Transform3dIsTranslate(Transform As Transform3d, Translation As Point3d) As Boolean

[image: Image] Function

Transform3dIsTranslateRotateScaleRotate(Transform As Transform3d, Translation As Point3d, Rotationl As Matrix3d, ScaleFactors As Point3d Rotation2 As Matrix3d) As Boolean

[image: Image] Function Transform3dIsUniformScale(Transform As Transform3d, FixedPoint As Point3d, Scale As Double) As Boolean

[image: Image] Function

Transform3dIsUni formScaleAndRotateAroundLine(Transform As Transform3d, FixedPoint As Point3d DirectionVector As Point3d, Radians As Double, Scale As Double) As Boolean

[image: Image] Sub

Transform3dSetMatrixComponentByRowAndColumn(Transform As Transform3d, RowIndex As Long, ColumnIndex As Long, Value As Double)

[image: Image] Sub Transform3dSetPointComponent(Transform As Transform3d, RowIndex As Long, Value As Double)

[image: Image] Function Transform3dZero() As Transform3d

[image: Image] Function UpdateGraphicGroupNumber() As Long

[image: Image] Property UserName As String {read-only}

[image: Image] Property VBE As Object {read-only}

[image: Image] Function Vector3dAdd(Vector1 As Vector3d, Vector2 As Vector3d) As Vector3d

[image: Image] Function Vector3dAdd2Scaled(Origin As Vector3d, Vector1 As Vector3d, Scale1 As Double, Vector2 As Vector3d, Scale2 As Double) As Vector3d

[image: Image] Function Vector3dAdd3Scaled(Origin As Vector3d, Vector1 As Vector3d, Scale1 As Double, Vector2 As Vector3d, Scale2 As Double, Vector3 As Vector3d, Scale3 As Double) As Vector3d

[image: Image] Function Vector3dAddScaled(Origin As Vector3d, Vector As Vector3d, Scale As Double) As Vector3d

[image: Image] Function Vector3dAngleBetweenVectors(Vector1 As Vector3d, Vector2 As Vector3d) As Double

[image: Image] Function Vector3dAngleBetweenVectorsXY(Vector1 As Vector3d, Vector2 As Vector3d) As Double

[image: Image] Function Vector3dAreVectorsParallel(Vector1 As Vector3d, Vector2 As Vector3d) As Boolean

[image: Image] Function

Vector3dAreVectorsPerpendicular(Vector1 As Vector3d, Vector2 As Vector3d) As Boolean

[image: Image] Function Vector3dCrossProduct(Vector1 As Vector3d, Vector2 As Vector3d) As Vector3d

[image: Image] Function Vector3dCrossProduct3Points(Origin As Point3d, Target1 As Point3d, Target2 As Point3d) As Vector3d

[image: Image] Function Vector3dCrossProductXY(Vector1 As Vector3d, Vector2 As Vector3d) As Double

[image: Image] Function Vector3dDistance(Vector1 As Vector3d, Vector2 As Vector3d) As Double

[image: Image] Function Vector3dDistanceSquared(Vector1 As Vector3d, Vector2 As Vector3d) As Double

[image: Image] Function Vector3dDistanceSquaredXY(Vector1 As Vector3d, Vector2 As Vector3d) As Double

[image: Image] Function Vector3dDistanceXY(Vector1 As Vector3d, Vector2 As Vector3d) As Double

[image: Image] Function Vector3dDotProduct(Vector1 As Vector3d, Vector2 As Vector3d) As Double

[image: Image] Function Vector3dDotProductXY(Vector1 As Vector3d, Vector2 As Vector3d) As Double

[image: Image] Function Vector3dDotProductXYZ(Vector As Vector3d, Ax As Double, Ay As Double, Az As Double) As Double

[image: Image] Function Vector3dEqual(Vector1 As Vector3d, Vector2 As Vector3d) As Boolean

[image: Image] Function Vector3dEqualTolerance(Vector1 As Vector3d, Vector2 As Vector3d, Tolerance As Double) As Boolean

[image: Image] Function Vector3dFromMatrix3dColumn(Matrix As Matrix3d, Col As Long) As Vector3d

[image: Image] Function Vector3dFromMatrix3dRow(Matrix As Matrix3d, Row As Long) As Vector3d

[image: Image] Function

Vector3dFromMatrix3dTimesVector3d(Matrix As Matrix3d, Vector As Vector3d) As Vector3d

[image: Image] Function Vector3dFromMatrix3dTimesXYZ(Matrix As Matrix3d, X As Double, Y As Double, Z As Double) As Vector3d

[image: Image] Function

Vector3dFromMatrix3dTransposeTimesVector3d(Matrix As Matrix3d, Vector As Vector3d) As Vector3d

[image: Image] Function

Vector3dFromMatrix3dTransposeTimesXYZ(Matrix As Matrix3d, X As Double, Y As Double, Z As Double) As Vector3d

[image: Image] Function Vector3dFromPoint3d(Point As Point3d) As Vector3d

[image: Image] Function

Vector3dFromTransform3dColumn(Transform As Transform3d, Col As Long) As Vector3d

[image: Image] Function Vector3dFromTransform3dRow(Transform As Transform3d, Row As Long) As Vector3d

[image: Image] Function

Vector3dFromTransform3dTimesVector3d(Trans form As Transform3d, Vector As Vector3d) As Vector3d

[image: Image] Function

Vector3dFromTransform3dTimesXYZ(Transform As Transform3d, X As Double, Y As Double, Z As Double) As Vector3d

[image: Image] Function

Vector3dFromTransform3dTranslation (Transform As Transform3d) As Vector3d

[image: Image] Function

Vector3dFromTransform3dTransposeTimesVector3d(Transform As Transform3d, Vector As Vector3d) As Vector3d

[image: Image] Function

Vector3dFromTransform3dTransposeTimesXYZ(Trans form As Transform3d, X As Double, Y As Double, Z As Double) As Vector3d

[image: Image] Function Vector3dFromXY(Ax As Double, Ay As Double) As Vector3d

[image: Image] Function Vector3dFromXYAngleAndMagnitude(Theta As Double, Magnitude As Double) As Vector3d

[image: Image] Function Vector3dFromXYZ(Ax As Double, Ay As Double, Az As Double) As Vector3d

[image: Image] Function Vector3dGetComponent(Vector As Vector3d, Index As Long) As Double

[image: Image] Function Vector3dInterpolate(Vector0 As Vector3d, FractionParameter As Double, Vector1 As Vector3d) As Vector3d

[image: Image] Function

Vector3dIsVectorInCCWSector(TestVector As Vector3d, Vector0 As Vector3d, Vector1 As Vector3d, UpVector As Vector3d) As Boolean

[image: Image] Function

Vector3dIsVectorInCCWXYSector(TestVector As Vector3d, Vector0 As Vector3d, Vector1 As Vector3d) As Boolean

[image: Image] Function

Vector3dIsVectorInSmallerSector(TestVector As Vector3d, Vector0 As Vector3d, Vector1 As Vector3d) As Boolean

[image: Image] Function Vector3dMagnitude(Vector As Vector3d) As Double

[image: Image] Function Vector3dMagnitudeSquared(Vector As Vector3d) As Double

[image: Image] Function Vector3dMagnitudeSquaredXY(Vector As Vector3d) As Double

[image: Image] Function Vector3dMagnitudeXY(Vector As Vector3d) As Double

[image: Image] Function Vector3dMaxAbs(Vector As Vector3d) As Double

[image: Image] Function Vector3dMaxAbsDifference(Vector1 As Vector3d, Vector2 As Vector3d) As Double

[image: Image] Function Vector3dNegate(Vector As Vector3d) As Vector3d

[image: Image] Function Vector3dNormalize(Vector As Vector3d) As Vector3d

[image: Image] Function Vector3dOne() As Vector3d

[image: Image] Function

Vector3dPlanarAngleBetweenVectors(Vector1 As Vector3d, Vector2 As Vector3d, PlaneNormal As Vector3d) As Double

[image: Image] Function Vector3dPolarAngle(Vector As Vector3d) As Double

[image: Image] Function Vector3dRotateXY(Vector As Vector3d, Theta As Double) As Vector3d

[image: Image] Function Vector3dScale(Vector As Vector3d, Scale As Double) As Vector3d

[image: Image] Function

Vector3dSignedAngleBetweenVectors(Vector1 As Vector3d, Vector2 As Vector3d, OrientationVector As Vector3d) As Double

[image: Image] Function

Vector3dSmallerAngleBetweenUnorientedVectors(V ector1 As Vector3d, Vector2 As Vector3d) As Double

[image: Image] Function

Vector3dSmallerAngleBetweenUnorientedVectorsXY (Vector1 As Vector3d, Vector2 As Vector3d) As Double

[image: Image] Function Vector3dSubtract(Vector1 As Vector3d, Vector2 As Vector3d) As Vector3d

[image: Image] Function Vector3dSubtractPoint3dPoint3d(Target As Point3d, Base As Point3d) As Vector3d

[image: Image] Function Vector3dTripieProduct(Vector1 As Vector3d, Vector2 As Vector3d, Vector3 As Vector3d) As Double

[image: Image] Function Vector3dUnitPerpendicularXY(Vector As Vector3d) As Vector3d

[image: Image] Function Vector3dZero() As Vector3d

[image: Image] Property Version As String {read-only}

[image: Image] Property Visible As Boolean

[image: Image] Property Width As Long

ApplicationObjectConnector

[image: Image] Property Application As Application {read-only}

Attachment

[image: Image] Sub Activate()

[image: Image] Sub Add Element(Element As Element)

[image: Image] Sub Add Elements(Elements() As _Element)

[image: Image] Function AddNewNamedGroup([Name As String], [Description As String]) As NamedGroupElement

[image: Image] Sub AddUserAttributeData(AttributeID As Long, AttributeData As DataBlock)

[image: Image] Property AnyElementsSelected As Boolean {read-only}

[image: Image] Property AsAttachment As Attachment {read-only}

[image: Image] Property AttachmentOrigin As Point3d {read-only}

[image: Image] Property Attachments As Attachments {read-only}

[image: Image] Property AttachName As String {read-only}

[image: Image] Property CanBePlacedAsCell As Boolean

[image: Image] Property CellType As MsdCellType

[image: Image] Property ControlElementCache As ElementCache {read-only}

[image: Image] Function Copy() As Attachment

[image: Image] Function CopyElement(Element As Element, [CopyContext As CopyContext]) As Element

[image: Image] Sub DeleteAllXData()

[image: Image] Function DeleteUserAttributeData(AttributeID As Long, Index As Integer) As Integer

[image: Image] Sub DeleteXData(ApplicationName As String)

[image: Image] Property Description As String

[image: Image] Property DesignFile As DesignFile {read-only}

[image: Image] Property DisplayAsNested As Boolean

[image: Image] Property DisplayFlag As Boolean

[image: Image] Property DisplayPriority As Long

[image: Image] Property DisplaysRasterReferences As Boolean

[image: Image] Function DoubleToWorkingUnits(Value As Double) As String

[image: Image] Function

ElementCacheContainingFilePosition(FilePosition As Long, [CacheIndex As Long]) As ElementCache

[image: Image] Property ElementID As DLong {read-only}

[image: Image] Property ElementsLocatable As Boolean

[image: Image] Property ElementsSnappable As Boolean

[image: Image] Property ElementsVisible As Boolean

[image: Image] Function Get ElementByID(ElementID As DLong) As Element

[image: Image] Function GetElementByID64(ElementID64 As Empty) As Element

[image: Image] Function GetLastValidGraphicalElement() As Element

[image: Image] Function GetMasterToReferenceTransform() As Transform3d

[image: Image] Function GetNamedGroup(GroupName As String) As NamedGroupElement

[image: Image] Function GetReferenceToMasterTransform() As Transform3d

[image: Image] Function GetSelectedElements() As ElementEnumerator

[image: Image] Function GetSheetDefinition() As SheetDefinition

[image: Image] Function GetUserAttributeData(AttributeID As Long) As DataBlock()

[image: Image] Function GetXData(ApplicationName As String) As XDatum()

[image: Image] Function GetXDataApplicationNames() As String()()

[image: Image] Property GlobalLineStyleScale As MsdGlobalLineStyleScale

[image: Image] Property GlobalOrigin As Point3d {read-only}

[image: Image] Property GraphicalElementCache As ElementCache {read-only}

[image: Image] Function HasAnyXData() As Boolean

[image: Image] Function HasXData(ApplicationName As String) As Boolean

[image: Image] Property Is3D As Boolean {read-only}

[image: Image] Property IsActive As Boolean {read-only}

[image: Image] Property IsAttachment As Boolean {read-only}

[image: Image] Property IsElementSelected As Boolean {read-only}

[image: Image] Property IsLocked As Boolean

[image: Image] Property IsMissingFile As Boolean {read-only}

[image: Image] Property IsMissingModel As Boolean {read-only}

[image: Image] Property IsReadOnly As Boolean {read-only}

[image: Image] Property IsTrueScale As Boolean {read-only}

[image: Image] Property Level As Level

[image: Image] Property Levels As Levels {read-only}

[image: Image] Property LineStylesScaled As Boolean

[image: Image] Property LogicalDescription As String

[image: Image] Property Logical Name As String

[image: Image] Property ManipulateAsElement As Boolean

[image: Image] Property MasterOrigin As Point3d {read-only}

[image: Image] Property MasterUnit As MeasurementUnit

[image: Image] Function MdlModelRefP() As Long

[image: Image] Sub Move(Offset As Point3d, ApplyToClipElement As Boolean)

[image: Image] Property Name As String

[image: Image] Property NamedGroup As String

[image: Image] Property NestLevel As Long

[image: Image] Property NestOverrides As MsdNestOverrides

[image: Image] Property NewLevelDisplay As MsdNewLevelDisplay

[image: Image] Property ParentModelReference As Model Reference {read-only}

[image: Image] Property Plot3d As Boolean

[image: Image] Property Presentation As MsdRenderingMode

[image: Image] Property PrintColorAdjustment As Boolean

[image: Image] Sub PropagateAnnotationScale()

[image: Image] Function Range(IncludeAttachments As Boolean) As Range3d

[image: Image] Function Reattach(FileName As String, ModelName As String) As Attachment

[image: Image] Sub Redraw([DrawMode As MsdDrawingMode = msdDrawingModeNormal])

[image: Image] Sub RemoveElement(Element As Element)

[image: Image] Sub ReplaceElement(OldElement As Element, NewElement As Element)

[image: Image] Property RevisionNumber As String

[image: Image] Sub Rewrite()

[image: Image] Sub Rotate(Pivot As Point3d, AboutX As Double, AboutY As Double, AboutZ As Double, ViewSpecifier As Variant)

[image: Image] Property Rotation As Matrix3d {read-only}

[image: Image] Property ScaleFactor As Double

[image: Image] Property ScaleMasterUnits As Double {read-only}

[image: Image] Sub ScaleUniform(Origin As Point3d, ScaleFactor As Double, ApplyToClipElement As Boolean)

[image: Image] Function Scan([ScanCriteria As ElementScanCriteria]) As ElementEnumerator

[image: Image] Sub SelectElement(Element As Element, [DisplayAsSelected As Boolean = True])

[image: Image] Sub SetAttachNameDeferred(FileSpecification As String)

[image: Image] Sub SetSheetDefinition(NewDefinition As SheetDefinition)

[image: Image] Sub SetXData(ApplicationName As String, NewXDataO As XDatum)

[image: Image] Property StorageUnit As MeasurementUnit

[image: Image] Property SubUnit As MeasurementUnit

[image: Image] Property SubUnitsPerMasterUnit As Double {read-only}

[image: Image] Property Transparency As Double

[image: Image] Property Type As MsdModelType

[image: Image] Sub UnselectAllElements()

[image: Image] Sub UnselectElement(Element As Element)

[image: Image] Property UORsPerMasterUnit As Double {read-only}

[image: Image] Property UORsPerStorageUnit As Double

[image: Image] Property UORsPerSubUnit As Double {read-only}

[image: Image] Property UpdateOrder As Long

[image: Image] Property UsesLights As Boolean

[image: Image] Function WorkingUnitsToDouble(Value As String) As Double

Attachments

[image: Image] Function Add(FileSpecification As String, ModelName As String, LogicalName As String, Description As String, MasterOrigin As Point3d, ReferenceOrigin As Point3d, [TrueScale As Boolean = True], [DisplayImmediately As Boolean = True]) As Attachment

[image: Image] Function AddCoincident(FileSpecification As String, ModelName As String, LogicalName As String, Description As String, [DisplayImmediately As Boolean = True]) As Attachment

[image: Image] Function AddCoincidentl(FileSpecification As String, ModelName As String, LogicalName As String, Description As String, Flags As MsdAddAttachmentFlags) As Attachment

[image: Image] Function AddUsingNamedView(FileSpecification As String, LogicalName As String, Description As String, ViewName As String, CenterPoint As Point3d, [DisplayImmediately As Boolean = True]) As Attachment

[image: Image] Function AddUsingNamedView1(FileSpecification As String, ModelName As String, LogicalName As String, Description As String, ViewName As String, CenterPoint As Point3d, Flags As MsdAddAttachmentFlags) As Attachment

[image: Image] Property Count As Long (read-only)

[image: Image] Function FindByLogicalName(LogicalName As String) As Attachment

[image: Image] Property Item As Attachment {read-only}

[image: Image] Sub Remove(AttachmentSpecifier As Variant)

CadInputMessage

[image: Image] Property CommandKeyin As String {read-only}

[image: Image] Property CursorButton As Long {read-only}

[image: Image] Property InputType As MsdCadInputType {read-only}

[image: Image] Property Keyin As String {read-only}

[image: Image] Property Point As Point3d {read-only}

[image: Image] Property ScreenPoint As Point3d {read-only}

[image: Image] Property View As View {read-only}

[image: Image] CadInputQueue

[image: Image] Function GetInput([Type1 As MsdCadInputType = msdCadInputTypeAny], [Type2 As MsdCadInputType], [Type3 As MsdCadInputType], [Type4 As MsdCadInputType]) As CadInputMessage

[image: Image] Sub SendCommand(Command As String, [TreatLikeKeyboardInput As Boolean])

[image: Image] Sub SendDataPoint(DataPoint As Point3d, [ViewSpecifier As Variant], [Qualifier As Long])

[image: Image] Sub SendDataPointForLocate(ElementToLocate As Element, DataPoint As Point3d, [ViewSpecifier As Variant], [Qualifier As Long])

[image: Image] Sub SendDragPoints(DownPoint As Point3d, UpPoint As Point3d, [ViewSpecifier As Variant], [Qualifier As Long])

[image: Image] Sub SendKeyin(Keyin As String)

[image: Image] Sub SendLastInput()

[image: Image] Sub SendMessageToApplication(MdlApplication As String, Message As String)

[image: Image] Sub SendReset()

[image: Image] Sub SendTentativePoint(DataPoint As Point3d, ViewSpecifier As Variant)

DesignFile

[image: Image] Function AddNewLevel(Level Name As String) As Level

[image: Image] Sub AttachColorTable(ColorTable As ColorTable)

[image: Image] Property Author As String

[image: Image] Property Client As String

[image: Image] Sub Close()

[image: Image] Property Comments As String

[image: Image] Property Company As String

[image: Image] Function CustomPropertyExists(Name As String) As Boolean

[image: Image] Property DateCreated As Date {read-only}

[image: Image] Property DateLastPlotted As Date {read-only}

[image: Image] Property DateLastSaved As Date {read-only}

[image: Image] Property DefaultModelReference As Model Reference {read-only}

[image: Image] Sub DeleteLevel(Level As Level)

[image: Image] Property DimensionStyles As DimensionStyles {read-only}

[image: Image] Property Editor As String {read-only}

[image: Image] Function ExtractColorTable() As ColorTable

[image: Image] Property Fence As Fence {read-only}

[image: Image] Function FindSavedView(NamePattern As String, [PreviouslyFoundSavedView As SavedViewElement], [Namespace As String]) As SavedViewElement

[image: Image] Property Fonts As Fonts {read-only}

[image: Image] Property Format As MsdDesignFileFormat {read-only}

[image: Image] Property FormatMajorVersion As Long {read-only}

[image: Image] Property FormatMinorVersion As Long {read-only}

[image: Image] Property FullName As String {read-only}

[image: Image] Function GetCustomProperty(Name As String) As Variant

[image: Image] Function GetElementByID(ElementID As DLong) As Element

[image: Image] Function GetElementByID64(ElementID64 As Empty) As Element

[image: Image] Function GetLargestElementID() As DLong

[image: Image] Sub GetLargestElementID64()

[image: Image] Property IsActive As Boolean {read-only}

[image: Image] Property Keywords As String

[image: Image] Property LastSavedBy As String

[image: Image] Property Levels As Levels {read-only}

[image: Image] Property LineStyles As LineStyles {read-only}

[image: Image] Property Manager As String

[image: Image] Function MdlFileObjP() As Long

[image: Image] Function MdlModelRefP() As Long

[image: Image] Property Models As Model References {read-only}

[image: Image] Property Name As String {read-only}

[image: Image] Property NonModelElementCache As ElementCache {read-only}

[image: Image] Property Path As String {read-only}

[image: Image] Property RevisionNumber As String {read-only}

[image: Image] Sub RewriteLevels()

[image: Image] Sub Save()

[image: Image] Sub SaveAs(NewFileName As String, [Overwrite As Boolean = False], [NewFormat As MsdDesignFileFormat = msdDesignFileFormatCurrent])

[image: Image] Sub SetCustomProperty(Name As String, Value As Variant)

[image: Image] Property Subject As String

[image: Image] Property TagSets As TagSets (read-only)

[image: Image] Property TextStyles As TextStyles {read-only}

[image: Image] Property Title As String

[image: Image] Property TotalEditingTime As Long {read-only}

[image: Image] Property ViewGroups As ViewGroups {read-only}

[image: Image] Property Views As Views {read-only}

Element

[image: Image] Sub AddDatabaseLink(LinkToAdd As DatabaseLink)

[image: Image] Function AddTag(TagDefinition As TagDefinition) As TagElement

[image: Image] Function AddTags(TagSet As TagSet) As TagElement()

[image: Image] Sub AddUserAttributeData(AttributeID As Long, AttributeData As DataBlock)

[image: Image] Function ApparentColor(View As View) As Long

[image: Image] Function ApparentLineStyle(View As View) As LineStyle

[image: Image] Function ApparentLineWeight(View As View) As Long

[image: Image] Property AsApplicationElement As ApplicationElement {read-only}

[image: Image] Property AsArcElement As ArcElement (read-only)

[image: Image] Property AsAuxiliaryCoordinateSystemElement As AuxiliaryCoordinateSystemElement (read-only)

[image: Image] Property AsBsplineCurveElement As BsplineCurveElement {read-only}

[image: Image] Property AsBsplineSurfaceElement As BsplineSurfaceElement {read-only}

[image: Image] Property AsCellElement As CellElement {read-only}

[image: Image] Property AsChainableElement As ChainableElement {read-only}

[image: Image] Property AsClosedElement As ClosedElement {read-only}

[image: Image] Property AsComplexElement As ComplexElement {read-only}

[image: Image] Property AsComplexShapeElement As ComplexShapeElement {read-only}

[image: Image] Property AsComplexStringElement As ComplexStringElement {read-only}

[image: Image] Property AsConeElement As ConeElement {read-only}

[image: Image] Property AsCurveElement As CurveElement {read-only)

[image: Image] Property AsDimensionElement As DimensionElement {read-only}

[image: Image] Property AsDroppableElement As DroppableElement {read-only}

[image: Image] Property AsEllipseElement As EllipseElement {read-only}

[image: Image] Property AsEllipticalElement As EllipticalElement {read-only}

[image: Image] Property AsIntersectableElement As IntersectableElement {read-only}

[image: Image] Property AsLineElement As LineElement {read-only}

[image: Image] Property AsMultiLineElement As MultiLineElement {read-only}

[image: Image] Property AsNamedGroupElement As NamedGroupElement {read-only}

[image: Image] Property AsPlanarElement As PlanarElement {read-only}

[image: Image] Property AsPointStringElement As PointStringElement {read-only}

[image: Image] Property AsPossiblyPlanarElement As PossiblyPlanarElement {read-only}

[image: Image] Property AsSavedViewElement As SavedViewElement {read-only}

[image: Image] Property AsShapeElement As ShapeElement {read-only}

[image: Image] Property AsSharedCellDefinitionElement As SharedCellDefinitionElement {read-only}

[image: Image] Property AsSharedCellElement As SharedCellElement {read-only}

[image: Image] Property AsTagElement As TagElement {readonly}

[image: Image] Property AsTextElement As TextElement {read-only}

[image: Image] Property AsTextNodeElement As TextNodeElement {read-only}

[image: Image] Property AsTraversableElement As TraversableElement {read-only}

[image: Image] Property AsVertexList As VertexList {read-only}

[image: Image] Property Cache As ElementCache {read-only}

[image: Image] Property CacheIndex As Long {read-only}

[image: Image] Property Class As MsdElementClass

[image: Image] Function Clone() As Element

[image: Image] Property Color As Long

[image: Image] Function ConstructVertexList(Tolerance As Double) As Point3d()

[image: Image] Property DateLastModified As Date {read-only}

[image: Image] Sub DeleteAllTags()

[image: Image] Sub DeleteAllXData()

[image: Image] Sub DeleteTagdag As TagElement)

[image: Image] Sub DeleteTagSet(TagSet As TagSet)

[image: Image] Function DeleteUserAttributeData(AttributeID As Long, Index As Integer) As Integer

[image: Image] Sub DeleteXData(ApplicationName As String)

[image: Image] Sub DrawToFile(FileName As String, Width As Long, Height As Long, [DrawBackGround As Boolean = False])

[image: Image] Property FilePosition As Long {read-only}

[image: Image] Function GetContainingNamedGroups() As NamedGroupElement()

[image: Image] Function GetDatabaseLinks([DatabaseType As MsdDatabaseLinkage], [EntityNumber As Long]) As DatabaseLink()

[image: Image] Function GetPicture(Width As Long, Height As Long, [DrawBackGround As Boolean = False]) As Unknown

[image: Image] Function GetRelatedElements(Locked As Boolean, [TraverseType As MsdMemberTraverseType = msdMemberTraverseCopy], [NewTraversal As Boolean = True]) As ElementEnumerator

[image: Image] Function GetTag(TagSet As TagSet, TagName As String) As TagElement

[image: Image] Function GetTags() As TagElement()

[image: Image] Function GetUserAttributeData (AttributeID As Long) As DataBlock()

[image: Image] Function GetXData(ApplicationName As String) As XDatum()

[image: Image] Function GetXDataApplicationNames() As String() ()

[image: Image] Property GraphicGroup As Long

[image: Image] Function HasAnyDatabaseLinks([DatabaseType As MsdDatabaseLinkage], [EntityNumber As Long]) As Boolean

[image: Image] Property HasAnyTags As Boolean {read-only}

[image: Image] Function HasAnyXData() As Boolean

[image: Image] Function HasXData(ApplicationName As String) As Boolean

[image: Image] Property ID As DLong {read-only}

[image: Image] Property ID64 As Empty {read-only}

[image: Image] Property InDisplaySet As Boolean

[image: Image] Property IsApplicationElement As Boolean {read-only}

[image: Image] Property IsArcElement As Boolean {read-only}

[image: Image] Property IsAuxiliaryCoordinateSystemElement As Boolean {read-only}

[image: Image] Property IsBsplineCurveElement As Boolean {read-only}

[image: Image] Property IsBsplineSurfaceElement As Boolean {read-only}

[image: Image] Property IsCellElement As Boolean {read-only}

[image: Image] Property IsChainableElement As Boolean {read-only}

[image: Image] Property IsClosedElement As Boolean {read-only}

[image: Image] Property IsComplexElement As Boolean {read-only}

[image: Image] Property IsComplexShapeElement As Boolean {read-only}

[image: Image] Property IsComplexStringElement As Boolean {read-only}

[image: Image] Property IsComponentElement As Boolean {read-only}

[image: Image] Property IsConeElement As Boolean {read-only}

[image: Image] Property IsCurveElement As Boolean {read-only}

[image: Image] Property IsDimensionElement As Boolean {read-only}

[image: Image] Property IsDroppableElement As Boolean {read-only}

[image: Image] Property IsEllipseElement As Boolean {read-only}

[image: Image] Property IsEllipticalElement As Boolean {read-only}

[image: Image] Property IsGraphical As Boolean {read-only}

[image: Image] Property IsHidden As Boolean

[image: Image] Property IsIntersectableElement As Boolean {read-only}

[image: Image] Property IsLineElement As Boolean {read-only}

[image: Image] Property IsLocked As Boolean

[image: Image] Property IsModified As Boolean {read-only}

[image: Image] Property IsMultiLineElement As Boolean {read-only}

[image: Image] Property IsNamedGroupElement As Boolean {read-only}

[image: Image] Property IsNew As Boolean {read-only}

[image: Image] Property IsPlanarElement As Boolean {read-only}

[image: Image] Property IsPointStringElement As Boolean {read-only}

[image: Image] Property IsPossiblyPlanarElement As Boolean {read-only}

[image: Image] Property IsSavedViewElement As Boolean {read-only}

[image: Image] Property IsShapeElement As Boolean {read-only}

[image: Image] Property IsSharedCellDefinitionElement As Boolean {read-only}

[image: Image] Property IsSharedCell Element As Boolean {read-only}

[image: Image] Property IsSnappable As Boolean

[image: Image] Property IsTagElement As Boolean {read-only}

[image: Image] Property IsTextElement As Boolean {read-only}

[image: Image] Property IsTextNodeElement As Boolean {read-only}

[image: Image] Property IsTraversableElement As Boolean {read-only}

[image: Image] Property IsValid As Boolean {read-only}

[image: Image] Property IsVertexList As Boolean {read-only}

[image: Image] Property Level As Level

[image: Image] Property LineStyle As LineStyle

[image: Image] Property LineWeight As Long

[image: Image] Function MdlElementDescrP([Detach As Boolean]) As Long

[image: Image] Sub Mirror(Point1 As Point3d, Point2 As Point3d)

[image: Image] Sub Mirror3d(PlanePoint1 As Point3d, PlanePoint2 As Point3d, PlanePoint3 As Point3d)

[image: Image] Property Model Reference As Model Reference {read-only}

[image: Image] Sub Move(Offset As Point3d)

[image: Image] Sub Partial Delete(Partial1 As Element, Partial2 As Element, Point1 As Point3d, Point2 As Point3d, Selector As Point3d, ViewSpecifier As Variant)

[image: Image] Property Range As Range3d {read-only}

[image: Image] Sub Redraw([DrawMode As MsdDrawingMode = msdDrawingModeNormal])

[image: Image] Sub RemoveAllDatabaseLinks()

[image: Image] Function RemoveDatabaseLink(DatabaseType As MsdDatabaseLinkage, [MSLinkNumber As Long], [EntityNumber As Long]) As Long

[image: Image] Sub Rewrite()

[image: Image] Sub Rotate(Pivot As Point3d, AboutX As Double, AboutY As Double, AboutZ As Double)

[image: Image] Sub RotateAboutZ(Pivot As Point3d, Angle As Double)

[image: Image] Sub ScaleAll(Origin As Point3d, XFactor As Double, YFactor As Double, ZFactor As Double)

[image: Image] Sub ScaleUniform(Origin As Point3d, ScaleFactor As Double)

[image: Image] Sub SetXData(ApplicationName As String, NewXData() As XDatum)

[image: Image] Property Subtype As MsdElementSubtype {read-only}

[image: Image] Sub Transform(Transform3d As Transform3d)

[image: Image] Property Type As MsdElementType {read-only}

[image: Image] Property URL As String {read-only}

[image: Image] Property URLTitle As String {read-only}

ElementEnumerator

[image: Image] Function BuildArrayFromContents() As Element()

[image: Image] Function Clone() As ElementEnumerator

[image: Image] Property Current As Element {read-only}

[image: Image] Function MoveNext() As Boolean

[image: Image] Sub Reset()

ElementScanCriteria

[image: Image] Sub ExcludeAllClasses()

[image: Image] Sub ExcludeAllColors()

[image: Image] Sub ExcludeAllLevels()

[image: Image] Sub ExcludeAllLineStyles()

[image: Image] Sub ExcludeAllLineWeights()

[image: Image] Sub ExcludeAllSubtypes()

[image: Image] Sub ExcludeAllTypes()

[image: Image] Sub ExcludeGraphical()

[image: Image] Sub ExcludeNonGraphical()

[image: Image] Sub IncludeClass(ElemClass As MsdElementClass)

[image: Image] Sub IncludeColor(ColorIndex As Long)

[image: Image] Sub IncludeLevel(Level As Level)

[image: Image] Sub IncludeLineStyle(LineStyle As LineStyle)

[image: Image] Sub IncludeLineWeight(LineWeight As Long)

[image: Image] Sub IncludeOnlyCell(CellName As String)

[image: Image] Sub IncludeOnlyFilePositionRange(Min As Long, Max As Long)

[image: Image] Sub IncludeOnlyGraphicGroup(GraphicGroupNumber As Long)

[image: Image] Sub IncludeOnlyHole()

[image: Image] Sub IncludeOnlyInvisible()

[image: Image] Sub IncludeOnlyLocked()

[image: Image] Sub IncludeOnlyModified()

[image: Image] Sub IncludeOnlyModifiedRange(Min As Date, [Max As Date])

[image: Image] Sub IncludeOnlyNew()

[image: Image] Sub IncludeOnlyNonPlanar()

[image: Image] Sub IncludeOnlyNonSnappable()

[image: Image] Sub IncludeOnlyOld()

[image: Image] Sub IncludeOnlyPlanar()

[image: Image] Sub IncludeOnlySnappable()

[image: Image] Sub IncludeOnlySolid()

[image: Image] Sub IncludeOnlyUnlocked()

[image: Image] Sub IncludeOnlyUnmodified()

[image: Image] Sub IncludeOnlyUserAttribute(UserAttributeID As Long)

[image: Image] Sub IncludeOnlyVisible()

[image: Image] Sub IncludeOnlyWithinRange(Range As Range3d)

[image: Image] Sub IncludeSubtype(Long As Long)

[image: Image] Sub IncludeType(Type As MsdElementType)

[image: Image] Sub Reset()

Level

[image: Image] Sub AddUserAttributeData(AttributeID As Long, AttributeData As DataBlock)

[image: Image] Function DeleteUserAttributeData(AttributeID As Long, Index As Integer) As Integer

[image: Image] Property Description As String

[image: Image] Property ElementAccess As MsdLevelElementAccess

[image: Image] Property ElementColor As Long

[image: Image] Property ElementLineStyle As LineStyle

[image: Image] Property ElementLineWeight As Long

[image: Image] Function GetUserAttributeData(AttributeID As Long) As DataBlock()

[image: Image] Property ID As Long {read-only}

[image: Image] Property IsActive As Boolean

[image: Image] Property IsDisplayed As Boolean

[image: Image] Property IsDisplayedInView As Boolean

[image: Image] Property IsEffectivelyDisplayedInView As Boolean {read-only}

[image: Image] Property IsFromLevelLibrary As Boolean {read-only}

[image: Image] Property IsFrozen As Boolean

[image: Image] Property IsInUse As Boolean (read-only}

[image: Image] Function IsInUseWithinModel(Model As Model Reference) As Boolean

[image: Image] Property IsLocked As Boolean

[image: Image] Property Name As String

[image: Image] Property Number As Long

[image: Image] Property OverrideColor As Long

[image: Image] Property OverrideLineStyle As LineStyle

[image: Image] Property OverrideLineWeight As Long

[image: Image] Property ParentLevel As Level

[image: Image] Property Plot As Boolean

[image: Image] Property UsingOverrideColor As Boolean

[image: Image] Property UsingOverrideLineStyle As Boolean

[image: Image] Property UsingOverrideLineWeight As Boolean

ModelReference

[image: Image] Sub Activate()

[image: Image] Sub AddElement(Element As Element)

[image: Image] Sub AddElements(Elements() As _Element)

[image: Image] Function AddNewNamedGroup([Name As String], [Description As String]) As NamedGroupElement

[image: Image] Sub AddUserAttributeData(AttributeID As Long, AttributeData As DataBlock)

[image: Image] Property Any ElementsSelected As Boolean {read-only}

[image: Image] Property AsAttachment As Attachment {read-only}

[image: Image] Property Attachments As Attachments {read-only}

[image: Image] Property CanBePlacedAsCell As Boolean

[image: Image] Property CellType As MsdCellType

[image: Image] Property Control ElementCache As ElementCache {read-only}

[image: Image] Function Copy Element(Element As Element, [CopyContext As CopyContext]) As Element

[image: Image] Sub DeleteAllXData()

[image: Image] Function DeleteUserAttributeData(AttributeID As Long, Index As Integer) As Integer

[image: Image] Sub DeleteXData(ApplicationName As String)

[image: Image] Property Description As String

[image: Image] Property DesignFile As DesignFile {read-only}

[image: Image] Function DoubleToWorkingUnits(Value As Double) As String

[image: Image] Function ElementCacheContainingFilePosition(FilePosition As Long, [CacheIndex As Long]) As ElementCache

[image: Image] Function GetElementByID(ElementID As DLong) As Element

[image: Image] Function GetElementByID64(ElementID64 As Empty) As Element

[image: Image] Function GetLastValidGraphicalElement() As Element

[image: Image] Function GetNamedGroup(GroupName As String) As NamedGroupElement

[image: Image] Function GetSelectedElements() As ElementEnumerator

[image: Image] Function GetSheetDefinition() As SheetDefinition

[image: Image] Function GetUserAttributeData(AttributeID As Long) As DataBlock()

[image: Image] Function GetXData(ApplicationName As String) As XDatum()

[image: Image] Function GetXDataApplicationNames() As String()()

[image: Image] Property GlobalOrigin As Point3d {read-only}

[image: Image] Property Graphical ElementCache As ElementCache {read-only}

[image: Image] Function HasAnyXData() As Boolean

[image: Image] Function HasXData(ApplicationName As String) As Boolean

[image: Image] Property Is3D As Boolean {read-only}

[image: Image] Property IsActive As Boolean {read-only}

[image: Image] Property IsAttachment As Boolean {read-only}

[image: Image] Property IsElementSelected As Boolean {read-only}

[image: Image] Property IsLocked As Boolean

[image: Image] Property IsReadOnly As Boolean {read-only}

[image: Image] Property Levels As Levels {read-only}

[image: Image] Property MasterUnit As MeasurementUnit

[image: Image] Function MdlModelRefP() As Long

[image: Image] Property Name As String

[image: Image] Property ParentModelReference As Model Reference {read-only}

[image: Image] Sub PropagateAnnotationScale()

[image: Image] Function Range(IncludeAttachments As Boolean) As Range3d

[image: Image] Sub RemoveElement(Element As Element)

[image: Image] Sub ReplaceElement(OldElement As Element, NewElement As Element)

[image: Image] Function Scan([ScanCriteria As ElementScanCriteria]) As ElementEnumerator

[image: Image] Sub SelectElement(Element As Element, [DisplayAsSelected As Boolean = True])

[image: Image] Sub SetSheetDefinition(NewDefinition As SheetDefinition)

[image: Image] Sub SetXData(ApplicationName As String, NewXData() As XDatum)

[image: Image] Property StorageUnit As MeasurementUnit

[image: Image] Property SubUnit As MeasurementUnit

[image: Image] Property SubUnitsPerMasterUnit As Double {read-only}

[image: Image] Property Type As MsdModelType

[image: Image] Sub UnselectAllElements()

[image: Image] Sub UnselectElement(Element As Element)

[image: Image] Property UORsPerMasterUnit As Double {read-only}

[image: Image] Property UORsPerStorageUnit As Double

[image: Image] Property UORsPerSubUnit As Double {read-only}

[image: Image] Function WorkingUnitsToDouble(Value As String) As Double

REVIEW

We have just displayed a fraction of the Objects available to us in MicroStation. At times it is useful to see a listing (even a partial listing) and browse through the items in it.

The Object Browser in VBA is especially helpful when attempting to get a grasp on the Object Model of any Library. VBA includes other tools as well that can aid in our development efforts. These include adding Watches and the AutoList functionality.

[image: Image]

12The MicroStation Object Model - Enums

What is an Enum? Enum is an abbreviation for enumeration, a collection of constants that can be used in our code.

Let's consider the following enumeration:

MSDDESIGNFILEFORMAT

msdDesignFileFormatCurrent = 0

msdDesignFileFormatDWG = 3

msdDesignFileFormatDXF = 4

msdDesignFileFormatUnknown = - 1

msdDesignFileFormatV7 = 1

msdDesignFileFormatV8 = 2

The enumeration name is "MsdDesignFileFormat". It has six members with values ranging from -1 to 4. Each member in an enumeration has a name and a value. The enumeration member "msdDesignFileFormatCurrent" has a value of 0. As we saw in the previous chapter, some properties and methods make use of these enumerations. For example,

Sub SaveAs(NewFileName As String, [Overwrite As _ Boolean = False], [NewFormat As MsdDesignFileFormat _ = msdDesignFileFormatCurrent])

The SaveAs method is found under the DesignFile object. When we use it, we can specify a file name, whether an existing file should be overwritten, and the file format to be used. The data type for "NewFileName" is String. The value type for "Overwrite" is Boolean. The value type for "NewFormat" is MsdDesignFileFormat. The "NewFormat" parameter utilizes the "MsdDesignFileFormat" enumeration. As we use the SaveAs method, we see the following:

[image: Image]

While working in VBA, when we come to a parameter that utilizes an enumeration, we see the list of the members of that enumeration. We are not shown the value of each member.

Enumerations provide several benefits, with one of the largest being that we can more easily see the desired parameter results as we look at our code. In other words, seeing "msdDesignFileFormatDWG" is clearer than seeing the number 3 in the NewFormat parameter.

There are two ways to use enumerators. One is to use the Name.Member format, such as:

ActiveDesignFile.SaveAs "test.dgn", True, _ MsdDesignFileFormat.msdDesignFileFormatDWG

The other way is to use the member name without the enumerator name:

ActiveDesignFile.SaveAs "test.dgn", True, msdDesignFileFormatDWG

Names of enumeration members often begin with the enumeration name or a shortened version of the enumeration name. The above examples use the "MsdDesignFileFormat" enumeration with the "msdDesignFileFormatDWG" member. Notice how the enumeration name is used to begin the member name. Occasionally, an abbreviation is used such as with the "MsdCoordinateAccuracy" enumeration. The members of this enumeration begin with "msdAccuracy" instead of the full enumeration name "msdCoordinateAccuracy". It should be noted that all MicroStation enumerations begin with the three-letter designation "Msd" and all member names begin with "msd".

Now that we have discussed what enumerations are and how they can be used, let's examine the enumerations available in MicroStation VBA.

THE ENUMERATION LIST

MsdACSType

msdACSTypeCylindrical = 2

msdACSTypeNone = 0

msdACSTypeRectangular = 1

msdACSTypeSpherical = 3

MsdAddAttachmentFlags

msdAddAttachmentElementsVisible = 4

msdAddAttachmentFlagCoincidentWorld = 2

msdAddAttachmentFlagNone = 0

msdAddAttachmentFlagTrueScale = 1

MsdAngleAccuracy

msdAngleAccuracy0 = 0

msdAngleAccuracy1 = 1

msdAngleAccuracy2 = 2

msdAngleAccuracy3 = 3

msdAngleAccuracy4 = 4

msdAngleAccuracy5 = 5

msdAngleAccuracy6 = 6

msdAngleAccuracy7 = 7

msdAngleAccuracy8 = 8

 MsdAngleFormat

msdFormatDD_DDDD = 0

msdFormatDD_MM_SS = 1

msdFormatGradians = 2

msdFormatRadians = 3

MsdAngleMode

msdAngleModeAzimuth = 1

msdAngleModeBearing = 2

msdAngleModeConventional = 0

MsdAttachMode

msdAttachNone = 1

msdAttachReference = 3

MsdBsplineCurveOffsetCuspType

msdBsplineCurveOffsetCuspArc = 4

msdBsplineCurveOffsetCuspChamfer = 1

msdBsplineCurveOffsetCuspJump = 0

msdBsplineCurveOffsetCuspParabola = 3

msdBsplineCurveOffsetCuspPoint = 2

MsdBsplineCurveType

msdBsplineCurveCircle = 3

msdBsplineCurveCircularArc = 2

msdBsplineCurveEllipse = 5

msdBsplineCurveEllipticalArc = 4

msdBsplineCurveGeneral = 0

msdBsplineCurveHyperbolicArc = 7

msdBsplineCurveLine = 1

msdBsplineCurveParabolicArc = 6

MsdBsplineParametrizationType

msdBsplineParametrizationCentripetal = 2

msdBsplineParametrizationChordLength = 1

msdBsplineParametrizationlnherited = 3

msdBsplineParametrlzationUniform = 0

MsdBsplineSurfaceDirection

msdBsplineSurfaceU = 0

msdBsplineSurfaceV = 1

MsdBsplineSurfaceType

msdBsplineSurfaceCone = 3

msdBsplineSurfaceGeneral = 0

msdBsplineSurfacePlane = 1

msdBsplineSurfaceRevolution = 6

msdBsplineSurfaceRightCylinder = 2

msdBsplineSurfaceRuledSurface = 8

msdBsplineSurfaceSphere = 4

msdBsplineSurfaceTabCylinder = 7

msdBsplineSurfaceTorus = 5

MsdCadInputType

msdCadInputTypeAny = 5

msdCadInputTypeCommand = 1

msdCadInputTypeDataPoint = 3

msdCadInputTypeKeyin = 4

msdCadInputTypeReset = 2

msdCadInputTypeUnassignedCB = 6

MsdCellType

msdCellTypeGraphic = 0

msdCellTypeMenu = 1

msdCellTypePoint = 7

MsdChangePropagation

msdChangePropagationAlways = 2

msdChangePropagationGroupLock = 0

msdChangePropagationNever = 1

MsdChangeTrackAction

msdChangeTrackActionAdd = 2

msdChangeTrackActionAppData = 8

msdChangeTrackActionDelete = 1

msdChangeTrackActionDrop = 6

msdChangeTrackActionMark = 7

msdChangeTrackActionModelAdd = 9

msdChangeTrackActionModelDelete = 10

msdChangeTrackActionModify = 3

msdChangeTrackActionModifyFence = 5

msdChangeTrackActionNewFilePositionAndModify = 4

MsdCommandResult

msdCommandResult3dLibrary2dFile = 50

msdCommandResult3dOnly = 39

msdCommandResultAcceptQuery = 68

msdCommandResultBadCellName = 47

msdCommandResultCellDeleted = 59

msdCommandResultCellExists = 55

msdCommandResultCellLibraryNotFound = 12

msdCommandResultCellNestingError = 43

msdCommandResultCellNotFound = 44

msdCommandResultElementNotFound = 21

msdCommandResultEmptyFence = 27

msdCommandResultFileReadOnly = 287

msdCommandResultIllegalDefinition = 23

msdCommandResultInvalidReferenceOperation = 481

msdCommandResultNeedCharacters = 27

msdCommandResultNoActiveCell = 19

msdCommandResultNoCellLibrary = 54

msdCommandResultNoFenceActive = 15

msdCommandResultNoOrigin = 56

msdCommandResultOffDesignPlane = 22

msdCommandResultReferenceNotFound = 7

msdCommandResultSuccess = 0

msdCommandResultUnknownCommand = 16

msdCommandResultViewNotFound = 18

MsdConversionMode

msdConversionModeAlways = 1

msdConversionModeNever = 0

msdConversionModePrompt = 2

MsdCoordinateAccuracy

msdAccuracy0 = 1

msdAccuracy1 = 2

msdAccuracy16th = 56

msdAccuracy2 = 3

msdAccuracy3 = 4

msdAccuracy32nd = 120

msdAccuracy4 = 5

msdAccuracy4th = 8

msdAccuracy5 = 6

msdAccuracy6 = 7

msdAccuracy64th = 248

msdAccuracy8th = 24

msdAccuracyHalf = 0

MsdCoordinateFormat

msdMasterUnits = 1

msdSubUnits = 0

msdWorkingUnits = 2

MsdCopyContextLevelOption

msdCopyContextLevelAlreadyRemapped = 4

msdCopyContextLevelByUserPreference = 0

msdCopyContextLevelCopyAlways = 3

msdCopyContextLevelCopyIfDifferent = 2

msdCopyContextLevelCopyIfNotFound = 1

MsdCopyViewPort

msdCopyViewPortApplyAspectRatio = 2

msdCopyViewPortApplySize = 3

msdCopyViewPortApplySizeAndPosition = 4

msdCopyViewPortKeepCurrent = 0

MsdDatabaseLinkage

msdDatabaseLinkageInformix = 1

msdDatabaseLinkageIngres = 32

msdDatabaseLinkageOdbc = 128

msdDatabaseLinkageOleDb = 256

msdDatabaseLinkageOracle = 8

msdDatabaseLinkageXBase = 4

MsdDataEntryRegionJustification

msdDataEntryRegionJustificationCenter = 0

msdDataEntryRegionJustificationLeft = -1

msdDataEntryRegionJustificationRight = 1

MsdDesignFileFormat

msdDesignFileFormatCurrent = 0

msdDesignFileFormatDWG = 3

msdDesignFileFormatDXF = 4

msdDesignFileFormatUnknown = -1

msdDesignFileFormatV7 = 1

msdDesignFileFormatV8 = 2

MsdDevelopableElementOutputType

msdDevelopableCones = 4

msdDevelopableConesPlanar = 5

msdDevelopableRuleLines = 0

msdDevelopableRuleLinesPlanar = 1

msdDevelopableShapes = 2

msdDevelopableShapesPlanar = 3

MsdDialogBoxResult

msdDialogBoxResultApply = 1

msdDialogBoxResultCancel = 4

msdDialogBoxResultDefault = 5

msdDialogBoxResultHelp = 10

msdDialogBoxResultNo = 7

msdDialogBoxResultOK = 3

msdDialogBoxResultReset = 2

msdDialogBoxResultRetry = 8

msdDialogBoxResultStop = 9

msdDialogBoxResultYes = 6

msdDialogBoxResultYesToAll = 11

MsdDimAccuracy

msdDimAccuracy0 = 0

msdDimAccuracy1 = 129

msdDimAccuracy16th = 8

msdDimAccuracy2 = 130

msdDimAccuracy3 = 132

msdDimAccuracy32nd = 16

msdDimAccuracy4 = 136

msdDimAccuracy4th = 2

msdDimAccuracy5 = 144

msdDimAccuracy6 = 160

msdDimAccuracy64th = 32

msdDimAccuracy7 = 192

msdDimAccuracy8 = 128

msdDimAccuracy8th = 4

msdDimAccuracyHalf = 1

msdDimAccuracySci1 = 64

msdDimAccuracySci2 = 65

msdDimAccuracySci3 = 66

msdDimAccuracySci4 = 67

msdDimAccuracySci5 = 68

msdDimAccuracySci6 = 69

msdDimAccuracySci7 = 70

msdDimAccuracySci8 = 71

MsdDimAlignment

msdDimAlignmentArbitrary = 3

msdDimAlignmentDrawing = 1

msdDimAlignmentTrue = 2

msdDimAlignmentView = 0

MsdDimAlternateThresholdComparison

MsdDimAlternateThresholdComparisonGreater = 1

MsdDimAlternateThresholdComparisonGreaterOrEqual = 3

MsdDimAlternateThresholdComparisonLess = 0

MsdDimAlternateThresholdComparisonLessOrEqual = 2

MsdDimAngleMeasure

MsdDimAngleMeasureAngle = 1

MsdDimAngleMeasureArcLength = 0

MsdDimBallAndChainAlignment

msdDimBallAndChainAlignmentAuto = 0

msdDimBallAndChainAlignmentLeft = 1

msdDimBallAndChainAlignmentRight = 2

MsdDimBallAndChainChainType

msdDimBallAndChainChainTypeArc = 2

msdDimBallAndChainChainTypeBSpline = 3

msdDimBallAndChainChainTypeLine = 1

msdDimBallAndChainChainTypeNone = 0

MsdDimCustomSymbol

msdDimCustomSymbolCharacter = 1

msdDimCustomSymbolDefault = 0

MsdDimDMSPrecisionMode

MsdDimDMSPrecisionModeFixed = 0

MsdDimDMSPrecisionModeFloating = 1

MsdDimLabelLineFormat

MsdDimLabelLineFormatAngleAbove = 3

MsdDimLabelLineFormatAngleBelow = 5

MsdDimLabelLineFormatAngleOverLength = 1

MsdDimLabelLineFormatLengthAbove = 2

MsdDimLabelLineFormatLengthAngleAbove = 6

MsdDimLabelLineFormatLengthAngleBelow = 7

MsdDimLabelLineFormatLengthBelow = 4

MsdDimLabelLineFormatStandard = 0

MsdDimMLNoteFrameType

msdDimMLNoteFrameTypeBox = 2

msdDimMLNoteFrameTypeLine = 1

msdDimMLNoteFrameTypeNone = 0

MsdDimMLNoteJustification

msdDimMLNoteJustificationCenter = 3

msdDimMLNoteJustificationDynamic = 2

msdDimMLNoteJustificationLeft = 0

msdDimMLNoteJustificationRight = 1

MsdDimNoteHorizontalAttachment

msdDimNoteHorizontalAttachmentAuto = 0

msdDimNoteHorizontalAttachmentLeft = 1

msdDimNoteHorizontalAttachmentRight = 2

MsdDimNoteLeaderType

MsdDimNoteLeaderTypeCurve = 1

MsdDimNoteLeaderTypeLine = 0

MsdDimNoteTextRotation

msdDimNoteTextRotationHorizontal = 0

msdDimNoteTextRotationInline = 2

msdDimNoteTextRotationVertical = 1

MsdDimNoteVerticalAttachment

msdDimNoteVerticalAttachmentBottom = 4

msdDimNoteVerticalAttachmentBottomLine = 3

msdDimNoteVerticalAttachmentDynamicCorner = 6

msdDimNoteVerticalAttachmentDynamicLine = 5

msdDimNoteVerticalAttachmentMiddle = 2

msdDimNoteVerticalAttachmentTop = 0

msdDimNoteVerticalAttachmentTopLine = 1

msdDimNoteVerticalAttachmentUnderline = 7

MsdDimNoteVerticalJustification

msdDimNoteVerticalJustificationBottom = 2

msdDimNoteVerticalJustificationCenter = 1

msdDimNoteVerticalJustificationDynamic = 3

msdDimNoteVerticalJustificationTop = 0

MsdDimPlacementTextPosition

msdDimPlacementfextPositionAuto = 2

msdDimPlacementTextPositionManual = 0

msdDimPlacementTextPositionSemiAuto = 1

MsdDimRadialMode

msdDimRadialModeCenterMark = 0

msdDimRadialModeDiameter = 3

msdDimRadialModeDiameterExtended = 4

msdDimRadialModeRadius = 1

msdDimRadialModeRadiusExtended = 2

MsdDimStackedFractionAlignment

MsdDimStackedFractionAlignmentBottom = 2

MsdDimStackedFractionAlignmentCenter = 1

MsdDimStackedFractionAlignmentTop = 0

MsdDimStackedFractionType

MsdDimStackedFractionTypeDiagonal = 2

MsdDimStackedFractionTypeFromFont = 0

MsdDimStackedFractionTypeHorizontal = 1

MsdDimStyleProp

msdDimStylePropBallAndChainAlignment = 101

msdDimStylePropBallAndChainChainTerminator = 102

msdDimStylePropBallAndChainChainType = 103

msdDimStylePropBallAndChainlsActive = 104

msdDimStylePropBallAndChainNoDockOnDimLine = 106

msdDimStylePropBallAndChainShowTextLeader = 105

msdDimStylePropExtensionLineAngleChordAlign = 213

msdDimStylePropExtensionLineColor = 201

msdDimStylePropExtensionLineExtend = 202

msdDimStylePropExtensionLineJoin = 203

msdDimStylePropExtensionLineLeft = 204

msdDimStylePropExtensionLineLineStyle = 205

msdDimStylePropExtensionLineOffset = 206

msdDimStylePropExtensionLineOverrideColor = 207

msdDimStylePropExtensionLineOverrideLineStyle = 208

msdDimStylePropExtension LineOverrideWeight = 209

msdDimStylePropExtensionLineRight = 210

msdDimStylePropExtensionLineShowAny = 211

msdDimStylePropExtensionLineWeight = 212

msdDimStylePropGeneralAlignment = 301

msdDimStylePropGeneralCenterMarkSize = 302

msdDimStylePropGeneralColor = 303

msdDimStylePropGeneralDimensionScale = 304

msdDimStylePropGeneralDimStyleDescription = 305

msdDimStylePropGeneralDimStyleName = 306

msdDimStylePropGeneralFont = 307

msdDimStylePropGeneralIgnoreLevelSymbology = 308

msdDimStylePropGeneralLineStyle = 309

msdDimStylePropGeneralOverrideColor = 310

msdDimStylePropGeneralOverridenneStyle = 311

msdDimStylePropGeneralOverrideWeight = 312

msdDimStylePropGeneralRadialMode = 313

msdDimStylePropGeneralRelativeDimLine = 314

msdDimStylePropGeneralShowCenterMark = 315

msdDimStylePropGeneralStacked = 316

msdDimStylePropGeneralStackOffset = 317

msdDimStylePropGeneralWeight = 318

msdDimStylePropInvalid = 0

msdDimStylePropMLNoteElbowLength = 108

msdDimStylePropMLNoteFrameType = 401

msdDimStylePropMLNoteHorAttachment = 407

msdDimStylePropMLNoteJustification = 402

msdDimStylePropMLNoteLeaderType = 405

msdDimStylePropMLNoteLeftMargin = 410

msdDimStylePropMLNoteLowerMargin = 411

msdDimStylePropMLNoteShowLeader = 403

msdDimStylePropMLNoteTextRotation = 406

msdDimStylePropMLNoteVerLeftAttachment = 408

msdDimStylePropMLNoteVerRightAttachment = 409

msdDimStylePropMLNoteVerticalJustification = 404

msdDimStylePropPlacementAnnotationScale = 507

msdDimStylePropPlacementCompatibleV3 = 501

msdDimStylePropPlacementLevel = 502

msdDimStylePropPlacementNotUseModelAnnotationScale = 506

msdDimStylePropPlacementOverrideLevel = 503

msdDimStylePropPlacementTextPosition = 504

msdDimStylePropPlacementUseReferenceScale = 505

msdDimStylePropSymbolDiameterChar = 601

msdDimStylePropSymbolDiameterFont = 602

msdDimStylePropSymbolDiameterType = 603

msdDimStylePropSymbolLowerPrefixChar = 604

msdDimStylePropSymbolLowerSuffixChar = 605

msdDimStylePropSymbolMainPrefixChar = 606

msdDimStylePropSymbolMainSuffixChar = 607

msdDimStylePropSymbolPIusMinusChar = 608

msdDimStylePropSymbolPIusMinusType = 609

msdDimStylePropSymbolPrefix = 610

msdDimStylePropSymbolPrefixCellName = 611

msdDimStylePropSymbolPrefixChar = 612

msdDimStylePropSymbolPrefixFont = 613

msdDimStylePropSymbolPrefixType = 614

msdDimStylePropSymbolSuffix = 615

msdDimStylePropSymbolSuffixCellName = 616

msdDimStylePropSymbolSuffixChar = 617

msdDimStylePropSymbolSuffixFont = 618

msdDimStylePropSymbolSuffixType = 619

msdDimStylePropSymbolTolPrefixChar = 620

msdDimStylePropSymbolTolSuffixChar = 621

msdDimStylePropSymbolUpperPrefixChar = 622

msdDimStylePropSymbolUpperSuffixChar = 623

msdDimStylePropTerminatorArrowCellName = 701

msdDimStylePropTerminatorArrowChar = 702

msdDimStylePropTerminatorArrowFont = 703

msdDimStylePropTerminatorArrowhead = 729

msdDimStylePropTerminatorArrowType = 704

msdDimStylePropTerminatorColor = 705

msdDimStylePropTerminatorDotCellName = 706

msdDimStylePropTerminatorDotChar = 707

msdDimStylePropTerminatorDotFont = 708

msdDimStylePropTerminatorDotType = 709

msdDimStylePropTerminatorFirst = 710

msdDimStylePropTerminatorHeight = 711

msdDimStylePropTerminatorJoint = 712

msdDimStylePropTerminatorLeft = 713

msdDimStylePropTerminatorLineStyle = 714

msdDimStylePropTerminatorMi nLeader = 715

msdDimStylePropTerminatorMode = 716

msdDimStylePropTerminatorNoLineThruArrow = 717

msdDimStylePropTerminatorNoLineThruDot = 718

msdDimStylePropTerminatorNoLineThruOrigin = 719

msdDimStylePropTerminatorNoLineThruStroke = 720

msdDimStylePropTerminatorNote = 736

msdDimStylePropTerminatorNoteCellName = 738

msdDimStylePropTerminatorNoteChar = 739

msdDimStylePropTerminatorNoteFont = 740

msdDimStylePropTerminatorNoteType = 737

msdDimStylePropTerminatorOriginCellName = 721

msdDimStylePropTerminatorOriginChar = 722

msdDimStylePropTerminatorOriginFont = 723

msdDimStylePropTerminatorOriginType = 724

msdDimStylePropTerminatorOverrideColor = 725

msdDimStylePropTerminatorOverridelineStyle = 726

msdDimStylePropTerminatorOverrideWeight = 727

msdDimStylePropTerminatorRight = 728

msdDimStylePropTerminatorStrokeCellName = 730

msdDimStylePropTerminatorStrokeChar = 731

msdDimStylePropTerminatorStrokeFont = 732

msdDimStylePropTerminatorStrokeType = 733

msdDimStylePropTerminatorWeight = 734

msdDimStylePropTerminatorWidth = 735

msdDimStylePropTextArcLengthSymbol = 801

msdDimStylePropTextAutoLift = 802

msdDimStylePropTextCapsule = 804

msdDimStylePropTextColor = 805

msdDimStylePropTextDecimalComma = 806

msdDimStylePropTextFont = 808

msdDimStylePropTextFrameType = 837

msdDimStylePropTextHeight = 809

msdDimStylePropTextHorizontal = 810

msdDimStylePropTextHorizontalMargin = 811

msdDimStylePropTextInlineTextLift = 838

msdDimStylePropTextJustification = 812

msdDimStylePropTextLeadingZero = 813

msdDimStylePropTextLocation = 835

msdDimStylePropTextOmitLeadingDelimiter = 815

msdDimStylePropTextOverricleColor = 816

msdDimStylePropTextOverrideHeight = 817

msdDimStylePropTextOverrideStackedFractions = 833

msdDimStylePropTextOverrideUnderline = 834

msdDimStylePropTextOverrideWeight = 818

msdDimStylePropTextOverrideWidth = 819

msdDimStylePropTextSecLeadingZero = 820

msdDimStylePropTextShowSecondary = 821

msdDimStylePropTextStackedFractionAlignment = 829

msdDimStylePropTextStackedFractions = 830

msdDimStylePropTextStackedFractionScale = 832

msdDimStylePropTextStackedFractionType = 831

msdDimStylePropTextSuperscriptMode = 839

msdDimStylePropTextTextStyle = 827

msdDimStylePropTextTextStyleID = 828

msdDimStylePropTextUnderline = 822

msdDimStylePropTextVerticalMargin = 824

msdDimStylePropTextVerticalOpts = 836

msdDimStylePropTextWeight = 825

msdDimStylePropTextWidth = 826

msdDimStylePropToleranceAccuracy = 910

msdDimStylePropToleranceLowerValue = 901

msdDimStylePropToleranceMode = 902

msdDimStylePropToleranceSecAccuracy = 911

msdDimStylePropToleranceShow = 903

msdDimStylePropToleranceStackEqual = 904

msdDimStylePropToleranceTextHorizontalMargin = 905

msdDimStylePropToleranceTextScale = 906

msdDimStylePropToleranceTextVerticalMargin = 907

msdDimStylePropToleranceTextVerticalSeparation = 908

msdDimStylePropToleranceUpperValue = 909

msdDimStylePropValueAccuracy = 1001

msdDimStylePropValueAltAccuracy = 1002

msdDimStylePropValueAltFormat = 1067

msdDimStylePropValueAltIsActive = 1003

msdDimStylePropValueAltSecAccuracy = 1004

msdDimStylePropValueAltSecFormat = 1069

msdDimStylePropValueAltSecIsActive = 1005

msdDimStylePropValueAltSecShowZeroMasterUnit = 1012

msdDimStylePropValueAltSecShowZeroSubUnit = 1081

msdDimStylePropValueAltSecThreshold = 1013

msdDimStylePropValueAltSecThresholdComparison = 1071

msdDimStylePropValueAltShowZeroMasterUnit = 1020

msdDimStylePropValueAltShowZeroSubUnit = 1079

msdDimStylePropValueAltThreshold = 1021

msdDimStylePropValueAltThresholdComparison = 1070

msdDimStylePropValueAngleFormat = 1023

msdDimStylePropValueAngleLeadingZero = 1024

msdDimStylePropValueAngleMeasure = 1025

msdDimStylePropValueAnglePrecision = 1026

msdDimStylePropValueAngleTrailingZeros = 1027

msdDimStylePropValueDMSPrecisionMode = 1082

msdDimStylePropValueFormat = 1066

msdDimStylePropValueLabelLineFormat = 1077

msdDimStylePropValueNoReduceAltFraction = 1043

msdDimStylePropValueNoReduceAltSecFraction = 1062

msdDimStylePropValueNoReduceFraction = 1042

msdDimStylePropValueNoReduceSecFraction = 1061

msdDimStylePropValueNoReduceTolFraction = 1044

msdDimStylePropValueNoReduceTolSecFraction = 1063

msdDimStylePropValueOrdDatumValue = 1057

msdDimStylePropValueOrdDecrementReverse = 1055

msdDimStylePropValueOrdFreeLocation = 1065

msdDimStylePropValueOrdUseDatumValue = 1056

msdDimStylePropValueRoundLSD = 1028

msdDimStylePropValueSecAccuracy = 1029

msdDimStylePropValueSecFormat = 1068

msdDimStylePropValueSecShowTrailingZeros = 1033

msdDimStylePropValueSecShowZeroMasterUnit = 1035

msdDimStylePropValueSecShowZeroSubUnit = 1080

msdDimStylePropValueSecUnitMaster = 1075

msdDimStylePropValueSecUnitSub = 1076

msdDimStylePropValueShowTrailingZeros = 1039

msdDimStylePropValueShowZeroMasterUnit = 1041

msdDimStylePropValueShowZeroSubUnit = 1078

msdDimStylePropValueSuperscriptLSD = 1045

msdDimStylePropValueThousandsOpts = 1072

msdDimStylePropValueUnit = 1048

msdDimStylePropValueUnitLabelMaster = 1049

msdDimStylePropValueUnitLabelSecMaster = 1050

msdDimStylePropValueUnitLabelSecSub = 1051

msdDimStylePropValueUnitLabelSub = 1052

msdDimStylePropValueUnitMaster = 1073

msdDimStylePropValueUnitSec = 1053

msdDimStylePropValueUnitSub = 1074

msdDimStylePropValueUseWorkingUnits = 1054

MsdDimSuperscriptMode

MsdDimSuperScriptModeFromFont = 0

MsdDimSuperScriptModeGenerated = 1

MsdDimSymbolType

msdDimSymbolTypeCell = 2

msdDimSymbolTypeCharacter = 1

msdDimSymbolTypeDefault = 0

MsdDimTerminatorArrowhead

msdDimTerminatorArrowheadClosed = 1

msdDimTerminatorArrowheadFilled = 2

msdDimTerminatorArrowheadOpen = 0

MsdDimTerminatorMode

msdDimTerminatorModeAuto = 0

msdDimTerminatorModeInside = 2

msdDimTerminatorModeOutside = 3

msdDimTerminatorModeReversed = 1

MsdDimTerminatorType

msdDimTerminatorTypeArrow = 1

msdDimTerminatorTypeCircle = 3

msdDimTerminatorTypeDot = 4

msdDimTerminatorTypeNone = 0

msdDimTerminatorTypeNote = 5

msdDimTerminatorTypeOrigin = 3

msdDimTerminatorTypeStroke = 2

MsdDimTextField

msdDimTextFieldLowerLimit = 1

msdDimTextFieldMain = 0

msdDimTextFieldMinus = 2

msdDimTextFieldPlus = 1

msdDimTextFieldUpperLimit = 0

MsdDimTextFormat

MsdDimTextFormatMU = 0

MsdDimTextFormatMU_dash_SU = 4

MsdDimTextFormatMU_Label = 1

MsdDimTextFormatMU_Label_dash_SU_Label = 6

MsdDimTextFormatMU_Label_SU_Label = 5

MsdDimTextFormatSU = 2

MsdDimTextFormatSU_Label = 3

MsdDimTextFrameType

MsdDimTextFrameTypeBox = 1

MsdDimTextFrameTypeCapsule = 2

MsdDimTextFrameTypeNone = 0

MsdDimTextJustification

msdDimTextJustificationCenter = 2

msdDimTextJustificationLeft = 1

msdDimTextJustificationRight = 3

MsdDimTextLocation

MsdDimTextLocationAbove = 1

MsdDimTextLocationInline = 0

MsdDimTextLocationOutside = 2

MsdDimTextLocationTopLeft = 3

MsdDimTextOrientation

MsdDimTextOrientationAligned = 0

MsdDimTextOrientationHorizontal = 1

MsdDimThousandsOpts

MsdDimThousandsOptsComma = 2

MsdDimThousandsOptsNone = 0

MsdDimThousandsOptsSpace = 1

MsdDimToleranceType

MsdDimToleranceTypeLimit = 1

MsdDimToleranceTypePlusMinus = 0

MsdDimType

msdDimTypeAngleAxis = 10

msdDimTypeAngleAxisX = 50

msdDimTypeAngleAxisY = 51

msdDimTypeAngleLines = 9

msdDimTypeAngleLocation = 7

msdDimTypeAngleSize = 5

msdDimTypeArcLocation = 8

msdDimTypeArcSize = 6

msdDimTypeCenter = 19

msdDimTypeCustomLinear = 15

msdDimTypeDiameter = 12

msdDimTypeDiameterExtended = 18

msdDimTypeDiameterPara = 13

msdDimTypeDiameterPerp = 14

msdDimTypeLabelLine = 52

msdDimTypeLocateSingle = 3

msdDimTypeLocateStacked = 4

msdDimTypeNone = 0

msdDimTypeNote = 53

msdDimTypeOrdinate = 16

msdDimTypeRadius = 11

msdDimTypeRadiusExtended = 17

msdDimTypeSizeArrow = 1

msdDimTypeSizeStroke = 2

msdDimTypeUseActive = - 1

MsdDimValueAngleFormat

msdDimValueAngleFormatCentesimal = 2

msdDimValueAngleFormatDegMinSec = 1

msdDimValueAngleFormatDegrees = 0

msdDimValueAngleFormatRadians = 3

MsdDimValueAnglePrecision

msdDimValueAnglePrecision1Place = 1

msdDimValueAnglePrecision2Place = 2

msdDimValueAnglePrecision3Place = 3

msdDimValueAnglePrecision4Place = 4

msdDimValueAnglePrecision5Place = 5

msdDimValueAnglePrecision6Place = 6

msdDimValueAnglePrecisionWhole = 0

MsdDimVerticalTextOptions

MsdDimVerticalTextOptionsAlways = 1

MsdDimVerticalTextOptionsNever = 0

MsdDimVerticalTextOptionsNoFit = 2

MsdDrawingMode

msdDrawingModeErase = 1

msdDrawingModeHilite = 2

msdDrawingModeNormal = 0

msdDrawingModeTemporary = 3

msdDrawingModeTemporaryErase = 4

msdDrawingModeXor = 6

MsdElementCachePurpose

msdElementCachePurposeControl = 2

msdElementCachePurposeGraphical = 4

msdElementCachePurposeNonModel = 1

MsdElementClass

msdElementClassConstruction = 2

msdElementClassContructionRule = 6

msdElementClassDimension = 3

msdElementClassLinearPatterned = 5

msdElementClassPatternComponent = 1

msdElementClassPrimary = 0

msdElementClassPrimaryRule = 4

MsdElementSubtype

msdElementSubtypeApplicationElement = 20

msdElementSubtypeAuxiliaryCoordinateSystem = 3

msdElementSubtypeNone = - 1

msdElementSubtypeUpdateSequenceElement = 33

MsdElementType

msdElementType44 = 44

msdElementTypeArc = 16

msdElementTypeBsplineBoundary = 25

msdElementTypeBsplineCurve = 27

msdElementTypeBsplineKnot = 26

msdElementTypeBsplinePole = 21

msdElementTypeBsplineSurface = 24

msdElementTypeBsplineWeight = 28

msdElementTypeCellHeader = 2

msdElementTypeCellLibraryHeader = 1

msdElementTypeComplexShape = 14

msdElementTypeComplexString = 12

msdElementTypeCone = 23

msdElementTypeConic = 13

msdElementTypeCurve = 11

msdElementTypeDesignFileHeader = 9

msdElementTypeDgnStoreComponent = 38

msdElementTypeDgnStoreHeader = 39

msdElementTypeDigSetData = 8

msdElementTypeDimension = 33

msdElementTypeEllipse = 15

msdElementTypeGroupData = 5

msdElementTypeLevelMask = 99

msdElementTypeLevelSymbology = 10

msdElementTypeLine = 3

msdElementTypeLineString = 4

msdElementTypeMatrixDoubleData = 103

msdElementTypeMatrixHeader = 101

msdElementTypeMatrixIntegerData = 102

msdElementTypeMeshHeader = 105

msdElementTypeMicroStation = 66

msdElementTypeMultiLine = 36

msdElementTypeNamedGroupComponent = 111

msdElementTypeNamedGroupHeader = 110

msdElementTypePointString = 22

msdElementTypeRasterComponent = 88

msdElementTypeRasterFrame = 94

msdElementTypeRasterHeader = 87

msdElementTypeRasterReference = 90

msdElementTypeRasterReferenceComponent = 91

msdElementTypeReferenceAttachment = 100

msdElementTypeReferenceOverride = 108

msdElementTypeShape = 6

msdElementTypeSharedCell = 35

msdElementTypeSharedCellDefinition = 34

msdElementTypeSolid = 19

msdElementTypeSurface = 18

msdElementTypeTable = 96

msdElementTypeTableEntry = 95

msdElementTypeTag = 37

msdElementTypeText = 17

msdElementTypeTextNode = 7

msdElementTypeView = 98

msdElementTypeViewGroup = 97

Msd Error

msdAccuDrawNotEnabled = -2147218287

msdError3dReference2dMaster = -2147220767

msdErrorAccessViolation = -2147218313

msdErrorAcsNotFound = -2147220744

msdErrorAcsReplaced = -2147220745

msdErrorAddressNotKnown = -2147220784

msdErrorAddressNotValid = -2147220779

msdErrorAlreadyExists = -2147218310

msdErrorAlreadylnUse = -2147220804

msdErrorAlreadyOpen = -2147218312

msdErrorBadBSplineElement = -2147217996

msdErrorBadCharacterConstant = -2147220794

msdErrorBadContinuity = -2147217986

msdErrorBadElement = -2147218399

msdErrorBadFile = -2147218304

msdErrorBadFloat = -2147220796

msdErrorBadFormat = -2147218309

msdErrorBadHexNumber = -2147220799

msdErrorBadIndex = -2147218370

msdErrorBadKnots = -2147217991

msdErrorBadLineWeights = -2147217990

msdErrorBadModelId = -2147218334

msdErrorBadModelReference = -2147218397

msdErrorBadName = -2147218316

msdErrorBadNumber = -2147220800

msdErrorBadOctal = -2147220797

msdErrorBadOrder = -2147217994

msdErrorBadParameter = -2147217995

msdErrorBadPeriodicity = -2147217993

msdErrorBadPoles = -2147217992

msdErrorBadRasterFormat = -2147218350

msdErrorBadResourceType = -2147220772

msdErrorBadScanList = -2147218389

msdErrorBadSpiralDefinition = -2147217989

msdErrorBadString = -2147220795

msdErrorBadType = -2147220803

msdErrorBadVersion = -2147218308

msdErrorBadWordsToFollow = -2147218311

msdErrorCacheInUse = -2147218318

msdErrorCacheLoadError = -2147218291

msdErrorCacheNotEnabled = -2147218320

msdErrorCacheNotFilled = -2147218288

msdErrorCacheNotFound = -2147218317

msdErrorCannotCreateFile = -2147218329

msdErrorCannotDereference = -2147220787

msdErrorCannotImportSeed = -2147218292

msdErrorCannotOpenFile = -2147218391

msdErrorCannotOpenSeed = -2147218303

msdErrorCannotSaveFile = -2147218328

msdErrorCellExists = -2147218372

msdErrorCellLibraryIs2d = -2147218365

msdErrorCellNotFound = -2147218373

msdErrorCellTooLarge = -2147218369

msdErrorCircularDependency = -2147219604

msdErrorCommandReceived = -2147220704

msdErrorComplexHeaderRequired = -2147218387

msdErrorCompressionError = -2147218296

msdErrorCopyError = -2147218289

msdErrorDiskFull = -2147218395

msdErrorDivideByZero = -2147220780

msdErrorDuplicateLogical = -2147220766

msdErrorDuplicateTaskId = -2147218353

msdErrorElementFilled = -2147220756

msdErrorElementFrozen = -2147218359

msdErrorElementNotFilled = -2147220755

msdErrorElementNotFound = -2147218323

msdErrorElementNotPlanar = -2147220753

msdErrorElementTooLarge = -2147220754

msdErrorEndOfFile = -2147218390

msdErrorException = -2147219504

msdErrorFileExists - -2147218326

msdErrorFileNotFound = -2147218338

msdErrorHasChanges = -2147218298

msdErrorIdExists = -2147218321

msdErrorIdNotFound = -2147218322

msdErrorIllegalCharacter = -2147220793

msdErrorInsufficientInformation = -2147218401

msdErrorInsufficientMemory = -2147218388

msdErrorIntegralNeeded = -2147220777

msdErrorInvalidACSType = -2147220770

msdErrorInvalidButton = -2147220769

msdErrorInvalidCell = -2147218371

msdErrorInvalidClip = -2147220761

msdErrorInvalidForFloat = -2147220781

msdErrorInvalidForFunction = -2147220771

msdErrorInvalidForStructure = -2147220782

msdErrorInvalidForType = -2147220778

msdErrorInvalidLibrary = -2147218368

msdErrorInvalidMaterOrigin = -2147220763

msdErrorInvalidOperationForNested = -2147218302

msdErrorInvalidOperationForNonNested = -2147218301

msdErrorInvalidPatternSpace = -2147220760

msdErrorInvalidReference = -2147220762

msdErrorInvalidReferenceOrigin = -2147220764

msdErrorInvalidSymbol = -2147220789

msdErrorLinkageNotFound = -2147218344

msdErrorLoadingInterface = -2147218297

msdErrorModelerNotLoaded = -2147219703

msdErrorModelIdExists = -2147218332

msdErrorModelNameExists = -2147218333

msdErrorModelNotEmpty = -2147218342

msdErrorModifyComplex = -2147218392

msdErrorNameNotUnique = -2147218343

msdErrorNameTooLong = -2147218335

msdErrorNeedExponent = -2147220798

msdErrorNeedInteger = -2147220802

msdErrorNoAcsDefined = -2147220746

msdErrorNoBounds = -2147218001

msdErrorNoBSplineHeader = -2147217999

msdErrorNoCellLibrary = -2147218375

msdErrorNoClipVolume = -2147218336

msdErrorNoFence = -2147218337

msdErrorNoGraphicGroup = -2147220742

msdErrorNoKnots = -2147218003

msdErrorNoLevelMask = -2147220740

msdErrorNoLineWeights = -2147218002

msdErrorNoMatch = -2147218381

msdErrorNoModel = -2147218299

msdErrorNoModelInformation = -2147218331

msdErrorNonClosedElement = -2147220757

msdErrorNonClosedPatternElement = -2147220759

msdErrorNonCoplanarShapes = -2147220750

msdErrorNonSolidPatternElement = -2147220758

msdErrorNoNumberBounds = -2147218000

msdErrorNoOffsetIntersection = -2147217987

msdErrorNoParentModel = -2147218330

msdErrorNoPoles = -2147218004

msdErrorNoReferenceSlots = -2147220747

msdErrorNoselectionSet = -2147220748

msdErrorNoSuchModel = -2147218294

msdErrorNoSymbol = -2147220791

msdErrorNotDesignFIle = -2147220768

msdErrorNotDirectAttachment = -2147220739

msdErrorNotFunction = -2147220775

msdErrorNotLoaded = -2147218300

msdErrorNotLocked = -2147218293

msdErrorNotMember = -2147220785

msdErrorNotOpen = -2147218315

msdErrorNotSingleView = -2147220765

msdErrorNotStructure = -2147220786

msdErrorNotSupported = -2147218348

msdErrorNotValidExpression = -2147220776

msclErrorNullSolution = -2147220752

msdErrorOldMaterialTable = -2147220749

msdErrorOperationCanceled = -2147218306

msdErrorParasolidError = -2147219703

msdErrorReadOnly = -2147218396

msdErrorRecurseLimit = -2147217985

msdErrorRenameError = -2147218290

msdErrorRequires3dFile = -2147218400

msdErrorResourceNotFound = -2147218376

msdErrorSharingViolation = -2147218314

msdErrorStructureNeeded = -2147220801

msdErrorSymbolNotResolved = -2147219704

msdErrorSyntaxError = -2147220790

msdErrorSystemError = -2147218363

msdErrorTagBadAssociation = -2147220096

msdErrorTagBadReportFile = -2147220098

msdErrorTagBadReportKeyword = -2147220097

msdErrorTagNameTooLong = -2147220092

msdErrorTagNoTarget = -2147220095

msdErrorTagNotFound = -2147220093

msdErrorTagNotInSet = -2147220101

msdErrorTagPreviouslyDefined = -2147220094

msdErrorTagSetNameLong = -2147220103

msdErrorTagSetNotFound = -2147220102

msdErrorTagSetPreviouslyDefined = -2147220100

msdErrorTagSetTooBig = -2147220099

msdErrorTagllndefinedType = -2147220104

msdErrorTimeout = -2147218362

msdErrorTooComplex = -2147220783

msdErrorTooFewArguments = -2147220773

msdErrorTooFewPoles = -2147217998

msdErrorTooManyArguments = -2147220774

msdErrorTooManyKnots = -2147217988

msdErrorTooManyOpenFiles = -2147218307

msdErrorTooManyPoles = -2147217997

msdErrorTooManySurfaceElements = -2147218346

msdErrorTypesIncompatible = -2147220788

msdErrorUnboundedSolution = -2147220751

msdErrorUnknownError = -2147218305

msdErrorllnknownFormat = -2147218295

msdErrorUnsupported = -2147220792

msdErrorUserCanceledAction = -2147218382

msdErrorV7CellLibrary = -2147218327

msdErrorViewGroupNotFound = -2147220741

msdErrorViewNotDisplayed = -2147218374

msdErrorViewNotFound = -2147220743

msdErrorWriteFailed = -2147218393

msdErrorWriteInhibited = -2147218394

msdErrorWrongElementID = -2147218319

MsdFileAccessMode

msdFileAccessModeRead = 1

msdFileAccessModeReadWrite = 3

MsdFillMode

msdFillModeFilled = 1

msdFillModeNotFilled = 0

msdFillModeOutlined = 2

msdFillModeUseActive = -1

MsdFontType

msdFontTypeMicroStation = 0

msdFontTypeSHX = 1

msdFontTypeUnknown = 3

msdFontTypeWindowsTrueType = 2

MsdGeoReferenceSisterFileType

msdGeoReferenceSisterFileTypeHgr = 1

msdGeoReferenceSisterFileTypeNone = 0

msdGeoReferenceSisterFileTypeTwf = 2

MsdGlobalLineStyleScale

msdGlobalLineStyleScaleBoth = 3

msdGlobalLineStyleScaleMaster = 0

msdGlobalLineStyleScaleNone = 1

msdGlobalLineStyleScaleReference = 2

MsdLevelChangeType

msdLevelChangeAfterChangeActive = 9

msdLevelChangeAfterCreate = 2

msdLevelChangeAfterDelete = 3

msdLevelChangeBeforeChangeActive = 17

msdLevelChangeBeforeDelete = 18

msdLevelChangeChangeAttribute = 8

msdLevelChangeChangeCode = 5

msdLevelChangeChangeDisplay = 7

msdLevelChangeChangeName = 4

msdLevelChangeChangeParent = 6

msdLevelChangeTableRedo = 15

msdLevelChangeTableUndo = 14

MsdLevelElementAccess

msdLevelElementAccessAll = 0

msdLevelElementAccessLocked = 1

msdLevelElementAccessReadOnly = 2

msdLevelElementAccessViewOnly = 3

MsdLimits

msdLimitsMaxVertices = 5000

msdLimitsMaxViews = 8

MsdMeasurementBase

msdMeasurementBaseDegree = 2

msdMeasurementBaseMeter = 1

msdMeasurementBaseNone = 0

MsdMeasurementSystem

msdMeasurementSystemEnglish = 1

msdMeasurementSystemMetric = 2

msdMeasurementSystemUndefined = 0

MsdMemberTraverseType

msdMemberTraverseCopy = 2

msdMemberTraverseDirectMembers = 4

msdMemberTraverseEnumerate = 3

msdMemberTraverseManipulate = 1

msdMemberTraverseSimple = 0

MsdMessageCenterPriority

msdMessageCenterPriorityDebug = 13

msdMessageCenterPriorityError = 10

msdMessageCenterPriorityInfo = 12

msdMessageCenterPriorityNone = 14

msdMessageCenterPriorityWarning = 11

MsdModelChangeType

mdlModelChangeActive = 5

mdlModelChangeBeforeActive = 11

mdlModelChangeBeforeCreate = 15

mdlModelChangeBeforeDelete = 6

mdlModelChangeBeforeName = 12

mdlModelChangeBeforeProperties = 14

mdlModelChangeBeforeSettings = 13

mdlModelChangeBeforeUnCreate = 9

mdlModelChangeBeforeUnDelete = 16

mdlModelChangeCreate = 1

mdlModelChangeDelete = 2

mdlModelChangeName = 10

mdlModelChangePropagateAnnotationScale = 17

mdlModelChangeProperties = 3

mdlModelChangeSettings = 4

mdlModelChangeUnCreate = 7

mdlModelChangeUnDelete = 8

MsdModelType

msdModelTypeDefault = -1

msdModelTypeExtraction = 2

msdModelTypeNormal = 0

msdModelTypeSheet = 1

MsdNestOverrides

msdNestOverridesAlways = 1

msdNestOverridesAsRequired = 0

msdNestOverridesNever = 2

MsdNewLevelDisplay

msdNewLevelDisplayAlways = 1

msdNewLevelDisplayFromConfig = 0

msdNewLevelDisplayNever = 2

MsdRasterBlockType

msdRasterBlockTypeImage = 4

msdRasterBlockTypeLine = 1

msdRasterBlockTypeStrip = 3

msdRasterBlockTypeTile = 2

MsdRasterDisplayOrderCommand

msdRasterDisplayOrderCommandBackward = 3

msdRasterDisplayOrderCommandForward = 2

msdRasterDisplayOrderCommandToBack = 1

msdRasterDisplayOrderCommandToFront = 0

MsdRasterDisplayPriorityPlane

msdRasterDisplayPriorityPlaneBack = 1

msdRasterDisplayPriorityPlaneFront = 3

msdRasterDisplayPriorityPlaneVector = 2

MsdRasterModificationType

msdRasterModificationType_ClipBoundary = 5

msdRasterModificationType_ClipMask = 4

msdRasterModificationType_ExtendedInformation = 0

msdRasterModificationType_GeoReferenceInformation = 1

msdRasterModificationType_RasterInformation = 3

msdRasterModificationType_Reload = 6

msdRasterModificationType_RenderingInformation = 2

MsdRasterWorldFile

msdRasterWorldFileHgr = 1

msdRasterWorldFileNone = 0

msdRasterWorldFileWorldFile = 2

MsdReferenceSystem

msdReferenceSystemDgn = 2

msdReferenceSysteniRaster = 1

MsdRenderingMode

msdRenderingModeConstantShade = 5

msdRenderingModeCrossSection = 1

msdRenderingModeHiddenLine = 3

msdRenderingModeParticleTrace = 11

msdRenderingModePhong = 7

msdRenderingModeRadiosity = 10

msdRenderingModeRayTrace = 8

msdRenderingModeRenderWireFrame = 9

msdRenderingModeSmoothShade = 6

msdRenderingModeSolidFill = 4

msdRenderingModeWireFrame = 0

msdRenderingModeWireMesh = 2

MsdStandardsCheckerReplaceChoice

msdStandardsCheckerReplaceChoiceAbort = 4

msdStandardsCheckerReplaceChoiceFix = 1

msdStandardsCheckerReplaceChoiceMarkIgnored = 2

msdStandardsCheckerReplaceChoiceMarkNotIgnored = 3

msdStandardsCheckerReplaceChoiceSkip = 0

MsdStandardsCheckerReplaceOptions

msdStandardsCheckerReplaceOptionCanFix = 2

msdStandardsCheckerReplaceOptionCanIgnore = 1

MsdStatusBarArea

msdStatusBarAreaLeft = 16

msdStatusBarAreaMiddle = 15

MsdTagType

msdTagTypeBinary = 5

msdTagTypeCharacter = 1

msdTagTypeDouble = 4

msdTagTypeLongInteger = 3

msdTagTypeShortInteger = 2

MsdTangentElementOutputType

msdTangentArcs = 1

msdTangentCircles = 0

msdTangentTriangles = 2

MsdTangentInterpolationType

msdTangentFromCircleFit = 1

msdTangentFromCubicFit = 2

msdTangentFromCurve = 0

MsdTextDirection

msdTextDirectionHorizontal = 0

msdTextDirectionRightToLeft = 8

msdTextDirectionVertical = 4

msdTextDirectionVerticalMultiLineRightToLeft = 2

MsdTextJustification

msdTextJustificationCenterBottom = 8

msdTextJustificationCenterCenter = 7

msdTextJustificationCenterTop = 6

msdTextJustificationLeftBottom = 2

msdTextJustificationLeftCenter = 1

msdTextJustificationLeftTop = 0

msdTextJustificationRightBottom = 14

msdTextJustificationRightCenter = 13

msdTextJustificationRightTop = 12

MsdTextNodeLineSpacingType

msdTextNodeLineSpacingTypeAtLeast = 3

msdTextNodeLineSpacingTypeAutomatic = 1

msdTextNodeLineSpacingTypeExact = 0

msdTextNodeLineSpacingTypeExactFromLineTop = 2

MsdV7Action

msdV7ActionAskUser = 0

msdV7ActionUpgradeToV8 = 1

msdV7ActionWorkmode = 3

MsdViews

msdView1 = 1

msdView2 = 2

msdView3 = 4

msdView4 = 8

msdView5 = 16

msdView6 = 32

msdView7 = 64

msdView8 = 128

msdViewAll = 255

msdViewNone = 0

MsdXDatumType

msdXDatumTypeBinaryData = 1004

msdXDatumTypeControlString = 1002

msdXDatumTypeDatabaseHandle = 1005

msdXDatumTypeDistance = 1041

msdXDatumTypeInt16 = 1070

msdXDatumTypeInt32 = 1071

msdXDatumTypeLevel = 1003

msdXDatuinTypePoint = 1010

msdXDatumTypeReal = 1040

msdXDatumTypeScaleFactor = 1042

msdXDatumTypeString = 1000

msdXDatumTypeUnsupported = 0

msdXDatumTypeWorldDirection = 1013

msdXDatumTypeWorldSpaceDisplacement = 1012

msdXDatumTypeWorldSpacePosition = 1011

REVIEW

As we continue through this book, we will see examples of using enumerations in the code samples.

As we pointed out in the objects chapter, the Object Browser is useful in finding and determining how to use enumerations.

[image: Image]

13The MicroStation Object Model - Types

Thus far we have introduced and discussed concepts such as variables, objects, properties, and methods. We are now going to discuss types.

A type is used like a variable but is similar to an object because it holds multiple elements. The best way to demonstrate this is by looking at a type we will use extensively in our MicroStation VBA programming.

Type Point3d

X As Double

Y As Double

Z As Double

End Type

The Point3d type has three members: X (which is a Double), Y (which is a Double) and Z (which is a Double).

Sub TestPoint3d()

Dim StartPoint As Point3d

Dim EndPoint As Point3d

Dim MyLine As Line Element

StantPoint.X = 1.5

StartPoint.Y = 2.5

StartPoint.Z = 3.5

EndPoint.X = 4

EndPoint.Y = 0

EndPoint.Z = 0

Set MyLine = CreateLineElement2(Nothing, StartPoint, EndPoint)

ActiveModelReference.AddElement MyLine

End Sub

We declare two variables with a type of "Point3d". We assign coordinate values to the X, Y, and Z elements of these variables. They are then used with the CreateLineElement2 method. Here is the declaration for "CreateLineElement2":

Sub CreateLineElement2(Template As Element, StartPoint As Point3d, _ EndPoint As Point3d) as LineElement

Notice how this method is asking for two Point3d Types — one for the Start Point and the other for the End Point.

Here is a list of the types we have available to us in MicroStation VBA:

Type MsdACSType

Justification As MsdDataEntryRegionJustification

Length As Long

StartPosition As Long

End Type

Type MsdACSType

High As Long

Low As Long

End Type

Type MsdAddAttachmentFlags

Center As Point3d

Start As Double

Sweep As Double

Vector0 As Point3d

Vector90 As Point3d

End Type

Type MsdAngleAccuracy

Du As Point3d

Dv As Point3d

End Type

Type MsdAngleAccuracy

RowX As Point3d

RowY As Point3d

RowZ As Point3d

End Type

Type MsdAngleAccuracy

Base As MsdMeasurementBase

Label As String

System As MsdMeasurementSystem

UnitsPerBaseDenominator As Double

UnitsPerBaseNumerator As Double

End Type

Type MsdAngleFormat

Details As String

Msg As String

Priority As MsdMessageCenterPriority

End Type

Type MsdAngleMode

Normal As Point3d

Origin As Point3d

End Type

Type MsdAttachMode

X As Double

Y As Double

End Type

Type MsdBsplineCurveOffsetCuspType

X As Double

Y As Double

Z As Double

End Type

Type MsdBsplineCurveOffsetCuspType

High As Point3d

Low As Point3d

End Type

Type MsdBsplineCurveType

Direction As Point3d

Origin As Point3d

End Type

Type MsdBsplineCurveType

Duu As Point3d

Duv As Point3d

Dvu As Point3d

Dvv As Point3d

End Type

Type MsdBsplineCurveType

EndPoint As Point3d

StartPoint As Point3d

End Type

Type MsdBsplineParametrizationType

RowX As Point3d

RowY As Point3d

RowZ As Point3d

TranslationX As Double

TranslationY As Double

TranslationZ As Double

End Type

Type MsdBsplineSurfaceType

X As Double

Y As Double

Z As Double

End Type

Type MsdBsplineSurfaceType

Type As MsdXDatuinType

Value As Variant

End Type

Each of these types is available to us when we are using MicroStation VBA. The "Type", "End Type" declaration as shown is a standard VBA convention. As a matter of fact, we can create our own "Types" inside VBA. Custom Types are declared in the General Declarations area of a Code Module. For example, if we want a new type named "Point4d", we would use the code:

Type Point4d

X As Double

Y As Double

Z As Double

A As Double

End Type

If this declaration is made, we can declare variables as follows:

Dim MyPoint As Point4d

As with enumerations, types will be used extensively as we continue working with the MicroStation VBA.

REVIEW

Types are similar to objects. An object has properties. A type has members which are similar to properties. One of the most common types we use in MicroStation is the Point3d type. It has members of X, Y, and Z. Each of these members are declared as Doubles.

[image: Image]

14The MicroStation Object Model - Events

Objects, as we have discussed, have properties, methods, and events. We introduced events when we discussed creating a Visual Interface. When a user clicks on a CommandButton, the click event of the CommandButton is triggered. MicroStation events are triggered as the user interacts with various aspects of MicroStation.

When a company (such as Bentley) embeds VBA into their application (in this case, MicroStation), the question of how to deal with events is raised. Here is how Microsoft Excel deals with events:

[image: Image]

Each worksheet in an Excel workbook has events automatically exposed. Two of them are the Change and the SelectionChange events. These events are triggered as a worksheet's cell value changes and when the user moves from one cell to another.

There are two ways we can capture and make use of MicroStation events. One is to declare a variable in a class module or a form as an application and using the "WithEvents" keyword. This exposes two events: OnDesignFileOpened and OnDesignFileClosed. The majority of MicroStation events are accessed through the use of interfaces.

MicroStation has exposed much more than simple events through the use of interfaces, which are discussed in detail in Chapters 22 through 26.

ONDESIGNFILEOPENED AND ONDESIGNFILECLOSED

Here is a small example of how the OnDesignFileOpened and OnDesignFileClosed events work.

We will use a UserForm that is shown modeless. This means the user can still interact with MicroStation even though the form is displayed. When the form is initialized, we set the MicroStation application object to a variable that has been declared "WithEvents" in the General Declarations area of the UserForm. When we declare a variable "WithEvents", the events belonging to the object we specify are available to our code.

Here's the program as it is running after a couple of files have been opened (the previous file closes when the new file is opened).

[image: Image]

Each time a file is opened or closed, the associated event is triggered. We will begin by looking at the code in the code area of the UserForm.

Dim WithEvents MyApp As MicroStationDGN.Application

Private Sub UserForm_Initialize()

Set MyApp = Application

End Sub

Private Sub MyApp_OnDesignFileOpened(ByVal _ DesignFileName As String)

IstOpened.AddItem DesignFileName

End Sub

Private Sub MyApp_OnDesignFileClosed(ByVal _ DesignFileName As String)

IstClosed.AddItem DesignFileName

End Sub

Each time the OnDesignFileOpened event is triggered, we add the DesignFileName parameter to the lstOpened ListBox. When a file is closed, it is added to the lstClosed ListBox.

We want to display this form as modeless, so we will display it by running the next macro:

Sub ShowEvents ()

frmEvents. Show vbModeless

End Sub

The Procedure ShowEvents is placed inside a code module.

We can use the OnDesignFileOpened and OnDesignFileClosed events to log which files have been opened. We are given the file name as a parameter in the event. This basic functionality could be expanded to include capturing the current Date/Time (with the Now Function) as well as the current User (with the Application.UserName property).

REVIEW

Events are triggered as users interact with software. MicroStation events are primarily exposed through the use of interfaces (covered later). The OnDesignFileOpened and OnDesignFileClosed events can be exposed by declaring the MicroStation.Application object "WithEvents" in a Class Module or UserForm. More information on the use of "WithEvents" can be found in the standard VBA help file.

[image: Image]

15Adding To Documents

We have created lines, circles, arcs, and text as we introduced programming topics. Let’s examine the specifics of adding elements and other objects to our design files. We begin with graphical elements and then work on non-graphical elements such as levels.

In this Chapter:

[image: Image] Graphical Elements

[image: Image] Creating New Documents

[image: Image] Security Issues with Creating Data

GRAPHICAL ELEMENTS

There are two steps to adding elements to our design files. First we create the element in memory. Then we add the element to our design file. As you will see, there is often more than one way to create the element. We will demonstrate multiple examples of each creation method.

Lines

"The shortest distance between two points is a straight line." If this is true, we should be able to create a line by providing two points, right? Well, that is one way to create a line. We can also provide an array of vertices if we want to draw more than one line.

[image: Image] Function CreateLineElement1 (Template As Element, Vertices() As Point3d) As LineElement

[image: Image] Function CreateLineElement2(Template As Element, StartPoint As Point3d, EndPoint As Point3d) As LineElement

Sub TestCreateLineA()

Dim StPt As Point3d

Dim EnPt As Point3d

Dim myLine As LineElement

EnPt.X = 4: EnPt.Y = 6: EnPt.Z = 8

Set myLine = CreateLineElement2(Nothing, StPt, EnPt)

ActiveModelRefenence.AddElement myLine

End Sub

TestCreateLineA uses the CreateLineElement2 method to create a new line element. It does so using a start point and an end point.

Sub TestCreateLineB()

Dim StPt As Point3d

Dim EnPt As Point3d

Dim myLine As LineElement

'Line 1

StPt.X = 0: StPt.Y = 0: StPt.Z = 0

EnPt.X = 4: EnPt.Y = 0: EnPt.Z = 0

Set myLine = CneateLineElement2(Nothing, StPt, EnPt)

ActiveModelReference.AddElement myLine

'Line 2

StPt.X = 4: StPt.Y = 0: StPt.Z = 0

EnPt.X = 4: EnPt.Y = 4: EnPt.Z = 0

Set myLine = CreateLineElement2(Nothing, StPt, EnPt)

ActiveModelReference.AddElement myLine

'Line 3

StPt.X = 4: StPt.Y = 4: StPt.Z = 0

EnPt.X = 0: EnPt.Y = 4: EnPt.Z = 0

Set myLine = CreateLineElement2(Nothing, StPt, EnPt)

ActiveModelReference.AddElement myLine

'Line 4

StPt.X = 0: StPt.Y = 4: StPt.Z = 0

EnPt.X = 0: EnPt.Y = 0: EnPt.Z = 0

Set myLine = CreateLineElement2(Nothing, StPt, EnPt)

ActiveModelReference.AddElement myLine

End Sub

TestCreateLineB creates and adds four lines by using the CreateLineElement2 function. As we look at the coordinates used to create the lines we will recognize that we are drawing a square. Let’s create the same square by using the CreateLineElement1 Method.

Sub TestCreateLineC()

Dim LinePoints(0 To 4) As Point3d

Dim myLine As LineElement

LinePoints(0).X = 0: LinePoints(0).Y = 0

LinePoints(1).X = 4: LinePoints(1).Y = 0

LinePoints(2).X = 4: LinePoints(2).Y = 4

LinePoints(3).X = 0: LinePoints(3).Y = 4

LinePoints(4).X = 0: LinePoints(4).Y = 0

Set myLine = CreateLineElement1(Nothing, LinePoints)

ActiveModelReference.AddElement myLine

End Sub

As we can see in TestCreateLineC, we can supply an array of Point3d types and use a single CreateLineElement1 Method to create four lines.

[image: Image]NOTE: When we declare a numeric variable, a value of zero (0) is automatically assigned to the variable. Knowing this, we can leave the .Z element of each point alone and it will be assigned a value of zero by default. We could have left out the .X and. Y elements that were to be assigned values of zero as well, but keeping them in makes the code much easier to read. Also, note that we are putting two lines of code on the same line. We can do this by using the colon (:) symbol. This keeps our vertices on the same line of code and can make it easier to read the code.

In our next example, we are going to create a procedure that allows us to specify x, y, z elements for the creation of 3d Lines. We want to be able to provide any number of x, y z sets of elements so we will use the ParamArray keyword in our parameter declaration.

Sub Create3dLines(ParamArray PointElems() As Variant)

If (UBound(PointElems) + 1) Mod 3 <> 0 Then

MsgBox "Invalid number of point elements.", vbCritical

Exit Sub

End If

If UBound(PointElems) + 1 < 5 Then

MsgBox "A minimum of 2 X, Y, Z points must be provided.", vbCritical

Exit Sub

End If

Dim LinePoints() As Point3d

ReDim LinePoints(0 To (UBound(PointElems) + 1) \ 3) As Point3d

Dim I As Long

Dim PointCounter As Long

Dim myLine As LineElement

For I = LBound(PointElems) To UBound(PointElems) Step 3

LinePoints(PointCounter).X = PointElems(I)

LinePoints(PointCounter).Y = PointElems(I + 1)

LinePoints(PointCounter).Z = PointElems(I + 2)

PointCounter = PointCounter + 1

Next I

Set myLine = CreateLineElement1(Nothing, LinePoints)

ActiveModelReference.AddElement myLine

End Sub

This procedure is straightforward but a little more complicated than those we have worked with in the past. Let’s start at the top of the procedure and work our way down to the end.

1 The procedure is named Create3dLines and a single ParamArray parameter is declared.

[image: Image] NOTE: Only one ParamArray parameter can be declared in a function or procedure and it must be the last parameter.

2 3D Points are comprised of x, y, and z elements. Because of this, we need to make sure that we have been given the PointElems array in groups of 3. If the upper-bound value of the parameter is 4, this means 5 elements have been provided. This is a problem because 5 elements do not produce two complete 3-D points.

3 If we pass the "group of 3 elements" test, we need to see if we have been provided at least two points. After all, we cannot create a line from one point. This can be done a number of different ways. One way is to look at the upper-bound (UBound Function) of the PointElems array. If it is less than 5, we know we don’t have enough elements in the array. If it is equal to 5 we know we have two complete 3d Point elements.

4 Since the number of points may be different each time this procedure is used, we need to create a dynamic array of points. We then set the number of points in the array based on the number of PointElems provided.

5 Now we need to populate the X, Y, and Z components of the points based on the elements provided in the ParamArray.

6 We use CreateLineElement1, using the points created from the ParamArray.

7 We add the line to the ActiveModelReference.

Since this procedure utilizes parameters, it cannot be run by itself. Here is a test procedure to run our "Create3dLines" procedure.

Sub TestCreate3dLines()

Create3dLines 0, 0, 0, 4, 0, 0, 4, 4, 0, 0, 4, 0, 0, 0, 0

Create3dLines 0, 0, 0, 4. 4, 0

Create3dLines 0, 4, 0, 4, 0, 0

Create3dLines 0, 4, 0, 4, 0

Create3dLines 0, 4, 0

End Sub

Our test procedure, TestCreate3dLines, calls our newly created procedure Create3dLines five times. In the first instance, a square is created from (0,0,0) to (4,0,0) to (4,4,0) to (0,4,0) and back to (0,0,0). The next one draws a line from (0,0,0) to (4,4,0). Next we draw a line from (0,4,0) to (4,0,0). The next two lines are put in to test our ParamArray validation code. We are unable to draw a line from (0,4,0) to (4,0) because the second point is only given two elements (x and y) and we are requiring three elements per point. The last one attempts to draw a line from (0,4,0) to … to nothing. We cannot draw a line with only one point. Here are the two message boxes in the order in which they appear.

[image: Image]

Once a line is created, we can make changes to its properties such as its color, level, or linestyle properties.

In MicroStation’s Color Table dialog box, if we scroll over the colors in the table we see the color number and the RGB values for each color. In the graphic shown we can see that color number 3 has an RGB value of (255, 0, 0).

[image: Image]

Let’s draw a couple of lines and change their color to red (255, 0, 0).

Sub TestCreateLineD()

Dim LinePoints(0 To 1) As Point3d

Dim myLine As LineElement

LinePoints(0).X = 0: LinePoints(0).Y = 0

LinePoints(1).X = 4: LinePoints(1) .Y = 4

Set myLine = CreateLineElement1(Nothing, LinePoints)

myLine.Color = 3

ActiveModelReference.AddElement myLine

LinePoints(0).X = 0: LinePoints(0).Y = 4

LinePoints(1).X = 4: LinePoints(1) .Y = 0

Set myLine = CreateLineElement1(Nothing, LinePoints)

myLine.Color = 3

ActiveModelReference.Add Element myLine

End Sub

Two lines are created with their color properties changed to color number 3 (red).

Here is another way we could accomplish the same task:

Sub TestCreateLineE()

Dim LinePointst(0 To 1) As Point3d

Dim myLine As LineElement

Dim myLine2 As LineElement

LinePoints(0).X = 0: LinePoints(0).Y = 0

LinePoints(0).X = 4: LinePoints(1) .Y = 4

Set myLine = CreateLineElement1(Nothing, LinePoints)

myLine.Color = 3

ActiveModelReference.AddElement myLine

LinePoints(0).X = 0: LinePoints(0).Y = 4

LinePoints(1).X = 4: LinePoints(1) .Y = 0

Set myLine2 = CreateLineElement1(myLine, LinePoints)

ActiveModelReference.AddElement myLine2

End Sub

In this example, we added one line of code, removed one line of code, and made a slight change to another line. Here is the line we changed:

Set myLine2 = CreateLineElement1(myLine, LinePoints)

In the previous work we did with CreateLineElement1, we supplied a value of "Nothing" in the template parameter. In this example, we provided the variable of the first line we created. This results in the creation of a new line with the same non-geometric properties as the 'Template' element.

Creating Shapes

A shape is a series of lines that are joined together into one element.

Here is the declaration for CreateShapeElement1:

[image: Image] Function CreateShapeElemerit1 (Template As Element, Vertices() As Point3d, [FillMode As MsdFillMode = msdFillModeUseActive]) As ShapeElement

Here is a procedure that creates a triangle.

Sub TestCreateShapeA ()

Dim myShape As ShapeElement

Dim ShapePoints(0 To 2) As Point3d

ShapePoints(0).X = 0: ShapePoints(0).Y = 0

ShapePoints(1).X = 2: ShapePoints(1).Y = 0

ShapePoints(2).X = 1: ShapePoints(2).Y = 1

Set myShape = CreateShapeElement1(Nothing. ShapePoints)

ActiveModelReference.AddElement myShape

End Sub

When this code is run, a triangle is created and added to the ActiveModelReference. Notice that we do not need to close the triangle by providing a fourth point at (0, 0, 0). Shapes are always closed.

A comparison of the declaration and the use of CreateShapeElement1 reveals that we did not use the optional FillMode parameter. By default, the FillMode parameter uses the active setting in MicroStation. Let’s copy and paste TestCreateShapeA, rename the new procedure to TestCreateShapeB and supply a FillMode parameter:

Sub TestCreateShapeB ()

Dim myShape As ShapeElement

Dim ShapePointst(0 To 2) As Point3d

ShapePoints(0).X = 0: ShapePoints(0).Y = 0

ShapePoints(1).X = 2: ShapePoints(1).Y = 0

ShapePoints(2).X = 1: ShapePoints(2).Y = 1

Set myShape = CreateShapeElement1(Nothing. ShapePoints, _ msdFillModeFilled)

ActiveModelReference.AddElement myShape

End Sub

TestCreateShapeB creates a filled triangle. If the resulting triangle does not look like it is filled, the fill setting in view attributes may not be selected (Settings > View Attributes).

Let’s build on our knowledge of creating shapes. Now we are going to create a function that creates a regular polygon based on a center point, a number of sides, and a radius. The polygon we create will be inscribed within the radius we provide.

Function CreatePolygon(CenterPoint As Point3d, _

NumOfSides As Long, Radius As Double) As ShapeElement

Dim myShape As ShapeElement

Dim ShapePoints() As Point3d

ReDim ShapePointst(0 To NumOfSides - 1) As Point3d

Dim PointIndex As Long

Dim IncAngle As Double

IncAngle = 360 / NumOfSides

For PointIndex = LBound(ShapePoints) To UBound(ShapePoints)

ShapePoints(PointIndex) = Point3dAddAngleDistance(CenterPoint, _ Radians(IncAngle * PointIndex), Radius, 0)

Next

Set CreatePolygon = CreateShapeElement1(Nothing, ShapePoints)

End Function

This is our function. It returns a ShapeElement. Since it utilizes parameters, we need to create a test procedure to run it.

Sub TestCreatePolygon()

Dim CPoint As Point3d

Dim myShape As ShapeElement

Set myShape = CreatePolygon(CPoint, 6, 1)

ActiveModelReference.AddElement myShape

End Sub

Our TestCreatePolygon procedure declares a variable as a Point3d. No modification is made to the X, Y, or Z elements of the point so the polygon is created centered around (0, 0, 0).

[image: Image]

Creating Circles

A circle is defined by a center point and a radius or diameter. We create circles in MicroStation VBA by using the CreateEllipseElement1 and CreateEllipseElement2 methods.

[image: Image] Function CreateEllipseElement1 (Template As Element, PerimeterPoint1 As Point3d, PerimeterPoint2 As Point3d, PerimeterPoint3 As Point3d, [FillMode As MsdFillMode = msdFillModeUseActive]) As EllipseElement

[image: Image] Function CreateEllipseElement2(Template As Element, Origin As Point3d, PrimaryRadius As Double, SecondaryRadius As Double, Rotation As Matrix3d, [FillMode As MsdFillMode = msdFillModeUseActive]) As ElllpseElement

We will begin with CreateEllipseElement2.

Sub TestCreateCircleA()

Dim CPoint As Point3d

Dim my Ellipse As EllipseElement

Dim rotMatrix As Matrix3d

CPoint.X = 2.5: CPoint.Y = 2.5

Set myEllipse = CreateEllipseElement2(Nothing, CPoint, 0.5, 0.5, _ rotMatrix)

ActiveModelReference.AddElement myEllipse

End Sub

The center point is set at (2.5,2.5,0) and we are using a radius of 0.5. We supply the same value for the PrimaryRadius parameter as we do for the SecondaryRadius parameter. This results in a circle. If the primary and secondary radii values are different, an ellipse is created.

Sub TestCreateCircleB ()

Dim CPoint As Point3d

Dim myEllipse As EllipseElement

Dim rotMatrix As Matrix3d

Dim CirRad As Double

CPoint.X = 2.5: CPoint.Y = 2.5

For CirRad = 0.5 To 2 Step 0.125

Set myEllipse = CreateEllipseElement2(Nothing, CPoint, _ CirRad, CirRad, rotMatrix)

ActiveModelReference.AddElement myEllipse

Next CirRad

End Sub

TestCreateCircleB creates a series of corradial circles with radii ranging from 0.5 to 2 in .125 unit increments.

The next procedure allows the user to select the center point of the circle to be drawn. The radius used is 0.5.

Sub TestCreateCircleC ()

Dim CPoint As Point3d

Dim myEllipse As EllipseElement

Dim rotMatrix As Matrix3d

Dim inputQueue As CadInputQueue

Dim inputMessage As CadInputMessage

Set inputQueue = CadInputQueue

Set inputMessage = _ inputQueue.GetInput(msdCadInputTypeDataPoint, _ msdCadInputTypeAny)

Do

Select Case inputMessage.InputType

Case msdCadInputTypeDataPoint

CPoint = inputMessage.point

Set my Ellipse = CreateEllipseElement2(Nothing, _ CPoint, 0.5, 0.5, rotMatrix)

ActiveModelReference.AddElement myEllipse

Exit Do

Case msdCadInputTypeReset

Exit Do

End Select

Loop

End Sub

The last circle-creating procedure we will write allows the user to select two points. A circle is then drawn through the selected points.

Sub TestCreateCircleD()

Dim CPoint As Point3d

Dim StPoint As Point3d

Dim EnPoint As Point3d

Dim myEllipse As EllipseElement

Dim rotMatrix As Matrix3d

Dim inputQueue As CadInputQueue

Dim inputMessage As CadInputMessage

Dim CirRad As Double

Set inputQueue = CadInputQueue

Set inputMessage = _ inputQueue.GetInput(msdCadInputTypeDataPoint, _ msdCadInputTypeAny)

Do

Select Case inputMessage.InputType

Case msdCadInputTypeDataPoint

StPoint = inputMessage.point

Exit Do

Case msdCadInputTypeReset

Exit Sub

End Select

Loop

Set inputMessage = inputQueue.GetInput(msdCadInputTypeDataPoint, _ msdCadInputTypeAny)

Do

Select Case inputMessage.InputType

Case msdCadInputTypeDataPoint

EnPoint = inputMessage.point

Exit Do

Case msdCadInputTypeReset

Exit Sub

End Select

Loop

CPoint.X = StPoint.X + (EnPoint.X - StPoint.X) / 2

CPoint.Y = StPoint.Y + (EnPoint.Y - StPoint.Y) / 2

CPoint.Z = StPoint.Z + (EnPoint.Z - StPoint.Z) / 2

CirRad = Point3dDistance(StPoint, EnPoint) / 2

Set myEllipse = CreateEllipseElement2(Nothing, CPoint, _ CirRad, CirRad, rotMatrix)

ActiveModelReference.AddElement myEllipse

End Sub

We calculate the center point of the circle by using the selected points. We also use the MicroStation VBA Point3dDistance function to give us the distance between the selected points.

Creating Ellipses

We have already used code that could create ellipses but the code created circles because the primary and secondary radii were the same. Let’s look at three examples of creating ellipses.

Sub TestCreateEllipseA()

Dim CPoint As Point3d

Dim myEllipse As EllipseElement

Dim rotMatrix As Matrix3d

CPoint.X = 2.5: CPoint.Y = 2.5

Set myEllipse = CreateEllipseElement2(Nothing, CPoint, 1, 0.5, _ rotMatrix)

ActiveModelReference.AddElement myEllipse

End Sub

Sub TestCreateEllipseB()

Dim MajorA1 As Point3d

Dim MajorA2 As Point3d

Dim MinorA1 As Point3d

Dim myEllipse As EllipseElement

MajorA1.X = 1: MajorA1.Y = 1

MajorA2.X = 5: MajorA2.Y = 5

MinorA1.X = 3: MinorA1.Y = 2

Set myEllipse = CreateEllipseElement1(Nothing, MajorA1, MajorA2, _ MinorA1)

ActiveModelReference.AddElement myEllipse

End Sub

Sub TestCreateEllipseC()

Dim CPoint As Point3d

Dim myEllipse As EllipseElement

Dim rotMatrix As Matrix3d

CPoint.X = 2.5: CPoint.Y = 2.5

rotMatrix.RowX.X = 2

rotMatrix.RowY.X = 4: rotMatrix.RowY.Y = 5

Set myEllipse = CreateEllipseElement2(Nothing, CPoint, 1, 0.5, _ rotMatrix)

ActiveModelReference.AddElement myEllipse

End Sub

After running the above procedures, what do we find? Two of the three procedures shown above create ellipses. However, the procedure

TestCreateEllipseB created a circle. The method CreateEllipseElement1 always creates a circle through the three points provided.

Creating Arcs

We have five different ways we can create arcs in MicroStation VBA.

1 Function CreateArcElement1 (Template As Element, StartPoint As Point3d, CenterPoint As Point3d, EndPoint As Point3d) As ArcElement

2 Function CreateArcElement2(Template As Element, CenterPoint As Point3d, PrimaryRadius As Double, SecondaryRadius As Double, Rotation As Matrix3d, StartAngle As Double, SweepAngle As Double) As ArcElement

3 Function CreateArcElement3(Template As Element, StartPoint As Point3d, PointOnCurve As Point3d, EndPoint As Point3d) As ArcElement

4 Function CreateArcElement4(Template As Element, StartTangent As Ray3d, EndPoint As Point3d) As ArcElement

5 Function CreateArcElement5(Template As Element, Chord As Segment3d, ArcLength As Double, PlanePoint As Point3d) As ArcElement

Let’s look at a few ways to use these methods.

Sub TestCreateArcA ()

Dim CPoint As Point3d

Dim StPoint As Point3d

Dim EnPoint As Point3d

Dim myArc As ArcElement

CPoint .X = 1: CPoint .Y = 1

StPoint .X = 4: StPoint .Y = 1

EnPoint .X = 1: EnPoint .Y = 4

Set myArc = CreateArcElement1(Nothing, StPoint, CPoint, EnPoint)

ActiveModelReference.Add Element myArc

End Sub

Sub TestCreateArcB ()

Dim CPoint As Point3d

Dim rotMatrix As Matrix3d

Dim myArc As ArcElement

CPoint.X = 1: CPoint.Y = 1

Set myArc = CreateArcElement2(Nothing, CPoint, 0.5, 0.5, _ rotMatrix, 0, Pi)

ActiveModelReference.AddElement myArc

End Sub

Sub TestCreateArcC()

Dim PointA As Point3d

Dim PointB As Point3d

Dim PointC As Point3d

Dim myArc As ArcElement

PointA .X = 1: PointA .Y = 1

PointB .X = 2: PointB .Y = 2

PointC .X = 1: PointC .Y = 3

Set myArc = CreateArcElement3(Nothing, PointA, PointB, PointC)

ActiveModelReference.AddElement myArc

End Sub

Sub TestCreateArcD()

Dim myArc As ArcElement

Dim myRay As Ray3d

Dim EndPoint As Point3d

myRay .Origin.X = 1

myRay .Origin.Y = 1

myRay.Direction. X = 1

myRay.Direction. Y = 4

EndPoint.X = 0: EndPoint.Y = 2

Set myArc = CreateArcElement4(Nothing , myRay, EndPoint)

ActiveModelReference.AddElement myArc

End Sub

Sub TestCreateArcE()

Dim myArc As ArcElement

Dim mySeg As Segment3d

Dim myPoint As Point3d

mySeg.startPoint.X = 1: mySeg.startPoint.Y = 1

mySeg. EndPoint.X = 4: mySeg.EndPoint.Y = 4

myPoint .X = 3.5: myPoint .Y = 3: myPoint .Z = 0

Set myArc = CreateArcElement5(Nothing , mySeg, 8.5, myPoint)

ActiveModelReference.AddElement myArc

End Sub

Creating Text

Text is easy to create by using the CreateTextElement1 method.

[image: Image] Function CreateTextElement1(Template As Element, Text As String, Origin As Point3d, Rotation As Matrix3d) As TextElement

Here is an example of creating nine text elements spaced 0.5 units away from each other.

Sub TestCreateTextA()

Dim myText As TextElement

Dim TextPt As Point3d

Dim rotMatrix As Matrix3d

Dim I As Double

For I = 1 To 9

TextPt.Y = TextPt.Y - 0.5

Set myText = CreateTextElement1(Nothing, "Note " & I & _ ":", TextPt, rotMatrix)

ActiveModelReference.AddElement myText

Next I

End Sub

[image: Image]

Creating Cells

Thus far, all elements we have created have been added to the design file as individual elements. When we begin working with cells, we work with multiple elements as a single cell. We create the elements in the same manner as when we are adding them to our model but instead of adding the created element to the model we add it to the cell. We have three options for creating cells.

1 Function CreateCellElement1(Name As String, Elements() As_Element, Origin As Point3d, [IsPointCell As Boolean]) As CellElement

2 Function CreateCellElement2(CellName As String, Origin As Point3d, Scale As Point3d, TrueScale As Boolean, Rotation As Matrix3d) As CellElement

3 Function CreateCellElement3(CellName As String, Origin As Point3d, TrueScale As Boolean) As CellElement

Our first example creates a cell named "Box". Four lines are added to an array of elements. This array is used when we create the cell.

Sub TestCreateCellA()

Dim myCell As CellElement

Dim BoxLines(0 To 3) As Element

Dim OriginPoint As Point3d

Set BoxLines(0) = CreateLineElement2(Nothing, _

Point3dFromXYZ(0, 0, 0), Point3dFromXYZ(4, 0, 0))

Set BoxLines(1) = CreateLineElement2(Nothing, _

Point3dFromXYZ(4, 0, 0), Point3dFromXYZ(4, 4, 0))

Set BoxLines(2) = CreateLineElement2(Nothing, _

Point3dFromXYZ(4, 4, 0), Point3dFromXYZ(0, 4, 0))

Set BoxLines(3) = CreateLineElement2(Nothing, _

Point3dFromXYZ(0, 4, 0), Point3dFromXYZ(0, 0, 0))

OriginPoint.X = 2: OriginPoint.Y = 2

Set myCell = CreateCellElement1("Box", BoxLines, OriginPoint)

ActiveModelReference.AddElement myCell

myCell.Redraw

End Sub

TestCreateCellA creates A 4-unit square with an origin of (2, 2, 0).

Sub TestCreateCellB()

Dim myCell As CellElement

Dim CellElements(0 To 6) As Element

Dim OriginPoint As Point3d

Dim rotMatrix As Matrix3d

Set CellElements(0) = CreateLineElement2(Nothing, _

Point3dFromXYZ(0, 0, 0), Point3dFromXYZ(4, 0, 0))

Set CellElements(1) = CreateLineElement2(Nothing, _

Point3dFromXYZ(4, 0, 0), Point3dFromXYZ(4, 4, 0))

Set Cell Elements(2) = CreateLineElement2(Nothing, _

Point3dFromXYZ(4, 4, 0), Point3dFromXYZ(0, 4, 0))

Set CellElements(3) = CreateLineElement2(Nothing, _

Point3dFromXYZ(0, 4, 0), Point3dFromXYZ(0, 0, 0))

Set CellElements(4) = CreateLineElement2(Nothing, _

Point3dFromXYZ(0, 0, 0), Point3dFromXYZ(4, 4, 0))

Set CellElements(5) = CreateLineElement2(Nothing, _

Point3dFromXYZ(4, 0, 0), Point3dFromXYZ(0, 4, 0))

OriginPoint.X = 2: OriginPoint.Y = 2

Set CellElements(6) = CreateEllipseElement2(Nothing, _

OriginPoint, 1.25, 1.25, rotMatrix)

Set myCell = CreateCellElement1("Box2", CellElements, _ OriginPoint)

ActiveModelReference.AddElement myCell

myCell.Redraw

End Sub

As the number of elements we want in a cell increases, the upper-bound array number increases. Six lines and a circle are used in TestCreateCellB to create a cell named "Box2".

Creating cells is easy to do as we have already seen. Adding the cell to a cell library makes the creation of the cell useful in other files.

Sub TestCreateCellC()

Dim myCell As CellElement

Dim CellElements(0 To 6) As Element

Dim OriginPoint As Point3d

Dim rotMatrix As Matrix3d

Set CellElements(0) = CreateLineElement2(Nothing, _

Point3dFromXYZ(0, 0, 0), Point3dFromXYZ(4, 0, 0))

Set CellElements(1) = CreateLineElement2(Nothing, _

Point3dFromXYZ(4, 0, 0), Point3dFromXYZ(4, 4, 0))

Set CellElements(2) = CreateLineElement2(Nothing, _

Point3dFromXYZ(4, 4, 0), Point3dFromXYZ(0, 4, 0))

Set CellElements(3) = CreateLineElement2(Nothing, _

Point3dFroinXYZ(0, 4, 0), Point3dFromXYZ(0, 0, 0))

Set CellElements(4) = CreateLineElement2(Nothing, _

Point3dFromXYZ(0, 0, 0), Point3dFromXYZ(4, 4, 0))

Set CellElementst(5) = CreateLineElement2(Nothing, _

Point3dFromXYZ(4, 0, 0), Point3dFromXYZ(0, 4, 0))

OriginPoint.X = 2: OriginPoint.Y = 2

Set CellElements(6) = CreateEllipseElement2(Nothing, _ OriginPoint, 1.25, 1.25, rotMatrix)

Set myCell = CreateCellElement1("Box3", CellElements, _ OriginPoint)

ActiveModelReference. AddElement myCell

myCell.Redraw

Application.AttachCellLibrary "MicroStation VBA.cel"

Application.AttachedCellLibrary.AddCell myCell, _ "Box3", "Box3", False

End Sub

Note that we specify the file name of the cell library we want to attach the cell to. We do not specify the full path, only the file name.

[image: Image]

CREATING NEW DOCUMENTS

We have drawn lines, circles, ellipses, arcs, text, and cells to the current design file. This assumes we have a file to work with. How do we create new design files?

1 Function CreateDesignFile(SeedFileName As String, NewDesignFileName As String, Open As Boolean) As DesignFile

2 Sub CopyDesignFile(ExistingDesignFileName As String, NewDesignFileName As String, [Overwrite As Boolean])

Here are two methods that create new design files. CreateDesignFile allows us to specify whether the new file is to be a 2D or 3D file by specifying the seed document. Let’s look at a couple of examples.

Sub TestCreateDesignFileA()

Dim myFile As DesignFile

Application.ActiveDesignFile.Close

Set myFile = CreateDesignFile("seed2d", _ "C:\MicroStation VBA\filea.dgn", True)

End Sub

TestCreateDesignFileA creates a new 2D design file. The file path and name are specified. After the CreateDesignFile line of code is executed, the new file is created and opened. It becomes the active document. If the file already exists, a new file is created and overwrites the existing file. Since we don’t receive any warning of this, we should check if the file already exists.

Sub TestCreateDesignFileB()

Dim myFile As DesignFile

Dim myFileName As String

myFileName = "C:\MicroStation VBA\filea.dgn"

If Dir(myFileName) = " " Then

Set myFile = CreateDesignFile("seed3d", myFileName, True)

Else

MsgBox "The file " & myFileName & " already exists.", _ vbCritical

End If

End Sub

If the file we want to create exists (we know this by using the Dir function), we inform the user it already exists. If it does not exist, we create a new 3D file.

Let’s look at one more example:

Sub TestCreateDesignFileC()

Dim myFile As DesignFile

Dim I As Long

For I = 1 To 10

Set myFile = CreateDesignFile("seed2d",_"C:\MicroStation VBA\file" & I & ".dgn", False)

Next I

End Sub

How many files does TestCreateDesignFileC create? It creates ten (10) files. Each file is a new 2D file and the files are not opened in MicroStation (the False Parameter).

[image: Image]

SECURITY ISSUES WITH CREATING DATA

Our ability to create data in MicroStation using VBA is dependent on our security settings. VBA is not intended to bypass these security settings. Writing and attempting to run the procedures in this chapter on one machine may result in the intended creation of data. Other machines with different security permissions may cause the code to fail. CAD administrators should be able to provide the appropriate permissions if this becomes a problem.

REVIEW

Simple geometry can be created with the knowledge of only a few MicroStation VBA calls. The Object Browser and MicroStation VBA help file can be used to find other data creation alternatives and can provide examples of how to use them.

[image: Image]

16Searching In Files

Our design files range in complexity from one or two elements to many thousands. The number of elements can vary as well as the element types (lines, circles, arcs, text) and colors. Levels, line styles and classes can differ from element to element. Line weights and transparency can also vary. As we begin searching in our files, we will learn how to discover these properties we find in our files.

In this Chapter:

[image: Image] The Basics of Searching Files

[image: Image] Using ScanCriteria

[image: Image] Multiple Combinations of Criteria

[image: Image] Reviewing Three Collection Methods

[image: Image] Scan Criteria Methods

THE BASICS OF SEARCHING FILES

Let’s begin by examining each element found in a file.

Sub TestScanAllA()

Dim myElement As Element

Dim myEnum As ElementEnumerator

Set myEnum = ActiveModelReference.Scan()

While myEnum.MoveNext

Set myElement = myEnum.Current

Debug.Print myElement.Type

Wend

End Sub

This procedure prints the type property value of each element in the active model to the Immediate Window.

[image: Image]

Running the procedure TestScanAllA results in a list of numbers telling us the type of element found. This number references the msdElementType enumeration.

Here is a listing of the msdElementType enumerations members:

msdXDatumTypeWorldSpacePosition

msdElementType44 = 44

msdElementTypeArc = 16

msdElementTypeBsplineBoundary = 25

msdElementTypeBsplineCurve = 27

msdElementTypeBsplineKnot = 26

msdElementTypeBsplinePole = 21

msdElementTypeBsplineSurface = 24

msdElementTypeBsplineWeight = 28

msdElementTypeCellHeader = 2

msdElementTypeCellLibraryHeader = 1

msdElementTypeComplexShape = 14

msdElementTypeComplexString = 12

msdElementTypeCone = 23

msdElementTypeConic = 13

msdElementTypeCurve = 11

msdElementTypeDesignFileHeader = 9

msdElementTypeDgnStoreComponent = 38

msdElementTypeDgnStoreHeader = 39

msdElementTypeDigSetData = 8

msdElementTypeDimension = 33

msdElementTypeEllipse = 15

msdElementTypeGroupData = 5

msdElementTypeLevelMask = 99

msdElementTypeLevelSymbology = 10

msdElementTypeLine = 3

msdElementTypeLineString = 4

msdElementTypeMatrixDoubleData = 103

msdElementTypeMatrixHeader = 101

msdElementTypeMatrixIntegerData = 102

msdElementTypeMeshHeader = 105

msdElementTypeMicroStation = 66

msdElementTypeMultiLine = 36

msdElementTypeNamedGroupComponent = 111

msdElementTypeNamedGroupHeader = 110

msdElementTypePointString = 22

msdElementTypeRasterComponent = 88

msdElementTypeRasterFrame = 94

msdElementTypeRasterHeader = 87

msdElementTypeRasterReference = 90

msdElementTypeRasterReferenceComponent = 91

msdElementTypeReferenceAttachment = 100

msdElementTypeReferenceOverride = 108

msdElementTypeShape = 6

msdElementTypeSharedCell = 35

msdElementTypeSharedCellDefinition = 34

msdElementTypeSolid = 19

msdElementTypeSurface = 18

msdElementTypeTable = 96

msdElementTypeTableEntry = 95

msdElementTypeTag = 37

msdElementTypeText = 17

msdElementTypeTextNode = 7

msdElementTypeView = 98

msdElementTypeViewGroup = 97

A review of the Immediate window, shown previously, shows the first three unique element types are 9, 96, and 97. Referring to the list above tells us the first three element types found were:

msdElementTypeDesignFileHeader = 9

msdElementTypeTable = 96

msdElementTypeViewGroup = 97

Not exactly lines, circles, or arcs, right? MicroStation design files are composed of far more than what we see on the screen as we are working with MicroStation. What are the next three element types? 66, 6, and 4.

msdElementTypeMicroStation = 66

msdElementTypeShape = 6

msdElementTypeLineString = 4

Now we’re getting somewhere. We can see shapes and linestrings.

We are going to do a lot of copy and paste operations in this chapter. Let’s begin by copying and pasting TestScanAllA as TestScannAllB.

Sub TestScanAllB()

Dim myElement As Element

Dim myEnum As ElementEnumerator

Set myEnum = ActiveModelReference.Scan()

While myEnum.MoveNext

Set myElement = myEnum.Current

Select Case myElement.Type

Case msdElementTypeArc

Dim myArc As ArcElement

Set myArc = myElement

Case msdElementTypeCurve

Dim myCurve As CurveElement

Set myCurve = myElement

Case msdElementTypeLine

Dim myLine As LineElement

Set myLine = myElement

Case msdElementTypeText

Dim myText As TextElement

Set myText = myElement

Case Else

Debug.Print myElement.Type

End Select

Wend

End Sub

We can make the use of a Select … Case statement to allow us to perform actions based on the Element.Type property. As we cycle through each element in our ElementEnumerator we set each element to a generic element object. If we want to work with a LineElement we could do so through the generic element object but declaring a variable as a LineElement makes our programming tasks much easier. Let’s see why this is true.

[image: Image]

As we are programming, which list would help us most if we are working with a line element? The list on the left gives us a StartPoint property. Lines have start points. The list on the right does not have a StartPoint in the list. If we declare a variable as a LineElement we will see line-specific properties in addition to the standard element properties.

Let’s do a little more with the above procedure. Copy and paste it as TestScanAllC. After doing so, we are going to remove everything inside the Select … Case statement except for the “Case msdElementTypeText” area.

Sub TestScanAllC()

Dim myElement As Element

Dim myEnum As ElementEnumerator

Set myEnum = ActiveModelReference.Scan()

While myEnum.MoveNext

Set myElement = myEnum.Current

Select Case myElement.Type

Case msdElementTypeText

Dim myText As TextElement

Set myText = myElement

myText.Text = UCase(myText.Text)

End Select

Wend

End Sub

Now, our procedure is only going to react to text elements. And what are we doing to the text element? UCase capitalizes everything. The result of this procedure should be the capitalization of all text elements, right?

After this code is executed we should find that nothing has changed. How is this possible? The code is capitalizing the text. Let’s take a look at the next procedure and see if we can find what is missing.

Sub TestScanAllD()

Dim myElement As Element

Dim myEnum As ElementEnumerator

Set myEnum = ActiveModelReference.Scan()

While myEnum.MoveNext

Set myElement = myEnum.Current

Select Case myElement.Type

Case msdElementTypeText

Dim myText As TextElement

Set myText = myElement

myText.Text = UCase(myText.Text)

myText.Rewrite

End Select

Wend

End Sub

If we don’t rewrite the element to the model, the text element may be modified in memory but the change is not actually made to the design file.

USING SCANCRITERIA

Now, let’s suppose we are working with a large file. It is composed of thousands of elements but only four of them are TextElements. If we run the code shown above, the TextElements will be capitalized to be sure. However, it may take a while because each and every element in the design file is reviewed. Let’s make our code more efficient by working only with text elements. We accomplish this through the use of an ElementScanCriteria object.

Sub TestScanFilterA()

Dim myEnum As ElementEnumerator

Dim myFilter As New ElementScanCriteria

Dim ElementCounter As Long

myFilter.IncludeType msdElementTypeText

myFilter.IncludeType msdElementTypeTextNode

Set myEnum = ActiveModelReference.Scan(myFilter)

While myEnum.MoveNext

ElementCounter = ElementCounter + 1

Wend

MsgBox ElementCounter & " elements found."

End Sub

When we include Text and TextNode elements, we should only be counting the number of Text and TextNode elements. After running this code, however, we find that something is not working as expected.

On careful examination we find that, by default, ScanCriteria includes everything. Before specifying which elements we want to look at, we need to exclude everything and then include those elements with which we want to work.

Sub TestScanFilterB()

Dim myEnum As ElementEnumerator

Dim myFilter As New ElementScanCriteria

Dim ElementCounter As Long

myFilter.ExcludeAllTypes

myFilter.IncludeType msdElementTypeText

myFilter.IncludeType msdElementTypeTextNode

Set myEnum = ActiveModelReference.Scan(myFilter)

While myEnum.MoveNext

ElementCounter = ElementCounter + 1

Wend

MsgBox ElementCounter & " elements found."

End Sub

Now, myEnum only contains Text and TextNode elements.

Let’s build on TestScanFilterB by adding a filter for a specific level. Before we look for a specific Level, we must first exclude all levels. If we miss this critical step, we will be retrieving all levels.

Sub TestScanFilterC()

Dim myEnum As ElementEnumerator

Dim myFilter As New ElementScanCriteria

Dim ElementCounter As Long

myFilter.ExcludeAllTypes

myFilter.ExcludeAllLevels

myFilter.IncludeType msdElementTypeText

myFilter.IncludeType msdElementTypeTextNode

myFilter.IncludeLevel ActiveDesignFile.Levels("SIDEWALK")

Set myEnum = ActiveModelReference.Scan(myFilter)

While myEnum.MoveNext

ElementCounter = ElementCounter + 1

Wend

MsgBox ElementCounter & " elements found."

End Sub

Let’s look over the macro “ScanFilterc”. What is being counted here? Text elements and TextNode elements on Level “SIDEWALK”.

Sub TestScanFilterD()

Dim myEnum As ElementEnumerator

Dim myFilter As New ElementScanCriteria

Dim ElementCounter As Long

myFilter.ExcludeAllTypes

myFilter.ExcludeAllLevels

myFilter.ExcludeAllColors

myFilter.IncludeType msdElementTypeText

myFilter.IncludeType msdElementTypeTextNode

myFilter.IncludeLevel ActiveDesignFile.Levels("SIDEWALK")

myFilter.IncludeColor 4

Set myEnum = ActiveModelReference.Scan(myFilter)

While myEnum.MoveNext

ElementCounter = ElementCounter + 1

Wend

MsgBox ElementCounter & " elements found."

End Sub

We have added one more scan criteria. In addition to looking at the element type and level, we are now looking at the color.

If we know a color’s index in the document’s color table, we can specify it as shown above. Let’s look at the next example where we specify an RGB color value to filter for a specific color. We will also add one more item in our scan criteria. Let’s add a Linestyle criteria.

Sub TestScanFilterF()

Dim myEnum As ElementEnumerator

Dim myFilter As New ElementScanCriteria

Dim ElementCounter As Long

Dim myColorTable As ColorTable

Dim myColor As Long

Set myColorTable = ActiveDesignFile.ExtractColorTable

myColor = myColorTable.FindClosestColor(RGB(192, 192, 192))

myFilter.ExcludeAllTypes

myFilter.ExcludeAllLevels

myFilter.ExcludeAllColors

myFilter.ExcludeAllLineStyles

myFilter.IncludeType msdElementTypeLineString

myFilter.IncludeLineStyle ActiveDesignFile.LineStyles("(Hidden)")

myFilter.IncludeLevel ActiveDesignFile.Levels("SIDEWALK")

myFilter.IncludeColor myColor - 1

Set myEnum = ActiveModelReference.Scan(myFilter)

While myEnum.MoveNext

ElementCounter = ElementCounter + 1

Wend

MsgBox ElementCounter & " elements found."

End Sub

And yet another scan criteria is added in our next procedure:

Sub TestScanFilterG()

Dim myEnum As ElementEnumerator

Dim myFilter As New ElementScanCriteria

Dim ElementCounter As Long

Dim myColorTable As ColorTable

Dim myColor As Long

Set myColorTable = ActiveDesignFile.ExtractColorTable

myColor = myColorTable.FindClosestColor(RGB(192, 192, 192))

myFilter.ExcludeAllTypes

myFilter.ExcludeAllLevels

myFilter.ExcludeAllColors

myFilter.ExcludeAllLineStyles

myFilter.ExcludeAllClasses

myFilter.IncludeType msdElementTypeLineString

myFilter.IncludeLineStyle ActiveDesignFile.LineStyles("(Hidden)")

myFilter.IncludeLevel ActiveDesignFlie.Levels("SIDEWALK")

myFilter.IncludeColor myColor - 1

myFilter.IncludeClass msdElementClassPrimary

Set myEnum = ActiveModelReference.Scan(myFilter)

While myEnum.MoveNext

ElementCounter = ElementCounter + 1

Wend

MsgBox ElementCounter & " elements found."

End Sub

Now we are adding the “Class” to our scan criteria.

Thus far we have excluded everything from our criteria and added in only the criteria we wanted. When we 'ExcludeAllLevels', the number of levels we exclude varies from file to file.

Now, let’s look at each of the levels in our design file. One specific level will not be added to our scan criteria and everything else will be added.

Sub TestScanFilterH()

Dim myEnum As ElementEnumerator

Dim myFilter As New ElementScanCriteria

Dim myLevel As Level

Dim ElementCounter As Long

myFilter.ExcludeAllLevels

For Each myLevel In ActiveDesignFile.Levels

Select Case UCase(myLevel.Name)

Case "SIDEWALK"

Case Else

myFilter.IncludeLevel myLevel

End Select

Next

Set myEnum = ActiveModelReference.Scan(myFilter)

While myEnum.MoveNext

ElementCounter = ElementCounter + 1

Wend

MsgBox ElementCounter & " elements found."

End Sub

When dealing with our ElementScanCriteria object, everything is within the bounds of the criteria. Since we don’t have the option to remove a specific element type or level, etc., in the above example, we remove all levels and then add back those levels that meet our criteria. In the above example, we are adding all levels except for the “SIDEWALK” level.

MULTIPLE COMBINATIONS OF CRITERIA

Thus far we have dealt with elements matching specific criteria in each procedure. What do we do if we want all cells on level “Columns” and all text elements on level “Marks"? Here are three ways to accomplish the same task.

Sub TestScanFilterJ()

Dim myElem As Element

Dim myEnum As ElementEnumerator

Dim myEnum2 As ElementEnumerator

Dim myFilter As New ElementScanCriteria

Dim myFilter2 As New ElementScanCriteria

Dim ElementCounter As Long

myFilter.ExcludeAllTypes

myFilter.ExcludeAllLevels

myFilter.IncludeType msdElementTypeSharedCell

myFilter.IncludeLevel ActiveDesignFile.Levels("COLUMNS")

Set myEnum = ActiveModelReference.Scan(myFilter)

While myEnum.MoveNext

ElementCounter = ElementCounter + 1

Wend

myFilter2.ExcludeAllTypes

myFilter2.ExcludeAllLevels

myFilter2.IncludeType msdElementTypeText

myFilter2.IncludeLevel ActiveDesignFile.Levels("MARKS")

Set myEnum2 = ActiveModelReference.Scan(myFilter2)

While myEnum2.MoveNext

ElementCounter = ElementCounter + 1

Wend

MsgBox ElementCounter & " elements found."

End Sub

We can use two different enumerator objects with two different scan criteria objects. This is one way to deal with our current scenario. Are there other ways we can accomplish the same goal?

Sub TestScanFilterK()

Dim myElem As Element

Dim myEnum As ElementEnumerator

Dim myFilter As New ElementScanCriteria

Dim myCollection As New Collection

myFilter.ExcludeAllTypes

myFilter.ExcludeAllLevels

myFillter. IncludeType msdElementTypeSharedCell

myFilter.IncludeLevel ActiveDesignFile.Levels("COLUMNS")

Set myEnum = ActiveModelReference.Scan(myFilter)

While myEnum.MoveNext

Set myElem = myEnum.Current

myCollection.Add myElem

Wend

myFilter.Reset

myFilter.ExcludeAll Types

myFilter.ExcludeAllLevels

myFilter.IncludeType msdElementTypeText

myFilter.IncludeLevel ActiveDesignFile.Levels("MARKS")

Set myEnum = ActiveModelReference.Scan(myFilter)

While myEnum.MoveNext

Set myElem = myEnum.Current

myCollection.Add myElem

Wend

MsgBox myCollection.Count & " elements found."

End Sub

This is another way to accomplish the same goal. We apply two separate criteria. As we move through each enumerator, we add the element in the enumerator to a custom collection. This allows us to work with a single collection of objects after each combination of criteria is applied.

[image: Image]

Adding a watch to the variable myCollection shows something like this:

Here is one more way to accomplish the same task. We are going to create a named group and then add the objects we find to the named group.

Sub TestScanFilterM()

Dim myEnum As ElementEnumerator

Dim myFilter As New ElementScanCriteria

Dim myGroup As NamedGroupElement

Set myGroup = ActiveModelReference.AddNewNamedGroup("GroupA")

myFilter.ExcludeAll Types

myFilter.ExcludeAllLevels

myFilter.IncludeType msdElementTypeSharedCell

myFilter.IncludeLevel ActiveDesignFile.Levels("COLUMNS")

Set myEnum = ActiveModelReference.Scan(myFilter)

While myEnum.MoveNext

myGroup.AddMember myEnum.Current

Wend

myFilter.Reset

myFilter.ExcludeAllTypes

myFilter.ExcludeAllLevels

myFilter.IncludeType msdElementTypeText

myFilter.IncludeLevel ActiveDesignFile.Levels("MARKS")

Set myEnum = ActiveModelReference.Scan(myFilter)

While myEnum.MoveNext

myGroup.AddMember myEnum.Current

Wend

myGroup.Rewrite

MsgBox myGroup.MembersCount & " elements found."

End Sub

[image: Image]

REVIEWING THREE COLLECTION METHODS

Each of the three methods described above have their advantages and disadvantages. For the sake of discussion, we will refer to the methods as multi-criteria, collection, and group.

The multi-criteria method provides a straightforward and simple way to get groups of criteria in their own individual enumerators. One benefit to doing things this way is that we have our individual groups of criteria in their own distinct groups. This allows us to work with each group separately if desired. The primary disadvantage is that these individual groups make it more difficult to work with the elements in each group as a whole.

The collection method uses only one ScanCriteria object and places all objects found into a single custom VBA collection. Doing so allows us to use For Each … Next statements on the entire collection, remove items from the collection, etc.

The group method may provide the best possible results. Each item is placed into a single container. This gives us the same benefit as using a collection. The real benefit to using groups is that when we use “myGroup.Rewrite”, the group is added to the design file and can be used by the user with other standard MicroStation commands and functionality. If we do not “rewrite” the group, the elements added to the group do not get added to the group in the design file even though the group itself is in the design file. So, if we want to use a group without rewriting it to the design file, we should remove the group after we have completed our programming tasks.

SCAN CRITERIA METHODS

The code we have written in this chapter has used several methods of the ElementScanCriteria Object. Here is a comprehensive listing of the methods:

Sub ExcludeAllClasses()

Sub ExcludeAllColors()

Sub ExcludeAllLevels()

Sub ExcludeAllLineStyles()

Sub ExcludeAllLineWeights()

Sub ExcludeAllSubtypes()

Sub ExcludeAllTypes()

Sub ExcludeGraphical()

Sub ExcludeNonGraphical()

Sub IncludeClass(ElemClass As MsdElementClass)

Sub IncludeColor(ColorIndex As Long)

Sub IncludeLevel(Level As Level)

Sub IncludeLineStyle(LineStyle As LineStyle)

Sub IncludeLineWeight(LineWeight As Long)

Sub IncludeOnlyCell(Cell Name As String)

Sub IncludeOnlyFilePositionRange(Min As Long, Max As Long)

Sub IncludeOnlyGnaphicGroup(GraphicGroupNumber As Long)

Sub IncludeOnlyHole()

Sub IncludeOnlyInvisible()

Sub IncludeOnlyLocked()

Sub IncludeOnlyModified()

Sub IncludeOnlyModifiedRange(Min As Date, [Max As Date])

Sub IncludeOnlyNew()

Sub IncludeOnlyNonPlanar()

Sub IncludeOnlyNonSnappable()

Sub IncludeOnlyOld()

Sub IncludeOnlyPlanar()

Sub IncludeOnlySnappable()

Sub IncludeOnlySolid()

Sub IncludeOnlyUnlocked()

Sub IncludeOnlyUnmodified()

Sub IncludeOnlyUserAttribute(UserAttributeID As Long)

Sub IncludeOnlyVisible()

Sub IncludeOnlyWithinRange(Range As Range3d)

Sub IncludeSubtype(Long As Long)

Sub IncludeType(Type As MsdElementType)

Sub Reset()

A review of the MicroStation VBA help file explains any of the methods that are not self-explanatory. One method is worth noting: the “IncludeOnlyWithinRange” method.

Sub TestScanFilterN()

Dim myEnum As ElementEnumerator

Dim myFilter As New ElementScanCriteria

Dim myGroup As NamedGroupElement

Dim myRange As Range3d

Set myGroup = ActiveModelReference.AddNewNamedGroup("GroupC")

myRange.Low.X = 1: myRange.Low.Y = 1: myRange.Low.Z = 0

myRange.High.X = 3: myRange.High.Y = 3: myRange.High.Z = 0

myFilter.IncludeOnlyWithinRange myRange

Set myEnum = ActiveModelReference.Scan(myFilter)

While myEnum.MoveNext

myGroup.AddMember myEnum.Current

Wend

myGroup.Rewrite

MsgBox myGroup.MembersCount & " elements found."

End Sub

The ability to scan a file from within only a specific area is very powerful. We may look for elements surrounding a point selected by the user, for example. Or we may scan for elements surrounding cells with a specific name. The range we specify is 3D so we can provide a Low.Z and a High.Z value if we are working on 3D files.

REVIEW

Each file in MicroStation is composed of many objects. Some of these are visible, others are not. Levels, for example, are not graphical elements but are still very important.

We should be careful when we scan our files. If we scan with the intent to create new geometry, it is possible to create a problem for ourselves. For example, if we are scanning a file for lines and are drawing new lines over old ones, the new lines may be added to our ScanCriteria and we could end up in an endless loop.

This chapter covered scanning MicroStation files with pre-defined criteria. In the next chapter, a user makes selections in MicroStation and then has our code manipulate the selection.

[image: Image]

17Interactive Modification

User interaction can be helpful when modifying files and elements in VBA. When our programs are designed well, they are powerful and flexible.

In this Chapter:

[image: Image] Giving users feedback and information

[image: Image] Working with selection sets

[image: Image] Getting user input

[image: Image] Using the send command

[image: Image] Employing modeless dialog boxes

[image: Image] Applying some real-world applications

[image: Image] Interacting with MDL applications

GIVING USERS FEEDBACK AND INFORMATION

When we are working with MicroStation in any capacity three distinct areas at the bottom of the MicroStation window give us information and feedback.

These areas are called the command, prompt, and status areas.

[image: Image]

When we begin the "Place SmartLine" command, we see the command and the first prompt associated with this command. We are prompted to "Enter first vertex". After we click the first vertex, we are prompted to "Enter next vertex or reset to complete". The Status area gives us general feedback on the results of selections and other commands.

Let’s see how we can work with these areas to give our users similar feedback and information as they use our programs.

Sub TestShowCommand()

ShowCommand "Draw a Line"

ShowPrompt "Select First Point:"

ShowStatus "Draw Line by selecting two points."

End Sub

[image: Image]

Three methods are used to show the text we want to display in the command, prompt, and status areas of MicroStation. Even though the user can change the size of the command/prompt area, make sure that commands and prompts are visible without requiring users to stretch the area wider. Commands and prompts are not meant to provide comprehensive instructions, but rather, general guidelines.

Sub TestShowTempMessage()

ShowTempMessage msdStatusBarAreaLeft, "Message Left."

ShowTempMessage msdStatusBarAreaMiddle, "Message Middle."

End Sub

[image: Image]

Another way we can provide feedback to the user is by sending a "Temporary Message". We have the option of placing the message in the "Left Area" or the "Middle Area". Messages placed in the middle area also appear in the Message Center.

Sub ShowTempMessage(Area As MsdStatusBarArea, Message As String, [Details As String])

Here is the declaration for ShowTempMessage. It has one optional parameter, "Details". When we provide a value for this parameter and we have specified "msdStatusBarAreaMiddle" as the location for the message, the detail we provide displays in the Message Center. This is an excellent way to provide a more lengthy message to the user if needed.

Sub TestShowTempMessageCenter()

ShowTempMessage msdStatusBarAreaMiddle, "Changes made to file:", _

"Changes were made to the file C:\testa.dgn. " & _

"These changes were made by the macro " & _

"""TestShowTempMessageCenter""."

End Sub

[image: Image]

The next feedback method we will look at is the ShowError method. The text we supply with this method displays in the command/prompt area.

Sub TestShowError()

ShowError "Selection of Cell Failed."

End Sub

[image: Image]

WORKING WITH SELECTION SETS

Users can select elements in their files through a variety of methods. Once selected, we can make modifications to the selected elements by using the GetSelectedElements method.

Sub TestSelectionSetA()

Dim myElement As Element

Dim myElemEnum As ElementEnumerator

Set myElemEnum = ActiveModelReference.GetSelectedElements

While myElemEnum.MoveNext

Set myElement = myElemEnum.Current

myElement.Level = ActiveModelReference.Levels(_ "A-FURN-FREE")

Wend

End Sub

We used the ElementEnumerator in a previous chapter. In this example, we get the selected elements and change the level of each element one-by-one. Let’s look carefully at the code. Are we missing anything?

Sub TestSelectionSetB()

Dim myElement As Element

Dim myElemEnum As ElementEnumerator

Set myElemEnum = ActiveModelReference.GetSelectedElements

While myElemEnum.MoveNext

Set myElement = myElemEnum.Current

myElement.Level = ActiveModelReference.Levels("A-FURN-FREE")

myElement.Rewrite

Wend

End Sub

If we do not rewrite the element to the design file, element modifications are not persistent. This is critical. You could spend a great deal of time debugging code only to find that changes made to elements are not reflected in your files. Any changes made to elements in files must be rewritten back to the file or they are not permanent. This is by design.

Sub TestSelectionSetC()

Dim mySettings As Settings

Set mySettings = Application.ActiveSettings

If MsgBox("Change Selection to Color " & mySettings.Color & "?". _ vbYesNo) = vbYes Then

Dim myElement As Element

Dim myElemEnum As ElementEnumerator

Set myElemEnum = ActiveModelReference.GetSelectedElements

While my ElemEnum.MoveNext

Set myElement = myElemEnum.Current

myElement.Color = mySettings.Color

myElement.Rewrite

Wend

End If

End Sub

TestSelectionSetC changes all selected elements to the active color in MicroStation if the user clicks on the Yes button in the MessageBox. We are using the same methodology going through each of the elements in the ElementEnumerator.

[image: Image]

GETTING USER INPUT

Thus far we have discussed prompting the user with information and working with previously-selected elements. Allowing the user to give us input as our procedures execute makes our interactive modifications more powerful.

The Cad Input Queue allows us to capture some of the user’s interaction with MicroStation. Let’s look at a few examples of using the CAD Input Queue. We begin with a very simple example that demonstrates the use of the CAD Input Queue and then move to some real-world examples.

Sub TestCadInputA()

Dim myCIQ As CadInputQueue

Dim myCIM As CadInputMessage

Dim I As Long

Set myCIQ = CadInputQueue

For I = 1 To 10

Set myCIM = myCIQ.GetInput

Debug.Print myCIM.InputType

Next I

End Sub

In the above example, we capture ten user interactions and print the InputType to the Immediate Window. The main thing we want to see with this example is the mechanics of how to use the CadInputQueue and the CadInputMessage.

Let’s make a couple of modifications to the above example to capture only point selections.

Sub TestCadInputB()

Dim myCIQ As CadInputQueue

Dim myCIM As CadInputMessage

Dim I As Long

Dim pt3Selection As Point3d

Set myCIQ = CadInputQueue

For I = 1 To 10

Set myCIM = myCIQ.GetInput(msdCadInputTypeDataPoint)

pt3Selection = myCIM.Point

Debug.Print pt3Selection.X & ", " & pt3Selection.Y

Next I

End Sub

The CadInputQueue captures a number of different types of inputs. When we use the GetInput method we can specify which type of inputs we want to capture. In the above example we are restricting the capture to data point entries. Since we know we are getting a point, we can use the point property of the CadInputMessage object and print the X, Y, and Z elements of the point to the Debug window (Immediate Window).

Let’s continue to build on our "TestCadInput" macros. In the next example we will capture points and resets.

Sub TestCadInputC()

Dim myCIQ As CadInputQueue

Dim myCIM As CadInputMessage

Dim I As Long

Dim pt3Selection As Point3d

Set myCIQ = CadInputQueue

For I = 1 To 10

Set myCIM = myCIQ.GetInput(msdCadInputTypeDataPoint, _ msdCadInputTypeReset)

Select Case myCIM.InputType

Case msdCadInputTypeDataPoint

pt3Selection = myCIM.Point

Debug.Print pt3Selection.X & ", " & pt3Selection.Y

Case msdCadInputTypeReset

Exit For

End Select

Next I

End Sub

Now, our macro captures up to ten input points or until a reset is initiated by the user. We use Exit For to exit out of the loop when a reset is detected.

We have introduced DataPoint and Reset input types, so what other types are available to us?

msdCadInputTypeCommand = 1

msdCadInputTypeReset = 2

msdCadInputTypeDataPoint = 3

msdCadInputTypeKeyin = 4

msdCadInputTypeAny = 5

msdCadInputTypeUnassignedCB = 6

When we begin capturing input using the CadInputQueue, our program listens to each of the inputs, then the results of the inputs is entirely in the hands of our program. For example, if we begin capturing inputs, selecting a command from a toolbar sends the command information to our queue but MicroStation does not begin acting on the command immediately.

Sub TestCadInputD()

Dim myCIQ As CadInputQueue

Dim myCIM As CadInputMessage

Dim I As Long

Dim pt3Selection As Point3d

Set myCIQ = CadInputQueue

For I = 1 To 10

Set myCIM = myCIQ.GetInput

Select Case myCIM.InputType

Case msdCadInputTypeCommand

Debug.Print "Command" & vbTab & myCIM.CommandKeyin

Case msdCadInputTypeReset

Exit For

Case msdCadInputTypeDataPoint

pt3Selection = myCIM.Point

Debug.Print "Point" & vbTab & pt3Selection.X & vbTab & _

pt3Selection.Y & vbTab & _

pt3Selection.Z & vbTab & _

myCIM.View.Index & vbTab & _

myCIM.ScreenPoint.X & vbTab & _

myCIM.ScreenPoint.Y & vbTab & _

myCIM.ScreenPoint.Z

Case msdCadInputTypeKeyin

Debug.Print "Keyin" & vbTab & myCIM.Keyin

Case msdCadInputTypeAny

Debug.Print "Any"

Case msdCadInputTypeUnassignedCB

Debug.Print "UnassignedCB" & vbTab & _ myCIM.CursorButton

End Select

Next I

End Sub

This procedure captures ten inputs or captures until a reset is detected.

[image: Image]

The results of running this procedure with a variety of inputs.

Points

The points selected gives us much more than the X, Y, and Z locations in MicroStation. We also see in which view the point was selected and the screen coordinates in X, Y, and Z when the point was selected. The screen X, Y, and Z could be useful for more advanced work such as displaying graphical information in MicroStation using the Windows API.

Commands

Whenever a legitimate MicroStation command is initiated and we are listening using the Cad Input Queue, the input comes across as a command. This is the case no matter whether the command was initiated using menus, toolbars, or the Keyin window.

Keyin

If the Keyin window is used to enter a legitimate command, the input is registered as a command and not a keyin. When something is entered in the Keyin window that does not result in a legitimate command, it is registered as a keyin. The example above demonstrates this when "bogus keyin" was entered into the Keyin window.

Unassigned Cursor Buttons

An unassigned cursor button generates an UnassignedCB input. We use the CursorButton property of the message to retrieve which cursor button was used.

Reset

The Reset Input is triggered when the user initiates a reset. For example, clicking the right mouse button initiates a reset when the user is asked to select a point.

SOME REAL-WORLD APPLICATIONS

Now that we have an understanding of how these inputs work, let’s put them to work in some real-world examples.

Sub TestCadInputE()

Dim myCIQ As CadInputQueue

Dim myCIM As CadInputMessage

Dim pt3Start As Point3d

Dim pt3End As Point3d

Dim myLine As LineElement

Set myCIQ = CadInputQueue

Set myCIM = myCIQ.GetInputdnsdCadInputTypeDataPoint, _ msdCadInputTypeReset)

Select Case myCIM.InputType

Case msdCadInputTypeReset

Exit Sub

Case msdCadInputTypeDataPoint

pt3Start = myCIM.Point

End Select

Set myCIM = myCIQ.GetInput(msdCadInputTypeDataPoint, _ msdCadInputTypeReset)

Select Case myCIM.InputType

Case msdCadInputTypeReset

Exit Sub

Case msdCadInputTypeDataPoint

pt3End = myCIM.Point

End Select

Set myLine = CreateLineElement2(Nothing, pt3Start, pt3End)

ActiveModelReference.AddElement my Line

myLine.Redraw

End Sub

TestCadInputE allows the user to select two points. A line is then drawn between these two points. A careful examination of the code, and better yet, running the code, reveals that although the user can select two points and a line is drawn between the points, the user has no way of knowing what to do or what the results of the actions will be. Let’s use our knowledge of ShowCommand and ShowPrompt to make the macro more user friendly.

Sub TestCadInputF()

Dim myCIQ As CadInputQueue

Dim myCIM As CadInputMessage

Dim pt3Start As Point3d

Dim pt3End As Point3d

Dim my Line As LineElement

Set myCIQ = CadInputQueue

ShowCommand "Two-Point Line"

ShowPrompt "Select First Point:"

Set myCIM = myCIQ.GetInput(msdCadInputTypeDataPoint, _ msdCadInputTypeReset)

Select Case myCIM.InputType

Case msdCadInputTypeReset

ShowPrompt ""

ShowCommand ""

ShowStatus "Two-Point Line Reset."

Exit Sub

Case msdCadInputTypeDataPoint

pt3Start = myCIM.Point

End Select

ShowPrompt "Select Second Point:"

Set myCIM = myCIQ.GetInput(msdCadInputTypeDataPoint, _ msdCadInputTypeReset)

Select Case myCIM.InputType

Case msdCadInputTypeReset

ShowPrompt ""

ShowCommand ""

ShowStatus "Two-Point Line Reset."

Exit Sub

Case msdCadInputTypeDataPoint

pt3End = myCIM.Point

End Select

Set myLine = CreateLineElement2(Nothing, pt3Start, pt3End)

ActiveModelReference.AddElement myLine

myLine.Redraw

ShowPrompt ""

ShowCommand ""

ShowStatus "Two-Point Line Drawn."

End Sub

Now, when this macro is run, the user is prompted at each step.

The CadInputQueue can be used for more than just capturing user input. We can use it to execute commands as well. Here is one example:

Sub TestCadInputH()

Dim myCIQ As CadInputQueue

Dim myCIM As CadInputMessage

Dim pt3Start As Point3d

Dim pt3End As Point3d

Dim myLine As LineElement

Dim SelElems() As Element

Set myCIQ = CadInputQueue

Set myCIM = myCIQ.GetInput(msdCadInputTypeDataPoint, _ msdCadInputTypeReset)

Select Case myCIM.InputType

Case msdCadInputTypeReset

Exit Sub

Case msdCadInputTypeDataPoint

pt3Start = myCIM.point

End Select

Set myCIM = myCIQ.GetInput(msdCadInputTypeDataPoint, _ msdCadInputTypeReset)

Select Case myCIM.InputType

Case msdCadInputTypeReset

Exit Sub

Case msdCadInputTypeDataPoint

pt3End = myCIM.point

End Select

CadInputQueue.SendDragPoints pt3Start, pt3End

SelElems = _ ActiveModelReference.GetSelectedElements.BuildArrayFromContents

If MsgBox("Are you sure you want to delete " & _ UBound(SelElems) + 1 & " Elements?", vbYesNo) _ = vbYes Then

CadInputQueue.SendCommand "DELETE"

End If

End Sub

In this example we used the selected points with the SendDragPoints method of the CadInputQueue object to effectively select the elements within the window generated by the two points. We get a count of the number of elements selected and ask the user to verify that the elements are to be deleted through a MessageBox with Yes and No buttons. If the user says "Yes" we delete the selected elements by sending a Command of "DELETE".

This allows the user to select two points and delete the window between the two points. But we must ask ourselves, does it work well? After the first point is selected, we cannot see where the point had been selected. It would be better if we could see the first selection point like when we draw a line.

The next function allows the user to select two points. After the first point is selected, we see the same graphical interface from MicroStation, as we when drawing a line using standard MicroStation commands, until the second point is selected. This function then returns the two points.

Function PointsByLine() As Point3d()

Dim myCIQ As CadInputQueue

Dim myCIM As CadInputMessage

Dim pt3Start As Point3d

Dim pt3End As Point3d

Dim selPts(0 To 1) As Point3d

Set myCIQ = CadInputQueue

Set myCIM = myCIQ.GetInput(msdCadInputTypeDataPoint, _ msdCadInputTypeReset)

Select Case myCIM.InputType

Case msdCadInputTypeReset

Err.Raise -12345

Exit Function

Case msdCadInputTypeDataPoint

pt3Start = myCIM.point

End Select

CadInputQueue.SendCommand "PLACE LINE"

CadInputQueue.SendDataPoint pt3Start

Set myCIM = myCIQ.GetInput(msdCadInputTypeDataPoint, _ msdCadInputTypeReset)

Select Case myCIM.InputType

Case msdCadInputTypeReset

Err.Raise -12346

Exit Function

Case msdCadInputTypeDataPoint

pt3End = myCIM.point

End Select

selPts(0) = pt3Start

selPts(1) = pt3End

PointsByLine = selPts

End Function

After the user selects the first point, we begin the "PLACE LINE" command and supply the command the point the user selected. This creates a rubber-band effect that allows us to see the first point selected and also shows the cursor’s coordinates as it waits for the second point to be selected. After the second point is selected, we place the selected points into an array that is used for the return value of the function. If the user issues a reset while the first or second points are entered, we raise an error so the function or procedure that called PointsByLine" function will know what happened. We need to remember that the "PLACE LINE" command is still in process as we exit the function. We will handle it in the calling procedure or function as follows:

Sub TestCadInputJ()

On Error GoTo errhnd

Dim selPts() As Point3d

selPts = PointsByLine

CadInputQueue.SendReset

CommandState.StartDefaultCommand

Debug.Print selPts(0).X & ", " & selPts(0).Y & ". " & selPts(0).Z

Debug.Print selPts(0).X & ", " & selPts(1).Y & ", " & selPts(1).Z

Exit Sub

errhnd:

CadInputQueue.SendReset

CommandState.StartDefaultCommand

Select Case Err.Number

Case -12345

'Start Point not selected

MsgBox "Start Point not selected.", vbCritical

Case -12346

'End Point not selected

MsgBox "End Point not selected.", vbCritical

End Select

End Sub

We use PointsByLine to get two points. Notice the SendReset and StartDefaultCommand calls. This resets the Place Line command which started when we called "PointsByLine". If the user selects the two points as requested, we display the coordinates of the points in the Immediate Window. If the user does not select one of the points, we know which point selection was aborted based on the error raised in the PointsByLine Function.

Here is a more practical application of our new PointsByLine function:

Sub TestCadInputK()

On Error GoTo errhnd

Dim selPts() As Point3d

Dim pt3TextPt As Point3d

Dim myText As TextElement

Dim rotMatrix As Matrix3d

selPts = PointsByLine

CadInputQueue.SendReset

CommandState.StartDefaultCommand

Set myText = CreateTextElement1(Nothing, "Start", selPts(0), rotMatrix)

ActiveModelReference.AddElement myText

Set myText = CreateTextElement1(Nothing , "End", selPts(1), rotMatrix)

ActiveModelReference.AddElement myText

pt3TextPt.X = selPts(0).X + (selPts(1).X - selPts(0).X) / 2

pt3TextPt.Y = selPts(0).Y + (selPts(1).Y - selPts(0).Y) / 2

pt3TextPt.Z = selPts(0).Z + (selPts(1).Z - selPts(0).Z) / 2

Set myText = CreateTextElement1(Nothing , "Mid", pt3TextPt, rotMatrix)

ActiveModelReference.AddElement myText

Exit Sub

errhnd:

CadInputQueue.SendReset

CommandState.StartDefaultCommand

Select Case Err.Number

Case -12345

'Start Point not selected

MsgBox "Start Point not selected.", vbCritical

Case -12346

'End Point not selected

MsgBox "End Point not selected.", vbCritical

End Select

End Sub

The framework is the same as the previous example. We use our new PointsByLine function to get two points while simulating the Place Line command. Once we get the points, we use them to place three new text elements in our file. "Start", "End" and "Mid" are placed at the start point, the end point, and the calculated mid point.

[image: Image]

Here is what it looks like in MicroStation:

Here is one more function that simulates the "PLACE BLOCK" command, allowing the user to stretch out a rectangle instead of a line.

Function PointsByRectangle() As Point3d()

Dim myCIQ As CadInputQueue

Dim myCIM As CadInputMessage

Dim pt3Start As Point3d

Dim pt3End As Point3d

Dim selPts(0 To 1) As Point3d

Set myCIQ = CadInputQueue

Set myCIM = myCIQ.GetInput(msdCadInputTypeDataPoint, _ msdCadInputTypeReset)

Select Case myCIM.InputType

Case msdCadInputTypeReset

Err.Raise -12345

Exit Function

Case msdCadInputTypeDataPoint

pt3Start = myCIM.point

End Select

CadInputQueue.SendCommand "PLACE BLOCK"

CadInputQueue.SendDataPoint pt3Start

Set myCIM = myCIQ.GetInput(msdCadInputTypeDataPoint, _ msdCadInputTypeReset)

Select Case myCIM.InputType

Case msdCadInputTypeReset

Err.Raise -12346

Exit Function

Case msdCadInputTypeDataPoint

pt3End = myCIM.point

End Select

selPts(0) = pt3Stant

selPts(1) = pt3End

PointsByRectangle = selPts

End Function

And now a procedure that uses PointsByRectangle:

Sub TestCadInputL()

On Error GoTo errhnd

Dim selPts() As Point3d

selPts = PointsByRectangle

CadInputQueue.SendReset

CommandState.StartDefaultCommand

Debug.Print selPts(0).X & ", " & selPts(0).Y & ", " & selPts(0).Z

Debug.Print selPts(1).X & ", " & selPts(1).Y & ", " & selPts(1).Z

Exit Sub

errhnd:

CadInputQueue.SendReset

CommandState.StartDefaultCommand

Select Case Err.Number

Case -12345

'Start Point not selected

MsgBox "Start Point not selected.", vbCritical

Case -12346

'End Point not selected

MsgBox "End Point not selected.", vbCritical

End Select

End Sub

[image: Image]

TestCadInputL does not do anything fancy. It just displays the points selected in the Immediate Window. Let’s make better use of PointsByRectangle by using the selected points as part of a scan criteria in selecting cells in a file.

Sub TestCadInputM()

On Error GoTo errhnd

Dim selPts() As Point3d

Dim LinePts(0 To 1) As Point3d

Dim LineElem As LineElement

Dim myESC As New ElementScanCriteria

Dim myRange As Range3d

Dim myElemEnum As ElementEnumerator

Dim myElem As Element

Dim FFile As Long

Dim myCellHeader As CellElement

selPts = PointsByRectangle

CadInputQueue.SendReset

CommandState.StartDefaultCommand

myRange = Range3dFromPoint3dPoint3d(selPts(0), selPts(1))

myESC.ExcludeAllTypes

myESC.IncludeType msdElementTypeCellHeader

myESC.IncludeOnlyWithinRange myRange

Set myElemEnum = ActiveModelReference.Scan(myESC)

FFile = FreeFile

Open "C:\MicroStation VBA\CellExport.txt" For Output As #FFile

Print #FFile, ActiveDesignFile.Name

While myElemEnum.MoveNext

Set myElem = myElemEnum.Current

Set myCellHeader = myElem

Print #FFile, myCellHeader.Name & vbTab & _

myCellHeader.Origin.X & vbTab & _

myCellHeader.Origin.Y & vbTab & _

myCellHeader.Origin.Z

Wend

Close #FFile

Exit Sub

errhnd:

CadInputQueue.SendReset

CommandState.StartDefaultCommand

Select Case Err.Number

Case -12345

'Start Point not selected

MsgBox "Start Point not selected.", vbCritical

Case -12346

'End Point not selected

MsgBox "End Point not selected.", vbCritical

End Select

End Sub

This macro writes the names and locations of cells in the active model reference that fit within the selected rectangle.

[image: Image]

Here is the output for the office.dgn file installed with MicroStation:

The results of the macro differ from file to file and from selection to selection. If fewer cells are selected inside the rectangle, fewer cells will be output to the text file.

USING SENDCOMMAND

Thus far we have used SendCommand with "DELETE", "PLACE LINE", and "PLACE BLOCK". Even though these commands may look familiar to some readers, they may be foreign to others. Each time a menu item is selected or toolbar button clicked, a command is issued to MicroStation. How do we know what these commands are? Good question.

The MicroStation VBA macro recorder can help us to discover command names and how they are used. Let’s try recording a few macros to demonstrate this.

1 From the VBA Project Manager, select the VBA Project in which we are currently working and then click the record button.

[image: Image]

2 Now, select the Line Command from the toolbar as shown:

[image: Image]

3 "Place Line" begins by asking for points between which to draw lines. Select two points in MicroStation and then click the right mouse button to issue a reset.

4 Next, stop recording the macro by clicking the "Stop Record" button.

[image: Image]

5 After macro recording has stopped, return to the VBA environment to see the new macro. The macros are named automatically so the names may vary from computer to computer.

The results of this recorded macro should look similar to this:

Sub Macro1()

Dim startPoint As Point3d

Dim point As Point3d, point2 As Point3d

Dim lngTemp As Long

' Start a command

CadInputQueue.SendCommand "CGPLACE LINE CONSTRAINED "

' Coordinates are in master units

startPoint.X = 16735.231975

startPoint.Y = 33020.733029

startPoint.Z = 0#

' Send a data point to the current command

point.X = startPoint.X

point.Y = startPoint.Y

point.Z = startPoint.Z

CadInputQueue.SendDataPoint point, 1

point.X = startPoint.X + 1985.401024

point.Y = startPoint.Y - 610.892623

point.Z = startPoint.Z

CadInputQueue.SendDataPoint point, 1

' Send a reset to the current command

CadInputQueue.SendReset

CommandState.StartDefaultCommand

End Sub

This recorded macro reveals a command of "CGPLACE LINE CONSTRAINED". The coordinates shown are those selected in MicroStation as the macro was being recorded. Let’s copy and paste the recorded macro and modify it as follows:

Sub Macro1_modifiedA()

Dim point As Point3d

CadInputQueue.SendCommand "CGPLACE LINE CONSTRAINED "

point.X = 0: point.Y = 0: point.Z = 0

CadInputQueue.SendDataPoint point, 1

point.X = 4: point.Y = 5: point.Z = 6

CadInputQueue.SendDataPoint point, 1

CadInputQueue.SendReset

CommandState.StartDefaultCommand

End Sub

We have now stripped down this macro to the bare essentials. The coordinates for the line have been replaced with (0, 0, 0) and (4, 5, 6).

Let’s record another macro. This time we will record drawing a Block (rectangle).

Sub Macro2()

Dim startPoint As Point3d

Dim point As Point3d, point2 As Point3d

Dim lngTemp As Long

' Start a command

CadInputQueue.SendCommand "PLACE BLOCK ICON "

' Coordinates are in master units

startPoint.X = 3.196418

startPoint.Y = 6.071205

startPoint.Z = 0#

' Send a data point to the current command

point.X = startPoint.X

point.Y = startPoint.Y

point.Z = startPoint.Z

CadInputQueue.SendDataPoint point, 1

point.X = startPoint.X + 2.537984

point.Y = startPoint.Y - 0.882104

point.Z = startPoint.Z

CadInputQueue.SendDataPoint point, 1

CommandState.StartDefaultCommand

End Sub

Here is a stripped-down and modified version of Macro2.

Sub Macro2_modifiedA()

Dim point As Point3d

CadInputQueue.SendCommand "PLACE BLOCK ICON "

point.X = 0

point.Y = 0

point.Z = 0

CadInputQueue.SendDataPoint point, 1

point.X = point.X + 2.5

point.Y = point.Y - 0.75

CadInputQueue.SendDataPoint point, 1

CommandState.StantDefaultCommand

End Sub

In this example, we are basing the second point on the first point. Instead of entering hard-coded coordinates, the second point is relative to the first point. However, even though the placement of the second point is relative to the first point, the first point is hard-coded. Let’s make a few more modifications.

Sub Macro2_modifiedB()

Dim point As Point3d

Dim myCIQ As CadInputQueue

Dim myCIM As CadInputMessage

Set myCIQ = CadInputQueue

Set myCIM = myCIQ.GetInput(msdCadInputTypeDataPoint)

point = myCIM.point

CadInputQueue.SendCommand "PLACE BLOCK ICON "

CadInputQueue.SendDataPoint point, 1

point.X = point.X + 2.5

point.Y = point.Y - 0.75

CadInputQueue.SendDataPoint point, 1

CommandState.StantDefaultCommand

End Sub

Now the first point used for the block is entirely based on user input. The second point is still relative to the first point.

Recording macros is one way to discover the command names of MicroStation commands. The following macro is another way.

Sub TestCadInputN()

Dim myCIQ As CadInputQueue

Dim myCIM As CadInputMessage

Dim I As Long

Set myCIQ = CadInputQueue

For I = 1 To 10

Set myCIM = myCIQ.GetInput(msdCadInputTypeCommand)

Debug.Print myCIM.CommandKeyin

Next I

End Sub

TestCadInputN captures ten commands. This is different from recording macros in that we do not get all of the other input, such as point selections, etc. The only thing we capture is the command name.

[image: Image]

One additional method of determining command names should be mentioned.

[image: Image]

The Key-in dialog opens by selecting Key-in from the MicroStation Utilities menu. Items can be selected from the list boxes to construct the appropriate key-in. The image shown tells us we can use "DIALOG OPENFILE" as a command. Let’s try it.

Sub TestMessageA()

CadInputQueue.SendCommand "DIALOG OPENFILE"

End Sub

Running the TestMessageA macro shows us that "DIALOG OPENFILE" is indeed a legitimate command. The Open File dialog box displays and the user can select a file to open.

MODELESS DIALOG BOXES

InputBoxes and MessageBoxes allow the user to interact with our code. Their functionality is somewhat limited, however. When our goal can be accomplished with a MessageBox, it should be used. But when we need a richer interface or more dynamic interaction with the user, we need to use Forms.

The next four examples are on the CD accompanying this book. Import them one at a time by using the VBA menu File > Import File and selecting the appropriate file from the CD. This imports a new form into the active VBA project.

frmMatchProperties.frm

The first form, "frmMatchProperties.frm", looks like this:

[image: Image]

The form looks simple enough. We have a few command buttons, a couple of frames, a handful of check boxes, a label, and four text boxes. Before we look at the code behind the controls, let’s discuss the programs desired functionality.

Desired Functionality

1 The user can select a Source element in MicroStation. After the element is selected, the Select button is clicked and four properties are extracted from the selected element: level, color, linestyle, and lineweight.

2 The user can select which of the properties from the source element are to be changed in the Destination Elements.

3 The user can select any number of elements in MicroStation to be modified based on the selected properties of the source element.

This sounds simple enough. Let’s get started. Even though the form can be imported from the CD, we will discuss the entire process of creating the form.

The first thing we do is place the controls. As we work with an interface, we will find ourselves resizing and moving the controls to make our interface flow nicely for the user. Captions (when available) can be modified immediately after we add each control.

Naming the controls is the next step. Here are the names of the controls with which we will be interacting:

[image: Image] frmMatchProperties

[image: Image] btnSelectSource

[image: Image] chkLevel

[image: Image] txtLevel

[image: Image] chkColor

[image: Image] txtColor

[image: Image] chkLinestyle

[image: Image] txtLinestyle

[image: Image] chkLineweight

[image: Image] txtLineweight

[image: Image] btnChange

[image: Image] lblCount

[image: Image] btnClose

[image: Image] fraSource

[image: Image] fraDestination

As we develop this program, we should be thinking about the future of this program. For example, the code in this form does not do anything to the frames. We could leave their names as "Frame1" and "Frame2", but we may decide to make the Destination frame invisible until the Source Element is selected. Then, after the Source Element is selected, we make the Destination Frame visible. We can do this using "Frame2" as the frames name, but naming it "fraDestination" in our code. This tells us exactly what we are making visible or invisible without having to browse through the frames on the form to find out which frame we are affecting.

Control Properties

1 The Locked property of each TextBox should be "True". We do not want the user arbitrarily typing in values that do not work. The text boxes will be populated by the source element’s properties.

2 The Alignment property of each CheckBox should be "fmAlignmentLeft". This places the caption of the CheckBox on the left of the CheckBox.

3 The ControlTipText of the Select CommandButton is "Click Here to make the current selection the source element."

4 The ControlTipText of the "Change Current Selection" CommandButton should be "Click Here to modify the current selection to match the selected properties from the Source element."

5 The ControlTipText of the "Close" CommandButton should be "Click Here to Close the VBA Match Properties Program."

Later we will add code to display this form as modeless. This means the user will be able to interact with MicroStation even though the form is displayed. This is important to keep in mind as we look at the code behind the controls.

General Declarations Area

We have two lines of code in the general declarations area of our code.

Option Explicit

Dim elemSource As Element

Select Button

We can only use one element as the source element. When the user clicks the Select button, the first thing we need to do is to discover how many elements have been selected. If only one element has been selected, we can continue. Otherwise, we will display one of two MessageBoxes: one MessageBox if nothing was selected or a second if more than one element was selected.

If only one element is selected, do the following:

1 Get the level (if a level is assigned to the element). The level name is placed in the appropriate text box.

2 Get the color and display the number in the appropriate TextBox and change the TextBox’s BackColor property to match the color of the source element.

3 Get and place the linestyle property.

4 Get and place the lineweight property.

Now, let’s look at the code behind the btnSelectSource_Click event:

Private Sub btnSelectSource_Click()

Dim myElements() As Element

Dim myElemEnum As ElementEnumerator

Dim myColorTable As ColorTable

Set myElemEnum = ActiveModelReference.GetSelectedElements

myElements = _ ActiveModelReference.GetSelectedElements.BuildArrayFromContents

If UBound(myElements) = 0 Then

Set elemSource = myElements(0)

If Not myElements(0).Level Is Nothing Then

txtLevel.Text = myElements(0).Level.Name

End If

Set myColorTable = ActiveDesignFile.ExtractColorTable

Select Case myElements(0).Color

Case -1

txtColor.Text = ""

txtColor.BackColor = RGB(255, 255, 255)

txtLinestyle.Text = _

myElements(0).LineStyle.Name

txtLineweight.Text = myElements(0).LineWeight

Case Else

txtColor.Text = myElements(0).Color

txtColor.BackColor = _

myColorTable.GetColorAtIndex(myElements(0).Color)

txtLinestyle.Text =

myElements(0).LineStyle.Name

txtLineweight.Text = myElements(0).LineWeight

End Select

Else

Select Case UBound(myElements)

Case -1

MsgBox "No ""Source"" element selected.". _ vbCritical. Me.Caption

Exit Sub

Case Else

MsgBox "Only one element can be the ""Source""" & _ "element.", vbCritical, Me.Caption

Exit Sub

End Select

End If

End Sub

Placing a Break Point in the code allows us to step through the code line by line. This can help us discover how the program is working or to verify that it is working as designed.

We are working with the ElementEnumerator a little differently in this instance. Instead of using "MoveNext" and getting the "Current" element, we get an array of elements using BuildArrayFromContents. If the upper-bound of the array is 0, the array is composed of one element. This is what we want. If the upper-bound of the array is -1, this means the array is empty and nothing was selected prior to clicking the button.

Change Current Selection Button

When the user clicks the "Change Current Selection Button", we want to change the selected properties of the selected elements to the source element’s properties. We also change the caption of the label to reflect how many elements were modified. We create an array of elements from the enumerator as we did in the previous example.

Private Sub btnChange_Click()

Dim myElements() As Element

Dim myElemEnum As ElementEnumerator

Dim I As Long

Dim boolElemModified As Boolean

Dim lngModCount As Long

lblCount.Caption = "0 Element(s) modified."

ShowStatus "0 Element(s) modified."

Set myElemEnum = ActiveModelReference.GetSelectedElements

myElements = myElemEnum.BuildArrayFromContents

lngModCount = 0

For I = LBound(myElements) To UBound(myElements)

boolElemModified = False

If chkLevel.Value = True Then

myElements(I).Level = elemSource.Level

boolElemModified = True

End If

If chkColor.Value = True Then

myElements(I).Color = elemSource.Color

boolElemModified = True

End If

If chkLinestyle.Value = True Then

myElements(I).LineStyle = elemSource.LineStyle

boolElemModified = True

End If

If chkLineweight.Value = True Then

myElements(I).LineWeight = elemSource.LineWeight

boolElemModified = True

End If

If boolElemModified = True Then

myElements(I).Rewrite

lngModCount = lngModCount + 1

End If

Next I

lblCount.Caption = lngModCount & " Element(s) modified."

ShowStatus lngModCount & " Element(s) modified."

End Sub

As we look at each element in the array, we only want to change the properties based on the CheckBox values. We only increase the element modified counter if a change was actually made. It is possible to select a source element and multiple destination elements and have no changes made if each of the CheckBoxes are set to false.

Close Button

The Close button unloads the Form.

Private Sub btnClose_Click()

Unload Me

End Sub

PROVIDING USER FEEDBACK AND INFORMATION

Earlier in this chapter we learned how to provide the user feedback and information through the use of the status bar area in MicroStation. If we look at the status bar area, we see that it changes as we move our cursor over various tool bar buttons. Let’s mimic this same functionality in VBA by using the MouseMove events of several controls.

Private Sub UserForm_MouseMove(ByVal Button As Integer, _ ByVal Shift As Integer, ByVal X As Single, _ ByVal Y As Single)

ShowPrompt ""

End Sub

Private Sub fraDestination_MouseMove(ByVal Button As Integer, _ ByVal Shift As Integer, ByVal X As Single, _ ByVal Y As Single)

ShowPrompt ""

End Sub

Private Sub fraSource_MouseMove(ByVal Button As Integer, _ ByVal Shift As Integer, ByVal X As Single, _ ByVal Y As Single)

ShowPrompt ""

End Sub

As the user moves the cursor around the form and the frames, we do not want to display anything in the prompt because clicking on the form or frame does not do anything. So, we use ShowPrompt with an empty string so nothing displays.

Private Sub btnSelectSource_MouseMove(ByVal Button As Integer, _ ByVal Shift As Integer, ByVal X As Single, _ ByVal Y As Single)

ShowPrompt "Select a single ""Source"" Element:"

End Sub

Private Sub btnChange_MouseMove(ByVal Button As Integer, _ ByVal Shift As Integer, ByVal X As Single, _ ByVal Y As Single)

ShowPrompt "Select ""Destination"" Elements:"

End Sub

Private Sub btnClose_MouseMove(ByVal Button As Integer, _ ByVal Shift As Integer, ByVal X As Single, _ ByVal Y As Single)

ShowPrompt "Close ""VBA Match Properties"""

End Sub

As the user moves the cursor over the command buttons, we want to let the user know what happens if the button is clicked. We already do this with the ControlTipText property of each button but using the prompt more closely reflects MicroStation standard functionality.

UserForm Initialize

We need to discuss two additional events. The first of these is the UserForm Initialize event. This event is triggered as the form is about to be displayed.

Private Sub UserForm_Initialize()

ShowCommand "VBA Match Properties:"

End Sub

We use ShowCommand to set the Command area to "VBA Match Properties" when the form is first initialized. This command continues to display even though the prompt changes as the cursor is moved over the other controls in our Form.

UserForm QueryClose

The QueryClose event is triggered just before the form is terminated. This event allows us to perform clean up operations. It also tells us how the form was asked to close. The CloseMode parameter gives us one of four values (which have corresponding constants).

[image: Image] vbFormControlMenu = 0

[image: Image] vbFormCode = 1

[image: Image] vbAppWindows = 2

[image: Image] vbAppTaskManager = 3

For more information on what each of these values mean, look up "QueryClose Constants" in the Microsoft VBA help.

In this program we are not concerned with how the form is closed, only that it is closing.

Private Sub UserForm_QueryClose(Cancel As Integer, _ CloseMode As Integer)

ShowPrompt ""

ShowCommand ""

End Sub

Displaying the Form as Modeless

The code in the form is based entirely on the user’s selection of elements in MicroStation. Although it is possible to select elements prior to displaying the form, we actually need the user to make two distinct selections: the source and the destination. The source selection can only be one element. To allow the user to select elements in MicroStation while the form is displayed, we need to display the form as modeless. Remember that modeless is the opposite of modal where, when the form has focus, nothing else can be done in MicroStation until the form is closed. Modeless means that even while a form is displayed interaction can continue inside MicroStation. To display a form as modeless, we must show it as such in a procedure in a code module.

Sub TestMatchProperties()

frmMatchProperties.Show vbModeless

End Sub

The procedure TestMatchProperties, if placed in a code module, is available to the user through the VBA Project Manager or from the MicroStation menu Utilities > Macro > Macros or by pressing the <F8> key while holding down the <Alt> key (<Alt + F8>).

Here is the Match Properties Form in use. Notice the Command and Prompt areas at the bottom.

[image: Image]

The Match Properties Program is simple and straightforward. We allow the user to make modifications to elements in the Active Model Reference by selecting a source element and then using its properties to change the selected destination elements while using a modeless dialog box.

frmAlignText.frm

The next form we will import into our VBA project is the frmAlignText.frm file. This form allows the user to perform text alignment and distribution operations on selected text in MicroStation. Since we want to allow the user to select a point to align to, the form needs to be displayed as modeless. This program involves geometric calculations and moving text elements based on those calculations.

[image: Image]

Desired Functionality

[image: Image] Selected Text can be aligned Horizontally to the selected or entered "X" value.

[image: Image] Text can be aligned Left, Center, or Right.

[image: Image] Text can be distributed evenly vertically so equal spacing exists between each text element.

[image: Image] Only Text elements can be used, not Text Nodes.

Frames, command buttons, labels, and text boxes are used in this project. Once again, you can import the form from the CD accompanying this book, but we will discuss building this form as though we were starting with nothing.

Control Placement

Place the controls as shown. The Base Point frame and Horizontal Alignment frames contain their respective controls and the "Distribute Vertically" button is by itself. If a "Distribute Horizontally" button existed, we would place both "Distribute" buttons in their own frame. After placing the controls, change captions and text properties as shown above.

Control Names

[image: Image] fraBasePoint

[image: Image] fraHoriAlign

[image: Image] btnPickBasePoint

[image: Image] txtX

[image: Image] txtY

[image: Image] btnAlignLeft

[image: Image] btnAlignCenter

[image: Image] btnAlign Right

[image: Image] btnDistributeVert

Pick Button

The code in the "Pick" button’s click event allows the user to select a point in MicroStation. The selected point’s X and Y components then display in the text boxes.

Private Sub btnPickBasePoint_Click()

Dim myCIQ As CadInputQueue

Dim myCIM As CadInputMessage

Set myCIQ = CadInputQueue

Set myCIM = myCIQ.GetInput(msdCadInputTypeDataPoint, _ msdCadInputTypeReset)

Do

Select Case myCIM.InputType

Case msdCadInputTypeDataPoint

pt3BasePoint = myCIM.Point

txtX.Text = pt3BasePoint.X

txtY.Text = pt3BasePoint.Y

Exit Do

Case msdCadInputTypeReset

Exit Do

End Select

Loop

End Sub

We use the CadInputQueue to capture the selection of a point in MicroStation. When we initialize the CadInputMessage we specify that we are only looking for datapoints and reset inputs. The Do … Loop is designed as an eternal loop. This means that without explicitly exiting, the loop continues forever. We use the Do … Loop code because we can use an Exit Do command that gets us out of the loop whenever we wish.

X and Y TextBoxes

The X and Y TextBoxes are populated with values from points selected by the user through the Pick Button just discussed. In addition to picking the point, we want to allow the user to hand-enter X and Y values. Picking points is nice because we know that the user cannot select an invalid point in MicroStation. Allowing data entry can cause problems if we are not careful. What happens, for instance, if the user enters "somewhere around 4.5" in the TextBox? This entry would be far from the numeric value we are counting on. One way to limit the user’s entry in these text boxes is to make use of the KeyPress event.

Private Sub txtX_KeyPress(ByVal KeyAscii As MSForms.ReturnInteger)

Select Case KeyAscii

Case Asc("0") To Asc("9")

Case Asc(".")

If InStr(1, txtX.Text, ".") > 0 Then KeyAscii = 0

End If

Case Else

KeyAscii = 0

End Select

End Sub

Private Sub txtY_KeyPress(ByVal KeyAscii As MSForms.ReturnInteger)

Select Case KeyAscii

Case Asc("0") To Asc("9")

Case Asc(".")

If InStr(1, txtY.Text, ".") > 0 Then KeyAscii = 0

End If

Case Else

KeyAscii = 0

End Select

End Sub

The KeyPress event tells us the ASCII character code of the keyboard character that was pressed. If we change the KeyAscii parameter to a value of zero (0), it is as though the key was never pressed. So, we look at the KeyAscii parameter and ask ourselves the following questions with the following results:

[image: Image] Is the Key Ascii between the numbers 0 to 9? If so, do nothing. Always allow numbers 0 through 9 to be entered.

[image: Image] Is the Decimal key pressed? If so, look to see if a decimal is already in the TextBox. If a decimal is already in the TextBox, set KeyAscii to zero. Otherwise, do nothing and allow the decimal to be entered.

[image: Image] Case Else (if any other key is pressed), set KeyAscii to zero as though the key was not pressed in the first place.

It should be noted that this code only keeps numeric values from being entered from the keyboard. It does not prohibit the user from pasting an invalid entry into the TextBox from the Windows clipboard.

Align Left, Center, and Right

The best way to deal with these three alignment methods is one at a time. We have three buttons. We could place code in each of the click events of these buttons to perform the specific type of alignment requested, but this would create a lot of redundant code. We will create a function to take care of all horizontal alignments and provide for a parameter to specify which alignment is to be performed.

The "Alignment Mode" parameter could be defined as a string and we could use "LEFT", "RIGHT", or "CENTER" as parameter values. This works. There is a better way, though.

To get input from the Cad Input Queue, we can specify which types of input we want by the using an enumeration, which is a list of constants grouped together that usually refer to a specific method or property. We will create our own enumeration to deal with alignments. In the General Declarations area of this form, we declare this enumeration:

Enum AlignMode

msvbaAlignModeLeft = 1

msvbaAlignModeCenter = 2

msvbaAlignModeRight = 3

End Enum

Now when we declare our procedure to align the selected text, it looks like this:

Sub AlignSelected(Optional ElemAlignMode As AlignMode = _ msvbaAlignModeLeft)

We declare the parameter as optional so we can specify "Left" as the default alignment. When we are using the AlignSelected method in our code, we see this:

[image: Image]

Enumerations help us make sure that the parameter we are providing is legitimate and make it easier to program because we are shown our options for the parameter.

One additional declaration needs to be added to the General Declarations area of our form:

Dim pt3BasePoint As Point3d

When the user selects a point, we use this variable to store the selection.

Here is the code that actually aligns the text left, center, or right:

Sub AlignSelected(Optional ElemAlignMode As AlignMode = _ msvbaAlignModeLeft)

Dim myElemEnum As ElementEnumerator

Dim myElem As Element

Dim OriginPt As Point3d

Dim myTextElem As TextElement

Set myElemEnum = ActiveModelReference.GetSelectedElements

While myElemEnum.MoveNext

Set myElem = myElemEnum.Current

Select Case myElem.Type

Case msdElementTypeText

Set myTextElem = myElem

Select Case ElemAlignMode

Case msvbaAlignModeLeft

myTextElem.Move Point3dFromXY(pt3BasePoint.X - _ myTextElem.Boundary.Low.X, 0)

myTextElem.Rewrite

Case msvbaAlignModeRight

myTextElem.Move Point3dFromXY(pt3BasePoint.X - _ myTextElem.Boundary.High.X, 0)

myTextElem.Rewrite

Case msvbaAlignModeCenter

myTextElem.Move Point3dFromXY(pt3BasePoint.X - _

yTextElem.Boundary.Low.X - _

(myTextElem.Boundary.High.X - _

myTextElem.Boundary.Low.X) / 2, 0)

myTextElem.Rewrite

End Select

End Select

Wend

End Sub

When we begin executing this code, we know that in addition to selecting text elements, the user may have selected other types of elements. Since we only want to work with text elements, we use a Select Case statement to parse out the text elements from the others. Next, we use another Select Case statement to move the text element based on the type of alignment specified and the X value of the base point. We rewrite the text element so the change made is permanent in the file.

Left, Center, and Right Buttons

When the user clicks the left, center, or right buttons, the click event of the respective button is triggered. Notice how we use our enumeration values when calling "AlignSelected".

Private Sub btnAlignLeft_Click()

AlignSelected msvbaAlignModeLeft

End Sub

Private Sub btnAlignCenter_Click()

AlignSelected msvbaAlignModeCenter

End Sub

Private Sub btnAlignRight_Click()

AlignSelected msvbaAlignModeRight

End Sub

Degrees of Complexity

There are three degrees of complexity in this program. The degrees and their tasks are as follows:

Low: Pick a point, place X and Y components into TextBoxes.

Medium: Align selected Text Elements Left, Center, or Right.

High: Vertically Distribute selected Text Elements evenly.

We have already discussed the Low and Medium complexity tasks. It is now time for the High complexity task. This task is not highly complex because it is highly difficult. It simply requires more components for everything to work correctly.

Vertically Distribute Selected Text Evenly

Here are four text elements in the file chapter 17_AlignText.dgn. This file is on the CD accompanying this book. The text alignment code we have already discussed takes care of the horizontal alignment. Now we are faced with the task of making the text look nice vertically. The spacing between Note 1 and Note2 is tight, whereas the spacing between Note2 and Note3 is loose (as it is between Note 3 and Note 4). We want the spacing between each of these text elements to be the same. It is a simple task but a number of considerations must be made before continuing.

[image: Image]

1 After the user selects the text, we want even spacing between the top and bottom elements without those elements moving.

2 On the screen it is readily apparent which element is on top and which is on the bottom. But when we look at the selection in code, we do not know which element is on top and which is on the bottom.

3 On the screen we can see the proper order. But when we look at the selection in code, we do not know the top-down order of the text elements.

We will create distinct functions to accomplish each of the following tasks:

[image: Image] Discover the minimum and maximum points of the selected text elements.

[image: Image] Determine the vertical order in which the text elements appear.

[image: Image] Determine the number of selected text elements.

After we have these functions in place, we will be able to use them in distributing the selected text elements.

Function GetMinMaxY(ElemType As Long, ElementsIn As Variant) _ As Point3d()

Dim I As Long

Dim pt3StartPoint As Point3d

Dim pt3EndPoint As Point3d

Dim myTextElem As TextElement

Dim boolPointsSet As Boolean

boolPointsSet = False

For I = LBound(ElementsIn) To UBound(ElementsIn)

Set myElem = ElementsIn(I)

Select Case myElem.Type

Case msdElementTypeText

Set myTextElem = myElem

If boolPointsSet = False Then

pt3StartPoint = myTextElem.Boundary.High

pt3EndPoint = myTextElem.Boundary.High

boolPointsSet = True

End If

If myTextElem.Boundary.High.Y > _

pt3StartPoint.Y Then

pt3StartPoint.Y = myTextElem.Boundary.High.Y

End If

If myTextElem.Boundary.High.Y < pt3EndPoint.Y Then

pt3EndPoint.Y = myTextElem.Boundary.High.Y

End If

End Select

Next I

Dim pt3Points(0 To 1) As Point3d

pt3Points(0) = pt3StartPoint

pt3Points(1) = pt3EndPoint

GetMinMaxY = pt3Points

End Function

We have created this function to allow for future use and expansion with other types of Elements. We ask for the element type and the elements to be considered. From these parameters, we discover the Min and Max values and return them as an array of Point3d types.

The next task is to sort the elements vertically. This is accomplished by providing the type of element we want to look at and the elements to be considered. We return the elements in their vertically sorted state as an array of elements.

Function SortElementsVertically(ElemType As Long, _ ElementsIn As Variant) As Element()

Dim I As Long

Dim boolMadeChange As Boolean

Dim lngElemID() As DLong

Dim pt3BoundPt() As Point3d

Dim myTextElem As TextElement

Dim myTextElem2 As TextElement

Dim tmpID As DLong

Dim tmpPt As Point3d

ReDim lngElemID(0) As DLong

ReDim pt3BoundPt(0) As Point3d

For I = LBound(ElementsIn) To UBound(ElementsIn)

Select Case ElemType

Case msdElementTypeText

If ElementsIn(I).Type = msdElementTypeText Then

Set myTextElem = ElementsIn(I)

lngElemID(UBound(lngElemID)) = myTextElem.ID

pt3BoundPt(UBound(pt3BoundPt)) = _

myTextElem.Boundary.High

ReDim Preserve lngElemID(UBound(lngElemID) + 1) As _

DLong

ReDim Preserve pt3BoundPt(UBound(pt3BoundPt) + 1) As _

Point3d

End If

End Select

Next I

ReDim Preserve lngElemID(UBound(lngElemID) - 1) As DLong

boolMadeChange = True

While boolMadeChange = True

boolMadeChange = False

For I = LBound(lngElemID) To UBound(lngElemID) - 1

If pt3BoundPt(I + 1).Y > pt3BoundPt(I).Y Then

tmpID = lngElemID(I)

tmpPt = pt3BoundPt(I)

lngElemID(I) = lngElemID(I + 1)

pt3BoundPt(I) = pt3BoundPt(I + 1)

lngElemID(I + 1) = tmpID

pt3BoundPt(I + 1) = tmpPt

boolMadeChange = True

End If

Next I

Wend

Dim ElemsIn() As Element

ReDim ElemsIn(C) To UBound(lngElemID))

For I = LBound(lngElemID) To UBound(lngElemID)

Set ElemsIn(I) = ActiveDesignEile.GetElementByID(lngElemID(I))

Next I

SortElementsVertically = ElemsIn

End Function

There is a lot of code to look at here. After we divide it into four little chunks, it becomes easier to understand.

Variable Declaration

Dim I As Long

Dim boolMadeChange As Boolean

Dim lngElemID() As DLong

Dim pt3BoundPt() As Point3d

Dim myTextElem As TextElement

Dim myTextElem2 As TextElement

Dim tmpID As DLong

Dim tmpPt As Point3d

Two variables are declared as dynamic arrays (by using the empty parenthesis). Dynamic arrays can change in size without losing their values. Other variables are declared as well.

Dynamic Variable Array Population in Preparation for Bubble Sort

ReDim lngElemID(0) As DLong

ReDim pt3BoundPt(0) As Point3d

For I = LBound(ElementsIn) To UBound(ElementsIn)

Select Case ElemType

Case msdElementTypeText

If ElementsIn(I).Type = msdElementTypeText Then

Set myTextElem = ElementsIn(I)

lngElemID(UBound(lngElemID)) = myTextElem.ID

pt3BoundPt(UBound(pt3BoundPt)) = _

myTextElem.Boundary.High

ReDim Preserve _

lngElemID(UBound(lngElemID) + 1) As DLong

ReDim Preserve_

pt3BoundPt(UBound(pt3BoundPt)+ 1) As_

Point3d

End If

End Select

Next I

ReDim Preserve lngElemID(UBound(lngElemID) - 1) As DLong

ReDim Preserve pt3BoundPt(UBound(pt3BoundPt) - 1) As Point3d

We look at each element provided to us in the ElementsIn parameter to see if it is of the correct type (in our example we are looking for text elements). If it is, we get the text element’s ID property and put it in one of the dynamic array variables and get the element’s Boundary.High point and put it in the other dynamic array variable. We then re-declare the dynamic array variables with the Preserve keyword so we don’t lose the previous values. After we have looked at each of the elements selected, we re-declare the dynamic Array variables decreasing the size of each by 1. Throughout the code above, we add one to the size of the array after populating the upperbound variables so we need to take one off after we have finished. Otherwise, we would have an array element with nothing in it.

Bubble Sorting

boolMadeChange = True

While boolMadeChange = True

boolMadeChange = False

For I = LBound(lngElemID) To UBound(lngElemID) - 1

If pt3BoundPt(I + 1).Y > pt3BoundPt(I).Y Then

tmpID = lngElemID(I)

tmpPt = pt3BoundPt(I)

lngElemID(I) = lngElemID(I + 1)

pt3BoundPt(I) = pt3BoundPt(I + 1)

lngElemID(I + 1) = tmpID

pt3BoundPt(I + 1) = tmpPt

boolMadeChange = True

End If

Next I

Wend

We have discussed bubble sorting previously. We are looking at the Y values of two points. We want the highest Y values to be at the top of the list. So, if a Y value lower down on the list is higher than the Y value just above it in the list, we switch the two. When a switch is made we set the variable boolMadeChange to True. This means we will run through the array again. We continue running through the array until a switch is not made. When we find we have not made a switch, the sorting is complete.

Setting the Return Value

Dim ElemsInC) As Element

ReDim ElemsIn(0 To UBound(lngElemID))

For I = LBound(lngElemID) To UBound(lngElemID)

Set ElemsIn(I) = ActiveDesignFile.GetElementByID(lngElemID(I))

Next I

SortElementsVertically = ElemsIn

We are returning an array of elements for this function. When we did our bubble sort, we swapped the point array values and also the ID array values along with them to keep the IDs matched with their points. Now, we use GetElementByID to get the element back and put the element in the return value array. We separated the IDs and points from the elements, so we did not need to hold onto large elements as we did our sorting, only smaller points and ID types.

Determining the number of text elements is relatively easy compared with the last function we just worked with. We get the element type we want to count, the elements to be counted, and we return the number of elements matching the type contained in the elements passed in.

Function GetSelectedCount(ElemType As Long, _ ElementsIn As Variant) As Long

Dim I As Long

For I = LBound(ElementsIn) To UBound(ElementsIn)

If ElementsIn(I).Type = ElemType Then

GetSelectedCount = GetSelectedCount + 1

End If

Next I

End Function

The previous three functions are written so that they can be expanded in the future. We do not need to write code right now to accommodate these potential future needs.

Now we need to make use of these functions in a single procedure to accomplish our "Distribution" task.

Private Sub btnDistributeVert_Click()

Dim MyPts As Variant

Dim pt3StartPoint As Point3d

Dim pt3EndPoint As Point3d

Dim myElemEnum As ElementEnumerator

Dim myElem As Element

Dim myElems() As Element

Dim I As Long

Dim myTextElem As TextElement

Dim lngSpaces As Long

Dim dblSpacePerElement As Double

Dim sortElems() As Element

Set myElemEnum = ActiveModelReference.GetSelectedElements

myElems = myElemEnum.BuildArrayFromContents

MyPts = GetMinMaxY(msdElementTypeText, myElems)

lngSpaces = GetSelectedCount(msdElementTypeText, myElems) - 1

If lngSpaces > 1 Then

dblSpacePerElement = (MyPts(0).Y - MyPts(1).Y) / lngSpaces

sortElems = SortElementsVertically(msdElementTypeText, myElems)

For I = LBound(sortElems) To UBound(sortElems)

Set myTextElem = sortElems(I)

myTextElem.Move Point3dFromXY(0, MyPts(0).Y - _

dblSpacePerElement * I - myTextElem.Boundary.High.Y)

myTextElem.Rewrite

myTextElem.Redraw

Next I

End If

End Sub

A close look at the above code reveals the use of the three functions we just finished discussing. GetMinMaxY, GetSelectedCount, and SortElementsVertically are used. After we have sorted the elements vertically, we move them so that they are spaced evenly.

Providing User Feedback and Information

Let’s provide similar functionality to our previous program by supplying the user feedback and information.

Private Sub UserForm_MouseMove(ByVal Button As Integer, _ ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)

ShowStatus ""

ShowPrompt ""

ShowCommand Me.Caption

End Sub

Private Sub btnDistributeVert_MouseMove(ByVal Button As Integer, _ ByVal Shift As Integer, ByVal X As Single, _ ByVal Y As Single)

ShowStatus ""

ShowPrompt "Distribute Text Vertically"

ShowCommand Me.Caption

End Sub

Private Sub fraHoriAlign_MouseMove(ByVal Button As Integer, _ ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)

ShowStatus ""

ShowPrompt ""

ShowCommand Me.Caption

End Sub

Private Sub fraBasePoint_MouseMove(ByVal Button As Integer, _ ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)

ShowStatus ""

ShowPrompt ""

ShowCommand Me.Caption

End Sub

Private Sub btnPickBasePoint_MouseMove(ByVal Button As Integer, _ ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)

ShowStatus ""

ShowPrompt "Select Base Point:"

ShowCommand Me.Caption

End Sub

Private Sub btnAlignRight_MouseMove(ByVal Button As Integer, _ ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)

ShowStatus ""

ShowPrompt "Align Selected Text Right as Base Point"

ShowCommand Me.Caption

End Sub

Private Sub btnAlignLeft_MouseMove(ByVal Button As Integer, _ ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)

ShowStatus ""

ShowPrompt "Align Selected Text Left at Base Point"

ShowCommand Me.Caption

End Sub

Private Sub btnAlignCenter_MouseMove(ByVal Button As Integer, _ ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)

ShowStatus ""

ShowPrompt "Align Selected Text Center at Base Point"

ShowCommand Me.Caption

End Sub

At this point, this code spaces text evenly if the text elements are the same height. The upper-left corner of each element is what we are using to space these text elements. If one text element is larger than the others, it could run into the text below it because we are only considering the spacing between the top-left corners relative to each other, not the top-left corner of one text element with the bottom-left corner of the one above it. We will leave the expansion of this macro to accommodate the text height to the reader of this book.

frmExportElements.frm

The frmExportElements.frm User Form accomplishes a simple task: it exports elements on specific levels to a new design file.

The task for this project is simple. The interface reflects this. We need to allow the user to select any number of levels, enter a file name for the new file to be created, and then click on the Export button.

[image: Image]

Control Names

[image: Image] lstLevels

[image: Image] txtFileName

[image: Image] btnExport

Control Properties

[image: Image] lstLevels property MultiSelect is set to 2 - fmMultiSelectExtended

[image: Image] lstLevels property ListStyle property is set to 1 - fmListStyleOption

When this program begins executing, we need to get the names of all levels of the active design file into the list box. This is very easy to do. Because we are not given level names in alphabetical order, we will employ a bubble sort to put them into the list box in alphabetical order.

Private Sub UserForm_Initialize()

Dim myLevel As Level

Dim LevelNames() As String

Dim MadeChange As Boolean

Dim tmpName As String

Dim I As Long

ReDim LevelNames(0)

For Each myLevel In ActiveDesignFile.Levels

LevelNames(UBound(LevelNames)) = myLevel.Name

ReDim Preserve LevelNames(UBound(LevelNames) + 1)

Next

ReDim Preserve LevelNames(UBound(LevelNames) - 1)

MadeChange = True

While MadeChange = True

MadeChange = False

For I = LBound(LevelNames) To UBound(LevelNames) - 1

If StrComp(LevelNames(I), LevelNames(I + 1)) = 1 Then

tmpName = LevelNames(I)

LevelNames(I) = LevelNames(I + 1)

LevelNames(I + 1) = tmpName

MadeChange = True

End If

Next I

Wend

For I = LBound(LevelNames) To UBound(LevelNames)

lstLevels.AddItem LevelNames(I)

Next I

End Sub

When comparing numeric values, we can use greater than (>) and less than (<) comparisons. You can also do this with text but the results are not always what we expect. So, we employ the standard VBA StrComp function to compare two strings.

Private Sub btnExport_Click()

Dim myFileName As String

Dim myNewFile As DesignFile

Dim I As Long

Dim ElemID As DLong

Dim myElems() As Element

Dim myElemEnum As ElementEnumerator

Dim myLevel As Level

myFileName = txtFileName.Text

If ActiveModelReference.Is3D Then

CreateDesignFile "seed3d", myFileName, False

Else

CreateDesignFile "seed2d", myFileName, False

End If

Set myNewFile = OpenDesignFileForProgram(myFileName)

Dim mySelCriteria As New ElementScanCriteria

mySelCriteria.ExcludeAllLevels

For I = 1 To lstLevels.ListCount

If lstLevels.Selectec(I - 1) Then

mySelCriteria.IncludeLevel _

ActiveModelReference.Levels(lstLevels.List (I - 1))

End If

Next I

Set myElemEnum = ActiveModelReference.Scan(mySelCriteria)

myElems = my ElemEnum.BuildArrayFromContents

For I = LBound(myElems) To UBound(myElems)

myNewFile.Models(1).CopyElement myElems(I)

Next I

myNewFile.Save

MsgBox UBound(myElems) + 1 & " elements created in file" & vbCr & _

myFileName, vbInformation, Me.Caption

End Sub

We create a new design file using the CreateDesignFile method. We then open that file using OpenDesignFileForProgram. This function allows us to open and work with a file without the user seeing the file in the MicroStation interface.

Next, we create an ElementScanCriteria object, so we only look for elements on the selected levels. We ExcludeAllLevels and then begin adding in the ones that are selected in the lstLevels ListBox. As we include the levels in our scan criteria, we could add them to the new design file we just finished creating. This is not necessary as the levels will be created when we copy elements to the new file. However, if we select a level in our interface and it does not have any elements on it, the new design file will not have that level.

Providing User Feedback and Information

The code imported with the form contains these events:

Private Sub UserForm_MouseMove(ByVal Button As Integer, _

ByVal Shift As Integer, ByVal X As Single, _ ByVal Y As Single)

ShowPrompt ""

ShowStatus ""

ShowCommand ""

End Sub

Private Sub lstLevels_MouseMove(ByVal Button As Integer, _

ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)

ShowPrompt " "

ShowStatus ""

ShowCommand ""

End Sub

Private Sub txtFileName_MouseMove(ByVal Button As Integer, _

ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)

ShowPrompt ""

ShowStatus ""

ShowCommand ""

End Sub

Private Sub btnExport_MouseMove(ByVal Button As Integer, _

ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)

ShowPrompt ""

ShowStatus ""

ShowCommand ""

End Sub

Nothing is being sent to the prompt, status, or command areas of the status bar in MicroStation. As we consider the functionality of this program, what should these values be? We will let each individual answer for themselves.

Here is the "VBA Files From Levels" form working. This program does not need to be modeless because this program does not require user interaction inside MicroStation while the form is being displayed, but it still needs to be shown from a procedure in a code module.

Sub TestFilesFromLevels()

frmExportElements.Show

End Sub

The above code is placed in a code module so users can execute this program.

Here is the interface in use. Any number of levels can be selected and exported to the file name entered.

[image: Image]

frmDFAV.frm

The frmDFAV.frm program is used to display attachments of design files.

[image: Image]

The user selects a folder by clicking on the Browse button. When selected, the selected folder is browsed for a MicroStation .dgn file. Each design file found is added to the File listbox. When the user clicks on a file in the File listbox, we look into the file for any attachments. All attachments found are added to the Attachments listbox.

Control Names

[image: Image] txtFolder

[image: Image] btnBrowse

[image: Image] lstFiles

[image: Image] lstAttachments

We are going to add a few elements in this program we have not used thus far. We could have the user type in a folder. Let’s have them select it instead. Here’s the Folder Selection dialog box we want:

[image: Image]

How do we get it? We use the Windows API.

The other thing we want to do is store the settings of our application so the next time we use it we can recall those settings. These settings are stored in the Windows registry.

Here is what this looks like:

[image: Image]

Program Components

[image: Image] Retrieve Settings from Registry on Form Initialize

[image: Image] Allow User to Select Root Folder

[image: Image] Search in Folder for .dgn files

[image: Image] Search in Folder’s Sub Folders for .dgn files

[image: Image] When user clicks on file, display Attachments

[image: Image] When Program Closes, save settings to Registry

Retrieve Settings from Registry on Form Initialize

Private Sub UserForm_Initialize()

txtFolder.Text = GetSetting("VBA File Attachment Viewer", _ "Defaults", "Path")

If txtFolder.Text <> "" Then

chkSubFolders.Value = GetSetting("VBA File Attachment Viewer", _"Defaults", "Include Subs")

PopulateFileList

End If

End Sub

When the form is initialized we look for the saved settings and put them in.

If we find a "path" saved in the registry, we set the checkbox value and populate the file list using our PopulateFileList method.

Allow User to Select Root Folder

We use the Windows API to allow the user to select a folder. In the general declarations area we declare the following:

Private Type BrowseInfo

hWndOwner As Long

pidlRoot As Long

sDisplayName As String

sTitle As String

ulFlags As Long

lpfn As Long

lParam As Long

iImage As Long

End Type

Private Declare Function SHBrowseForFolder Lib "shell32.dll" _ (bBrowse As BrowseInfo) As Long

Private Declare Function SHGetPathFromIDList Lib "shell32.dll" _ (ByVal lItem As Long, ByVal sDir As String) As Long

Private Const Bif_ReturnOnlyFSDirs = 1

Private Const Bif_DontGoBelowDomain = 2

Private Const Bif_EditBox = 16

Private Const Bif_NewDialogStyle = 64

Private Const Bif_UseNewui = 80

Private Const Bif_BrowseForComputer = 4096

Private Const Bif_BrowseForPrinter = 8192

Private Const Bif_rowseIncludeFiles = 16384

After the constants, types, and functions are declared, we can use them in our code. Here is the click event of the Browse button.

Private Sub btnBrowse_Click()

Dim MyBI As BrowseInfo

Dim FList As Long

Dim DirName As String

Dim SelFolder As Long

DirName = Space(255)

MyBI.sTitle = "Select Root Folder:"

MyBI.sDisplayName = Space(255)

MyBI.ulFlags = Bif_ReturnOnlyFSDirs

FList = SHBrowseForFolder(MyBI)

SelFolder = SHGetPathFromIDList(FList, DirName)

DirName = Left(DirName, InStr(1, DirName, Chr(0)) - 1)

If DirName <> "" Then

txtFolder.Text = DirName

Else

txtFolder.Text = " "

End If

PopulateFileList

End Sub

PopulateFileList is a procedure that takes the folder in the TextBox and begins looking for .dgn files.

Sub PopulateFileList()

lstFiles.Clear

Dim myFolder As Folder

Dim myFSO As New FileSystemObject

If txtFolder.Text <> " " Then

Set myFolder = myFSO.GetFolder(txtFolder.Text)

FilesInFolder myFolder, "dgn", chkSubFolders, lstFiles

End If

lblFiles.Caption = "Design Files in Folder - " & lstFiles.ListCount & _ " Files Found."

End Sub

PopulateFileList uses the FileSystemObject. This is a Windows component we need to add to our references before we can use it.

In VBA, go to Tools > References to display the References dialog box:

[image: Image]

When selected, the Microsoft Scripting Runtime provides an easy way to find files and traverse folders and sub-folders.

The PopulateFileList method utilizes our FilesInFolder method.

The FilesInFolder method is a recursive method, which means it calls itself. Here it is.

Sub FilesInFolder(FolderIn As Folder, FileExtension As String, _

IncludeSubs As Boolean, _

ListToPopulate As ListBox)

Dim my File As File

For Each my File In FolderIn. Files

Select Case UCase(Right(myFile.Name, 3))

Case UCase(FileExtension)

ListToPopulate.AddItem myFile.Path

End Select

Next

If IncludeSubs = True Then

Dim subFolder As Folder

For Each subFolder In FolderIn.SubFolders

FilesInFolder subFolder, FileExtension, _

IncludeSubs, ListToPopulate

Next

End If

End Sub

The first thing FilesInFolder does is looks for files in the "FolderIn" parameter folder. We look at the file extension to see if it matches the FileExtension parameter. If it does, we add it to the list. After all files have been reviewed, we check if we should also look at sub-folders. If we are not to look at sub-folders, we complete the function and move on. If we are to look at sub-folders, we begin a For … Each statement to look at each of the sub-folders in the current folder.

For each sub-folder we find using FilesInFolder, we call FilesInFolder using the sub-folder as the FolderIn parameter. This is why it is recursive. The procedure calls itself. When dealing with recursive procedures or functions, we need to be sure there is a way to finish execution. Otherwise, we could end up with hundreds or thousands of procedures in the call stack with no ending to the execution.

Displaying Attachments

When the user selects a file in the Files listbox we get the attachments of the selected file and display them in the Attachments ListBox.

Private Sub lstFiles_Click()

lstAttachments.Clear

If lstFiles.Text <> " " Then

Dim myDesFile As DesignFile

Set myDesFile = OpenDesignFileForProgram(lstFiles.Text, True)

Dim myAttachment As Attachment

For Each myAttachment In _

myDesFile.DefaultModelReference.Attachments

lstAttachments.AddItem myAttachment.AttachName

Next

myDesFile.Close

End If

lblAttachments.Caption = "Attachments in Selected File - " & _ lstAttachments.ListCount & " Attachments Found."

End Sub

Before looking at the attachments of a file, we need to open the file. We have two ways to open the file: open it for the user to see and work with or open it so the user does not see the file but our program can work with it. In this example we are using OpenDesignFileForProgram to open the file because we do not want to open the file in MicroStation’s editing window each time a file is selected.

After the user has reviewed the attachments of the desired files, the user closes the program. When a program is being closed, we want to store the settings so the next time the program is executed we begin with those settings in place.

Private Sub UserForm_QueryClose(Cancel As Integer, _

CloseMode As Integer)

SaveSetting "VBA File Attachment Viewer", "Defaults", _

"Path", txtFolder.Text

SaveSetting "VBA File Attachment Viewer", "Defaults",

"Include Subs", _ chkSubFolders.Value

End Sub

We are saving two settings to the Windows registry. These are the settings read by the initialize event of the form.

INTERACTING WITH MDL APPLICATIONS

Let’s record a macro where we import an image using the MicroStation menu File > Import > Image. Browse to C:\Program HYPERLINK "file://Files/Bentley/MicroStation/bentleyb.jpg"Files\Bentley\MicroStation\bentleyb.jpg and place it in MicroStation. After the image is placed, stop recording the macro.

Before we look at the macro that was created, we should discuss the two methods of interacting with MDL Applications. The first method looks like our previous use of the "SendCommand" method where, after the command begins, we can supply points or other input as needed. The second method, using dialog boxes, requires a class module that handles the events of the dialog box.

The Import Image MDL application makes use of a dialog box so a new class is created that is used with the recorded macro. Let’s begin by looking at the recorded macro. After we do, this we will look at the class module created by the macro recorder.

Sub Macro5()

Dim startPoint As Point3d

Dim point As Point3d, point2 As Point3d

Dim lngTemp As Long

Dim modalHandler As New Macro5ModalHandler

AddModalDialogEventsHandler modalHandler

' The following statement opens modal dialog "Select Image File"

' Start a command

CadInputQueue.SendCommand "MDL LOAD PLAIMAGE"

' Coordinates are in master units

startPoint.X = -6.270784

startPoint.Y = 23.160278

startPoint.Z = 0#

' Send points to simulate a down-drag-up action

point.X = startPoint.X

point.Y = startPoint.Y

point.Z = startPoint.Z

point2.X = point.X + 2.938037

point2.Y = point.Y - 2.980928

point2.Z = point.Z

CadInputQueue.SendDragPoints point, point2, 1

RemoveModalDialogEventsHandler modal Handler

CommandState.StartDefaultCommand

End Sub

The class module created is named Macro5ModalHandler. After declaring a few variables, the macro recorder declares a variable as a "Macro5ModalHandler" and adds the events of this class. Next, the "MDL LOAD PLAIMAGE" command is sent. This displays the dialog box. After the dialog box is shown, the class module handles the entry of the file path and name and closes the dialog box. When the dialog box closes, we are back in the Macro5 procedure, which places the image in the design file by 'dragging' points. The event handler is removed and we finish out the procedure.

Let’s take a look at the class module created.

Implements IModalDialogEvents

Private Sub IModalDialogEvents_OnDialogClosed(ByVal _

DialogBoxName As String, ByVal DialogResult As MsdDialogBoxResult)

End Sub

Private Sub IModalDialogEvents_OnDialogOpened(ByVal _

DialogBoxName As String, DialogResult As MsdDialogBoxResult)

If DialogBoxName = "Select Image File" Then

CadInputQueue.SendCommand _

"MDL COMMAND MGDSHOOK,fileList_setFilterCmd *.cal"

CadInputQueue.SendCommand _

"MDL COMMAND MGDSHOOK,fileList_setDirectoryCmd " & _

"C:\Program Files\Bentley\MicroStation\"

CadInputQueue.SendCommand _

"MDL COMMAND MGDSHOOK,fileList_setFileNameCmd " & _

"bentleyb.jpg"

' Remove the following line to let the user close the dialog box. DialogResult = msdDialogBoxResultOK

End If ' Select Image File

End Sub

Every time the macro Macro5 is run, the same image will be placed in the same place. Let’s make a few modifications to the code we have so we can create a more flexible and powerful class module that can be used in future projects.

Here is the code for the new class module. It is named clsImageInsertion. We have added two public variables that act as properties to this class module.

Implements IModalDialogEvents

Public FilePath As String

Public FileName As String

Private Sub IModalDialogEvents_OnDialogClosed(ByVal _

DialogBoxName As String, ByVal DialogResult As _

MsdDialogBoxResult)

End Sub

Private Sub IModalDialogEvents_OnDialogOpened(ByVal _

DialogBoxName As String, DialogResult As MsdDialogBoxResult)

If DialogBoxName = "Select Image File" Then

CadInputQueue.SendCommand _

"MDL COMMAND MGDSHOOK,fileList_setDirectoryCmd " & _

FilePath

CadInputQueue.SendCommand _

"MDL COMMAND MGDSHOOK,fileList_setFileNameCmd " & _

FileName

DialogResult = msdDialogBoxResultOK

End If

End Sub

The path and filename is no longer hard-coded. This means we can use this class module any time we want to insert an image into a file. This is how it is used:

Sub TestImageInsertion()

Dim point1 As Point3d, point2 As Point3d

Dim modalHandler As New clsImageInsertion

modalHandler.FilePath = "C:\Program Files\Bentley\MicroStation\"

modalHandler.FileName = "bentleyb.jpg"

AddModalDialogEventsHandler modalHandler

CadInputQueue.SendCommand "MDL LOAD PLAIMAGE"

pointl.X = 0: pointl.Y = 0: pointl.Z = 0

point2.X = 1: point2.Y = 1: point2.Z = 0

CadInputQueue.SendDragPoints point1, point2, 1

RemoveModalDialogEventsHandler modalHandler

CommandState.StartDefaultCommand

End Sub

Using FilePath and FileName properties for the class module allows the class module to be used with any file path or name. Previously, the path and name were hard-coded.

REVIEW

The MicroStation VBA API is powerful. This power allows us to be creative in how we approach programming tasks. For example, initiating the "PLACE LINE" command to provide the user with a more graphically rich experience when selecting two points can be used even when we are not concerned with drawing a line. Using a modeless form allows the user complete flexibility in working with the MicroStation interface while allowing interaction with our own GUI.

[image: Image]

18Interface Essentials

What is an interface? The term is used in programming to describe several different things, so lets explain and define the term.

We have already worked with user forms and controls to create a graphical user interface, which allows users to interact with controls. The graphics provide an interface to the code of the program.

Another type of interface allows us to interact with code in a program but does not have a graphical component. It allows us to interact with the user’s activities in MicroStation. For example, when a user selects an element in MicroStation, we can capture that activity through the use of an interface named "ILocateCommandEvents". As the user picks points in MicroStation, we can capture those points through the use of the "IPrimitiveCommandEvents" Interface.

User interaction with some dialogs in MicroStation can be evaluated through the use of the "IModalDialogEvents".

In this Chapter:

[image: Image] Interface basics

[image: Image] Class module review

[image: Image] Class module lifecycle

[image: Image] The dynamics event

[image: Image] The LocateCriteria object

[image: Image] IPrimitiveCommandEvents interface

[image: Image] Optimizing the dynamics event

INTERFACE BASICS

The ability to capture user interaction in MicroStation is powerful. To harness this power, we create a new class module that implements the interface. For example, to capture point selections in MicroStation, we insert a new class module in our VBA project and place the following line in the General Declarations area of the class module:

Implements IPrimitiveCommandEvents

Using the "Implements" keyword in a class module means the class module inherits the methods or events of the interface.

[image: Image]

When we use the Implements keyword, the name of the interface appears in the object combobox of the class module.

[image: Image]

If we select the interface in the object combobox, as shown above, the methods of the interface displays in the methods combobox.

As we can see, the IPrimitiveCommandEvents interface exposes six methods or events. They are Cleanup, DataPoint, Dynamics, Keyin, Reset, and Start.

Unlike user form controls, where we pick and choose which events we want to display and work with, each and every method in an interface must be declared, even if we are not going to do anything with them. The easiest way to do this is to select each of the methods in the Methods combobox. Each time we do this, VBA automatically writes the Sub … End Sub code for us. If we follow this procedure for the IPrimitiveCommandEvents interface, we see the following in the class module:

Implements IPrimitiveCommandEvents

Private Sub IPrimitiveCommandEvents_Cleanup()

End Sub

Private Sub IPrimitiveCommandEvents_DataPoint(Point As Point3d, _

ByVal View As View)

End Sub

Private Sub IPrimitiveCommandEvents_Dynamics(Point As Point3d, _

ByVal View As View, ByVal DrawMode As MsdDrawingMode)

End Sub

Private Sub IPrimitiveCommandEvents_Keyin(ByVal Keyin As String)

End Sub

Private Sub IPrimitiveCommandEvents_Reset()

End Sub

Private Sub IPrimitiveCommandEvents_Start()

End Sub

Now we are ready to enter the code into the events.

CLASS MODULE REVIEW

An interface must be exposed using a class module. We already discussed class modules but a quick review is in order.

We create a new class module by using the VBA menu Insert > Class Module. By default, VBA names the new class modules "Class1", "Class2", "Class3", "Class4", etc. We should rename them to something that helps us understand what the class is. For example, we name a class that writes to files "clsFileWriter". In a later example, we will name a Class "LCE_Text" to indicate we are working with the ILocateCommandEvents interface (LCE) and that we are doing something with text.

After a class module is inserted and named, we begin writing our code. Methods and functions are written very much like they are in code modules. We can create events for our class modules. We can create properties by declaring variables as "Public" in the General Declarations area of the code module. And we can also create properties through the use of "Get" and "Set" (or "Let") statements.

The end result of creating a class is a new object. Classes cannot operate independently. They need other code to initiate them, set their properties, and use their methods. I will demonstrate two ways to call up a class module. The first is to create a new class module named "clsNetNode". Here is the code:

Private Type IPAddr

Set1 As Byte

Set2 As Byte

Set3 As Byte

Set4 As Byte

End Type

Public Name As String

Private IPAddress As IPAddr

Sub Ping()

MsgBox "Pinging " & IPAddress.Set1 & "." & _

IPAddress.Set2 & "." & _

IPAddress.Set3 & "." & _

IPAddress.Set4, , Name

End Sub

Sub SetIPAddress(IPA As Byte, IPB As Byte, IPC As Byte, _ IPD As Byte)

IPAddress.Set1 = IPA

IPAddress.Set2 = IPB

IPAddress.Set3 = IPC

IPAddress.Set4 = IPD

End Sub

This class has one property (Name) and two methods (Ping and SetIPAddress). The SetIPAddress method sets the IP address values of the private variable "IPAddress". The Ping method displays the entered IP address in a MessageBox and uses the Name property for the MessageBox caption.

The first way to call up a class module is to declare a variable as the class type, set the variable to a "New" class type, and then set properties and use methods.

Sub TestClsNetNodeA()

Dim myNetNode As clsNetNode

Set myNetNode = New clsNetNode

myNetNode.SetIPAddress 192, 168, 1, 1

myNetNode.Name = "Router"

myNetNode.Ping

End Sub

The second way to utilize a class module is to declare a variable as a "New" class type and then begin setting variables and using methods as shown below:

Sub TestClsNetNodeB()

Dim myNetNode As New clsNetNode

myNetNode.SetIPAddress 192, 168, 1, 1

myNetNode.Name = "Router"

myNetNode.Ping

End Sub

The difference between these two ways to declare and initialize class modules is small. The net result is the same however in this example.

[image: Image]

CLASS MODULE LIFECYCLE

When we implement a simple class module, as we did with "clsNetNode", the class is alive only as long as the variable declared as the class module is in scope. In the two test procedures above, we declared the variable myNetNode inside the procedures so the clsNetNode Class is only alive inside the procedure where the variable was declared.

Variables declared in the General Declarations area as a class module are available to all methods in the module in which it is declared and other modules as well if the variable was declared as "Public".

As soon as a variable declared as a specific class goes out of scope, the object is automatically terminated. This is not the only way a declared class can be terminated. You can terminate a class by setting the variable representing the class to Nothing, as follows:

Set myNetNode = Nothing

This explanation of the lifecycle of classes relates to most circumstances where we utilize class modules. One exception to this rule is when we use classes with the StartLocate and StartPrimitive methods of the MicroStation CommandState object. When we use StartLocate and StartPrimitive, MicroStation holds onto the class and notifies it of events until either MicroStation is closed down, we use "CommandState.StartDefaultCommand", or we use one of the "Remove…." methods where applicable. We will see examples of the "Remove…." methods later in this book.

It is important to understand the lifecycle of the classes we will be using to implement MicroStation interfaces because the code we use to call up these classes will execute and the procedure will end but the class will still be alive because MicroStation is keeping it alive.

Let’s discuss two MicroStation interfaces. The first is the ILocateCommandEvents interface.

ILocateCommandEvents

The ILocateCommandEvents Interface allows us to have the user select or 'Locate' an element. Here are the events exposed through the ILocateCommandEvents interface:

[image: Image] Private Sub ILocateCommandEvents_Accept(ByVal Element As Element, Point As Point3d, ByVal View As View)

[image: Image] Private Sub ILocateCommandEvents_Cleanup()

[image: Image] Private Sub ILocateCommandEvents_Dynamics(Point As Point3d, ByVal View As View, ByVal DrawMode As MsdDrawingMode)

[image: Image] Private Sub ILocateCommandEvents_LocateFailed()

[image: Image] Private Sub ILocateCommandEvents_LocateFilter(ByVal Element As Element, Point As Point3d, Accepted As Boolean)

[image: Image] Private Sub ILocateCommandEvents_LocateReset()

[image: Image] Private Sub ILocateCommandEvents_Start()

Each event is triggered at a specific time. Some of the events provide information such as which element was located. Whenever we use MicroStation’s interface objects, each event or method must be declared, whether we intend to use it or not. Let’s take a look at an example.

We begin with capitalizing text elements.

The name of this class module is LCE_Text. Here is the code in the class module:

Implements ILocateCommandEvents

Private SelElement As Element

Private Sub ILocateCommandEvents_Accept(ByVal _

Element As Element, Point As Point3d, ByVal View As View)

Dim elemText As TextElement

Set elemText = Element

elemText.Redraw msdDrawingModeErase

elemText.Text = UCase(elemText.Text)

elemText.Redraw msdDrawingModeNormal

elemText.Rewrite

ActiveModelReference.UnselectAllElements

CommandState.StartDefaultCommand

End Sub

Private Sub ILocateCommandEvents_Cleanup()

End Sub

Private Sub ILocateCommandEvents_Dynamics(Point As Point3d, ByVal

View As View, ByVal DrawMode As MsdDrawingMode)

End Sub

Private Sub ILocateCommandEvents_LocateFailed()

If SelElement Is Nothing = False Then

ActiveModelReference.UnselectAllElements

Set SelElement = Nothing

End If

ShowCommand "CAP Text"

ShowPrompt "Select Text to be Capitalized"

End Sub

Private Sub ILocateCommandEvents_LocateFilter(ByVal _

Element As Element, Point As Point3d, Accepted As Boolean)

Accepted = False

If Element.IsTextElement = True Then

Set SelElement = Element

Accepted = True

ActiveModelReference.SelectElement Element, True

ShowCommand "CAP Text"

ShowPrompt "Click again to confirm…"

End If

End Sub

Private Sub ILocateCommandEvents_LocateReset()

CommandState.StartDefaultCommand

End Sub

Private Sub ILocateCommandEvents_Start()

End Sub

LocateFilter Event

The first event we work with is the LocateFilter event. This event gives us the ability to specify whether the element selected meets our criteria. By default, the accepted property is true. If the accepted property remains true, the user is given the opportunity to "Accept" the selection by clicking again in MicroStation. When the user "Accepts" the selection, the accept event is triggered and the code inside it is executed. If in the LocateFilter event, the accepted parameter is set to false, the LocateFailed event is triggered. It is common to re-start the interface object if the LocateFilter event returns a false accepted value.

Accept Event

Two conditions must exist before the accept event is triggered. First, the LocateFilter event must exit with an accepted property of true. Second, the user must "Accept" the already filtered element by left-clicking in MicroStation. A right-click in MicroStation, after LocateFilter successfully exits, resets the LocateFilter event but will not exit the interface completely. When these two conditions (LocateFilter and User Acceptance) are met, the code in the Accept event is executed.

LocateReset Event

The LocateReset event, the last triggered event in this interface, is triggered when the user issues a reset by right-clicking in MicroStation before the LocateFilter Event has been entered or after the LocateFilter event has been entered but the accepted property has been set to false. Remember that the LocateReset event is telling us that the user has requested a reset. It is up to our code to exit the interface by issuing a "CommandState.StartDefaultCommand".

LocateFailed Event

The LocateFailed event is triggered when the user clicks to select something but nothing is located. This event could be used to exit out of the interface by using "CommandState.StartDefaultCommand".

Start Event

The Start event, the first event triggered when utilizing this interface, can be used to set up variables or other objects.

Cleanup Event

The Cleanup event is triggered just prior to the LocateReset event. As the name implies, it can be used to clean up variables, objects, or references used by the interface.

Dynamics Event

The Dynamics event provides dynamic real-time feedback. An example later in this chapter demonstrates how it is used.

Class Modules do not work by themselves — they need to be created by other code. Here is the procedure that makes use of our new LCE_Text class.

Sub tstLCE_Text()

CommandState.StartLocate New LCE_Text

ShowCommand "CAP Text"

ShowPrompt "Select Text to be Capitalized"

End Sub

[image: Image]

Here are the screen shots of the program working. Notice the command and prompts guiding the user.

Here is another variation of the Capitalize Text program. The only difference is the code handling the capitalizing of the text. It is now placed in the LocateFilter event. This means the selected text element is capitalized without waiting for user confirmation.

Implements ILocateCommandEvents

Private SelElement As Element

Private Sub ILocateCommandEvents_Accept(ByVal Element As Element, Point As Point3d, ByVal View As View)

End Sub

Private Sub ILocateCommandEvents_Cleanup()

End Sub

Private Sub ILocateCommandEvents_Dynamics(Point As Point3d, _

ByVal View As View, ByVal DrawMode As MsdDrawingMode)

End Sub

Private Sub ILocateCommandEvents_LocateFailed()

If SelElement Is Nothing = False Then

ActiveModelReference.UnselectAllElements

Set SelElement = Nothing

End If

ShowCommand "CAP Text"

ShowPrompt "Select Text to be Capitalized"

End Sub

Private Sub ILocateCommandEvents_LocateFilter(ByVal Element As _

Element, Point As Point3d, Accepted As Boolean)

Accepted = False

Dim elemText As TextElement

If Element.IsTextElement = True Then

Set elemText = Element

elemText.Redraw msdDrawingModeErase

elemText.Text = UCase(elemText.Text)

elemText.Redraw msdDrawingModeNormal

elemText.Rewrite

ActiveModelReference.UnselectAllElements

CommandState.StartDefaultCommand

End If

End Sub

Private Sub ILocateCommandEvents_LocateReset()

CommandState.StartDefaultCommand

End Sub

Private Sub ILocateCommandEvents_Start()

End Sub

Here is the code that initializes the Interface Object.

Sub tstLCE_Text2()

CommandState.StartLocate New LCE_Text2

ShowCommand "CAP Text"

ShowPrompt "Select Text to be Capitalized"

End Sub

We have not used the Dynamics event mentioned previously. Let’s use it now.

This code dynamically draws a new text element displaying the distance between the original selection point and the cursor location. This is done real-time. As the cursor moves, the text changes.

[image: Image]

Here are two examples of this Interface in action. The first is while the cursor is being dragged after the initial selection. The second is after the mouse button is clicked and the "Distance Text" is placed.

Here is the code for the Class Module named LCE_DistanceText.

Implements ILocateCommandEvents

Private selElem As Element

Private pt3StPoint As Point3d

Private dblDistance As Double

Private Sub ILocateCommandEvents_Accept(ByVal Element As Element, _

Point As Point3d, ByVal View As View)

Dim txtElem As TextElement

Dim rotMatrix As Matrix3d

dblDistance = Point3dDistance(Point, pt3StPoint)

Set txtElem = CreateTextElement1(selElem, Round(dblDistance, _

3), Point, rotMatrix)

ActiveModelReference.AddElement txtElem

txtElem.Rewrite

txtElem.Redraw

CommandState.StartLocate Me

End Sub

Private Sub ILocateCommandEvents_Cleanup()

End Sub

Private Sub I LocateCommandEvents_Dynamics(Point As Point3d, _

ByVal View As View, ByVal DnawMode As MsdDrawingMode)

Dim tmpTxtElem As TextElement

Dim rotMatrix As Matrix3d

dblDistance = Point3dDistance(Point, pt3StPoint)

Set tmpTxtElem = CreateTextElement1(selElem, Round(dblDistance, 3), _ Point, rotMatrix)

tmpTxtElem.Rednaw DrawMode

ShowPrompt "Select Distance Point:"

End Sub

Private Sub ILocateCommandEvents_LocateFailed()

CommandState.StartLocate Me

End Sub

Private Sub ILocateCommandEvents_LocateFilter(ByVal -

Element As Element, Point As Point3d, _

Accepted As Boolean)

Set selElem = Element

pt3StPoint = Point

CommandState.StartDynamics

End Sub

Private Sub ILocateCommandEvents_LocateReset()

CommandState.StartDefaultCommand

End Sub

Private Sub ILocateCommandEvents_Start()

ShowCommand "Text Distance"

ShowPrompt "Select Element for Base Point"

End Sub

Here is the procedure that calls the interface through the class:

Sub tstLCE_DistanceText()

CommandState.StartLocate New LCE_DistanceText

End Sub

This macro demonstrates using a Dynamics event. A careful review of the LocateFilter event shows the StartDynamics method. Without this method, the Dynamics event would not be triggered. The Dynamics event creates a new text element at the point of the cursor displaying the distance between the original Locate Point and the cursor location.

LocateCriteria

When an element is 'located', we enter the LocateFilter method. In previous examples we used this method to determine the type of the selected element. This works but if we know the kind of element we want, we can specify this before the selection is made by using LocateCriteria.

Implements ILocateCommandEvents

Private SelElement As Element

Dim myLC As LocateCriteria

Private Sub ILocateCommandEvents_Accept(ByVal Element As Element, _ Point As Point3d,

ByVal View As View)

End Sub

Private Sub ILocateCommandEvents_Cleanup()

End Sub

Private Sub ILocateCommandEvents_Dynamics(Point As Point3d, _

ByVal View As View, ByVal DrawMode As MsdDrawingMode)

End Sub

Private Sub ILocateCommandEvents_LocateFailed()

If SelElement Is Nothing = False Then

ActiveModelReference.UnselectAllElements

Set SelElement = Nothing

End If

ShowCommand "CAP Text"

ShowPrompt "Select Text to be Capitalized"

End Sub

Private Sub ILocateCommandEvents_LocateFilter(ByVal Element As _

Element, Point As Point3d, _

Accepted As Boolean)

Dim elemText As TextElement

Set elemText = Element

elemText.Redraw msdDrawingModeErase

elemText.Text = UCase(elemText.Text)

elemText.Redraw msdDrawingModeNormal

elemText.Rewrite

ActiveModelReference.UnselectAllElements

CommandState.StartDefaultCommand

End Sub

Private Sub ILocateCommandEvents_LocateReset()

CommandState.StartDefaultCommand

End Sub

Private Sub ILocateCommandEvents_Start()

Set myLC = CommandState.CreateLocateCriteria(True)

myLC.ExcludeAllTypes

myLC.IncludeType (msdElementTypeText)

CommandState.SetLocateCriteria myLC

End Sub

We make use of the LocateCriteria object with SetLocateCriteria to proactively filter the user’s selection. This is preferable to allowing the selection to be made, reviewing the elements properties, and accepting or rejecting the selection inside the LocateFilter event. By using the LocateCriteria object, we know the user has made a legitimate selection by the time we get to the LocateCriteria event.

Here are the methods of the LocateCriteria object:

[image: Image] Sub ExcludeAllClasses()

[image: Image] Sub ExcludeAllLevels()

[image: Image] Sub ExcludeAllTypes()

[image: Image] Sub ExcludeClass(ElemClass As MsdElementClass)

[image: Image] Sub ExcludeLevel(Level As Level)

[image: Image] Sub ExcludeType(Type As MsdElementType)

[image: Image] Sub IncludeClass(ElemClass As MsdElementClass)

[image: Image] Sub IncludeLevel(Level As Level)

[image: Image] Sub IncludeOnlyHole()

[image: Image] Sub IncludeOnlyLocked()

[image: Image] Sub IncludeOnlyModified()

[image: Image] Sub IncludeOnlyNew()

[image: Image] Sub IncludeOnlyNonPlanar()

[image: Image] Sub IncludeOnlyNonSnappable()

[image: Image] Sub IncludeOnlyOld()

[image: Image] Sub IncludeOnlyPlanar()

[image: Image] Sub IncludeOnlySnappable()

[image: Image] Sub IncludeOnlySolid()

[image: Image] Sub IncludeOnlyUnlocked()

[image: Image] Sub IncludeOnlyUnmodified()

[image: Image] Sub IncludeType(Type As MsdElementType)

The MicroStation VBA help file explains the use of each method shown here as well as examples of how they are used.

IPrimitiveCommandEvents

We just finished discussing the ILocateCommandEvents interface. Its primary use is selection (or location) of elements in a design file. Use the IPrimitiveCommandEvents object to capture command entry and point selection.

Here are the events we have to work with:

[image: Image] Private Sub IPrimitiveCommandEvents_Cleanup()

[image: Image] Private Sub IPrimitiveCommandEvents_DataPoint(Point As _ Point3d, ByVal View As View)

[image: Image] Private Sub IPrimitiveCommandEvents_Dynamics(Point As _ Point3d, ByVal View As View, ByVal DrawMode As MsdDrawingMode)

[image: Image] Private Sub IPrimitiveCommandEvents_Keyin(ByVal Keyin As String)

[image: Image] Private Sub IPrimitiveCommandEvents_Reset()

[image: Image] Private Sub IPrimitiveCommandEvents_Start()

Some of these should look familiar: Start, Reset, Cleanup, Dynamics. We have already used these. Two events we have not worked with are DataPoint and Keyin. Let’s take a look at several examples of how these events work.

PCE_LineTest

The PCE_LineTest class draws a rubber-band line from the first point selected to the current cursor location. After the second point is selected, we use StartDefaultCommand to exit out of the class:

Implements IPrimitiveCommandEvents

Dim pt3BasePoint As Point3d

Dim boolSet As Boolean

Private Sub IPrimitiveCommandEvents_Cleanup()

End Sub

Private Sub IPrimitiveCommandEvents_DataPoint(Point As Point3d, _ ByVal View As View)

If boolSet = False Then

pt3BasePoint = Point

CommandState.StartDynamics

boolSet = True

Else

CommandState.StartDefaultCommand

End If

End Sub

Private Sub IPrimitiveCommandEvents_Dynamics(Point As Point3d, _

ByVal View As View, ByVal DrawMode As MsdDrawingMode)

Dim myLineElem As LineElement

Set mytineElem = CreateLineElement2(Nothing, pt3BasePoint, Point)

myLineElem.Redraw DrawMode

End Sub

Private Sub IPrimitiveCommandEvents_Keyin(ByVal Keyin As String)

End Sub

Private Sub IPrimitiveCommandEvents_Reset()

End Sub

Private Sub IPrimitiveCommandEvents_Start()

End Sub

Most of the code in this example is in the DataPoint event and the Dynamics event. Remember, we only want two points to be selected. We use the variable boolSet so we know if the first point has been selected. If the base point has not been selected, boolSet equals false and we take the Point parameter and place it in the pt3BasePoint variable, StartDynamics, and change boolSet to true.

As the cursor moves in MicroStation the Dynamics event is triggered. This happens many times per second. We need to make sure the code in the Dynamics event is not too time-consuming. In this example, we create a new LineElement between the initial point selected and the current cursor location given to us in the Point parameter.

[image: Image]

Interface objects cannot run by themselves. They need code in a code module or a form to call them up.

Sub PlaceLine()

CommandState.StartPrimitive New PCE_LineTest

End Sub

Running this code demonstrates the fact that it works. The first point is selected and the line is drawn as the cursor moves in MicroStation. After the second point is selected, we exit the object. Normally we would not leave this object as it is. We would do something with the two points. We may draw a line between the two points. Or we could write code to divide the selected points into four equal segments and draw circles at those division points. We will see this in a future example.

PCE_RecTest

The next example utilizes the same two point selection we saw in the previous example. However, in this example we draw a rectangle using the two points as bounding points. The only code that differs is the code that generates a shape using the X and Y elements of the points to create a rectangle. The name of this class module is PCE_RecTest.

Implements IPrimitiveCommandEvents

Dim pt3BasePoint As Point3d

Dim boolSet As Boolean

Private Sub IPrimitiveCommandEvents_Cleanup()

End Sub

Private Sub IPrimitiveCommandEvents_DataPoint(Point As Point3d, _

ByVal View As View)

If boolSet = False Then

pt3BasePoint = Point

CommandState.StartDynamics

boolSet = True

Else

CommandState.StartDefaultCommand

End If

End Sub

Private Sub I PrimitiveCommandEvents_Dynamics(Point As Point3d, _

ByVal View As View, ByVal DrawMode As MsdDrawingMode)

Dim pt3RecPoints(0 To 3) As Point3d

Dim myShapeElem As ShapeElement

pt3RecPoints(0) = pt3BasePoint

pt3RecPoints(1).X = Point.X

pt3RecPoints(1).Y = pt3BasePoint.Y

pt3RecPoints(2) = Point

pt3RecPoints(3).X = pt3BasePoint.X

pt3RecPoints(3).Y = Point.Y

Set myShapeElem = CreateShapeElement1(Nothing, pt3RecPoints)

myShapeElem.Redraw DrawMode

End Sub

Private Sub IPrimitiveCommandEvents_Keyin(ByVal Keyin As String)

End Sub

Private Sub IPrimitiveCommandEvents_Reset()

End Sub

Private Sub IPrimitiveCommandEvents_Start()

End Sub

Notice how the X and Y elements of each shape vertex is derived from the base point and the current cursor point.

Sub PlaceRec()

CommandState.StartPrimitive New PCE_RecTest

End Sub

The procedure PlaceRec initiates the PCE_RecTest class module.

[image: Image]

After the first point is selected, a rectangle is dragged from the first point to the cursor. Since we are not doing anything with the Reset event, the only way to get out of this interface is to select the second point.

PCE_CircTest

The CircleTest class draws a circle with a center at the first selected point to the cursor.

Implements IPrimitiveCommandEvents

Dim pt3BasePoint As Point3d

Dim boolSet As Boolean

Private Sub IPrimitiveCommandEvents_Cleanup()

End Sub

Private Sub IPrimitiveCommandEvents_DataPoint(Point As Point3d, _ ByVal View As View)

If boolSet = False Then

pt3BasePoint = Point

CommandState.StartDynamics

boolSet = True

Else

CommandState.StartDefaultCommand

End If

End Sub

Private Sub IPrimitiveCommandEvents_Dynamics(Point As Point3d, _

ByVal View As View, ByVal DrawMode As MsdDrawingMode)

Dim myCircle As EllipseElement

Dim rotMatrix As Matrix3d

Dim dblRadius As Double

dblRadius = Point3dDistance(pt3BasePoint, Point)

Set myCircle = CreateEllipseElement2(Nothing, pt3BasePoint, _

dblRadius, dblRadius, rotMatrix)

myCircle.Redraw DrawMode

End Sub

Private Sub IPrimitiveCommandEvents_Keyin(ByVal Keyin As String)

End Sub

Private Sub IPrimitiveCommandEvents_Reset()

CommandState.StartDefaultCommand

End Sub

Private Sub IPrimitiveCommandEvents_Start()

End Sub

This example makes use of the Reset event. If the user resets the command, we exit the interface object by calling StartDefaultCommand.

Sub PlaceCirc()

CommandState.StartPrimitive New PCE_CircTest

End Sub

[image: Image]

PCE_PolyTest

The PolyTest example draws a regular polygon circumscribed within an imaginary circle centered at the first point and extending out to the cursor location. We could draw a square, a triangle, or a hexagon. Which should we draw? The PolyTest class can draw any regular polygon because we specify the number of vertices. The code in the class module is clear enough. The way we call up the class module differs from the other examples we have looked at. Let’s begin with the class module:

Implements IPrimitiveCommandEvents

Dim pt3BasePoint As Point3d

Dim boolSet As Boolean

Public Vertices As Long

Private Sub IPrimitiveCommandEvents_Cleanup()

End Sub

Private Sub IPrimitiveCommandEvents_DataPoint(Point As Point3d, _

ByVal View As View)

If boolSet = False Then

pt3BasePoint = Point

CommandState.StartDynamics

boolSet = True

Else

CommandState.StartDefaultCommand

End If

End Sub

Private Sub IPrimitiveCommandEvents_Dynamics(Point As Point3d, _

ByVal View As View, ByVal DrawMode As MsdDrawingMode)

Dim pt3PolyPoints() As Point3d

ReDim pt3PolyPoints(0 To Vertices - 1) As Point3d

Dim myShapeElem As ShapeElement

Dim I As Long

Dim dblBaseAngle As Double

dblBaseAngle = Atn((Point.Y - pt3BasePoint.Y) / _

(Point.X - pt3BasePoint.X))

For I = 0 To Verticies - 1

pt3PolyPoints(I) = Point3dAddAngleDistance(pt3BasePoint, _ dblBaseAngle + Radians(360 / Verticies * I), _ Point3dDistance(pt3BasePoint, Point), 0)

Next I

Set myShapeElem = CreateShapeElement1(Nothing, pt3PolyPoints)

myShapeElem.Redraw DrawMode

End Sub

Private Sub IPrimitiveCommandEvents_Keyin(ByVal Keyin As String)

End Sub

Private Sub IPrimitiveCommandEvents_Reset()

CommandState.StartDefaultCommand

End Sub

Private Sub IPrimitiveCommandEvents_Start()

End Sub

Take note that the vertices variable is declared as a public variable in the General Declarations area of the class module. This allows it to act as a property of the class module.

Sub PlacePoly()

Dim myPolyTest As New PCE_PolyTest

my PolyTest.Verticies = 8

CommandState.StartPrimitive myPolyTest

End Sub

As we mentioned previously, we make use of the PCE_PolyTest class a little differently than we did to the previous classes. In this example we declare a variable as a New PCE_PolyTest. We need to do this so we can specify the number of vertices we want drawn before we start the "StartPrimitive" activities. After the class is initiated and the vertices property is set, we use the variable myPolyTest with the "StartPrimitive" method to begin the capture of PrimitiveCommandEvents.

[image: Image]

The number of vertices specified is used to calculate the angle used to project each vertex of the regular polygon drawn.

PCE_PointStringTest

Each PrimitiveCommandEvent interface example we have used up to this point has been based on the user’s selection of two points. We drew a line between two points. We drew a rectangle using the two points as opposing corners. We drew a circle using two points. We drew a polygon using the two points.

The PCE_PointStringTest class allows for selection of more than one point. In fact, there is nothing that prohibits the user from selecting an endless number of points.

Implements IPrimitiveCommandEvents

Dim pt3BasePoint As Point3d

Dim pt3Points() As Point3d

Dim boolSet As Boolean

Private Sub IPrimitiveCommandEvents_Cleanup()

End Sub

Private Sub IPrimitiveCommandEvents_DataPoint(Point As Point3d, _

ByVal View As View)

If boolSet = False Then

pt3BasePoint = Point

pt3Points(0) = Point

ReDim Preserve pt3Points(UBound(pt3Points) + 1)

CommandState.StartDynamics

boolSet = True

Else

pt3Points(UBound(pt3Points)) = Point

ReDim Preserve pt3Points(UBound(pt3Points) + 1)

End If

End Sub

Private Sub IPrimitiveCommandEvents_DynamiestPoint As Point3d, _

ByVal View As View, ByVal DrawMode As MsdDrawingMode)

Dim myPointString As PointStringElement

pt3Points(UBound(pt3Points)) = Point

Set myPointString = CreatePointStringElement1(_

Nothing, pt3Points, False)

myPointString.Redraw DrawMode

End Sub

Private Sub IPrimitiveCommandEvents_Keyin(ByVal Keyin As String)

Select Case UCase(Keyin)

Case "PLCLOSE"

Dim myPointString As PointStringElement

pt3Points(UBoundtpt3Points)) = pt3BasePoint

Set myPointString = CreatePointStringElement1(Nothing, _

pt3Points, False)

ActiveModelReference.AddElement myPointString

CommandState.StartDefaultCommand

End Select

End Sub

Private Sub IPrimitiveCommandEvents_Reset()

CommandState.StartDefaultCommand

End Sub

Private Sub IPrimitiveCommandEvents_Start()

ReDim pt3Points(0)

End Sub

The user is likely to enter more than one or two points when using this example. We could declare a variable to hold up to 10 points or 50 points or 100 points. We could then prompt the user to select "up to 10 points," for example. This may work or may be necessary in some circumstances, but when we want any number of points to be allowed, we need a different solution.

Declaring the variable pt3Points as a dynamic array (using empty parenthesis when declaring it) allows us to change the size of the array as needed. We change the size with the "Preserve" keyword so VBA changes the size of the array without dumping the existing array elements.

Each time a new point is selected, we place the selected point in the upper-bound element of the array and then we immediately increase the array size by one. It is important to increase the array size by one each time a new point is entered because we use the new upper-bound element in the dynamics event.

In the previous examples we wanted the user to only select two points. This made it easy for us to exit the class module using "StartDefaultCommand". We have placed the reset event and it works well. However, we want to allow the user to close the point string and finish the command without having to reset things. How do we do this? One way is to use the Keyin event.

Private Sub IPrimitiveCommandEvents_Keyin(ByVal Keyin As String)

Select Case UCase(Keyin)

Case "PLCLOSE"

Dim myPointString As PointStringElement

pt3Points(UBound(pt3Points)) = pt3BasePoint

Set myPointString = CreatePointStringElement1(Nothing, _ pt3Points, False)

ActiveModelReference.Add Element myPointString

CommandState.StartDefaultCommand

End Select

End Sub

Here is the code in the Keyin event. If the user enters "plclose", "PlClose", "PLClose", etc., we close the point string by placing the base point in the upper-bound element of the pt3Points variable. We then create a new PointString element using the pt3Points variable for the vertices of the point string. We have seen code similar to this but we need to add something we have not done before. In addition to creating the Point String, we add it to the ActiveModelReference. This makes the Point String a permanent part of the ActiveModelReference.

[image: Image]

Multiple points are selected. As the points are selected, we are creating a PointString element but we do not add it to the model. We only create it and display it. If at any time the user resets the command, we exit out of the class and the PointString disappears. When the user enters "plclose" in the Key-in dialog box and hits <Enter>, we use the vertices that were selected to create a PointString element and add it to the model.

So, we have seen the class module code and we have seen the results of the class' work. How do we call it? Differently than any other in this chapter.

Sub PlacePointString()

CommandState. StartPrimitive New PCE_PointStringTest, True

End Sub

How is this different? We specify that we want to capture key-ins by providing a value of true for the optional parameter "WantKeyins". The default value of this parameter is false. So, when we want to capture keyins, we must specify a value of true when we use the StartPrimitive method.

PCE_LineTest2

We want to allow the user to select two points. We will then divide the space between the two points into equal length segments and draw circles at each vertex of these lengths. Let’s begin with the desired interface and then we will discuss the code.

[image: Image]

After the first point is selected, we want to draw a rubber-band between the selected point and the cursor location.

[image: Image]

After the second point is selected, we draw circles dividing the area between the selected points equally. In this example we specified dividing the space into four equal segments.

Here is the code for the class module:

Implements IPrimitiveCommandEvents

Dim pt3BasePoint As Point3d

Dim boolSet As Boolean

Public lngDivisions As Long

Private Sub IPrimitiveCommandEvents_Cleanup()

End Sub

Private Sub IPrimitiveCommandEvents_DataPoint(Point As Point3d, _

ByVal View As View)

If boolSet = False Then

pt3BasePoint = Point

Command State.Start Dynamics

boolSet = True

Else

Dim pt3EndPoint As Point3d

Dim dblLineAngle As Double

Dim dblSegDist As Double

Dim DivPoints() As Point3d

Dim I As Long

ReDim DivPoints(0 To lngDivisions - 2) As Point3d

pt3EndPoint = Point

dblLineAngle = Atn((pt3EndPoint.Y - pt3BasePoint.Y) / _

(pt3EndPoint.X - pt3BasePoint.X))

dblSegDist = Point3dDistanceXY(pt3BasePoint, pt3EndPoint) / _

lngDivisions

For I = LBound(DivPoints) To UBound(DivPoints)

DivPoints(I) =

Point3dAddAngleDistance(pt3BasePoint, _

dblLineAngle, dblSegDist* (I + 1), 0)

Next I

DrawCircle pt3BasePoint, 0.25

For I = LBoundtDivPoints) To UBound(DivPoints)

DrawCircle DivPoints(I), 0.25

Next I

DrawCircle pt3EndPoint, 0.25

CommandState.StartDefaultCommand

End If

End Sub

Private Sub DrawCircle(CenPt As Point3d, Radius As Double)

Dim myEllipse As EllipseElement

Dim rotMatrix As Matrix3d

Set myEllipse = CreateEllipseElement2(Nothing, CenPt, Radius, Radius, _ rotMatrix)

ActiveModelReference.AddElement myEllipse

End Sub

Private Sub IPrimitiveCommandEvents_Dynamics(Point As Point3d, _

ByVal View As View, ByVal DrawMode As MsdDrawingMode)

Dim myLineElem As LineElement

Set myLineElem = CreateLineElement2(Nothing, pt3BasePoint, Point)

my LineElem.Redraw DrawMode

End Sub

Private Sub IPrimitiveCommandEvents_Keyin(ByVal Keyin As String)

End Sub

Private Sub IPrimitiveCommandEvents_Reset()

CommandState.StartDefaultCommand

End Sub

Private Sub IPrimitiveCommandEvents_Start()

End Sub

A careful review of the above code reveals a method named "DrawCircle". We use this each time we want to draw a circle. This keeps the DataPoint event a little cleaner by breaking out a specific and distinct piece of code into its own procedure.

Here are two examples that can be used to work with the PCE_LineTest2 class:

Sub PlaceLine2A()

Dim myLineTest2 As New PCE_LineTest2

myLineTest2.lngDivisions = 4

CommandState.StartPrimitive myLineTest2

End Sub

Sub PlaceLine2B()

Dim myLineTest2 As New PCE_LineTest2

myLineTest2.lngDivisions = 12

CommandState.StartPrimitive myLineTest2

End Sub

The procedure PlaceLine2A divides the selected points into four equal segments. PlaceLine2B divides the selected points into 12 equal segments.

PCE_TestLine3

Our goal up to this point is to learn how to use the IPrimitiveCommandEvents Object. We displayed lines, circles, and polygons as we asked the user to select points. In the most recent example we divided selected points into a specified number of segments and placed circles at the segment points. We are going to expand on the PCE_TestLine2 class in the next example.

PCE_TestLine2 is useful if we want circles drawn at a specific radius at segment points. If we want to draw squares, we could create a new class, copy and paste the code from PCE_TestLine2, then modify the new class to draw squares. We would do the same to draw hexagons. We would create a new class, copy and paste, then modify the code. To draw octagons, we would create a new class, copy and paste, then modify the code. We could create a hundred new class modules, each drawing a different type of element at the division points. Or we could create a new class, copy and paste, then modify the code once so we can use the new class over and over again.

PCE_TestLine3 is based on PCE_TestLine2, but instead of drawing circles at the division points, we place the points into a variable that the procedure which calls the class can use. Let’s look at some examples of how to use the new class. Then we will look at the class itself.

Sub PlaceLine3A()

Dim myDivPoints() As Point3d

Dim myLineTest3 As New PCE_LineTest3

Dim I As Long

myLineTest3.lngDivisions = 12

CommandState.StartPrimitive myLineTest3

While myLineTest3.ClassComplete = False

DoEvents

Wend

myDivPoints = my LineTest3.DivPts

For I = LBound(myDivPoints) To UBound(myDivPoints)

Dim myEllipse As EllipseElement

Dim rotMatrix As Matrix3d

Set myEllipse = CreateEllipseElement2(Nothing, myDivPoints(I), _

0.25, 0.25, rotMatrix)

ActiveModelReference.AddElement myEllipse

Next I

End Sub

Let’s break this procedure down for discussion.

1 We declare Variables and initiate the PCE_LineTest3 class with the use of the New keyword.

Dim myDivPoints() As Point3d

Dim myLineTest3 As New PCE_LineTest3

Dim I As Long

2 We set the number of divisions we want by setting the lngDivisions property of the class.

myLineTest3.lngDivisions = 12

3 We start the PrimitiveCommandEvents object.

CommandState.StartPrimitive myLineTest3

4 We look at the ClassComplete property of the PCE_LineTest3 class and allow user interaction to continue while the value of the ClassComplete property is false.

While myLineTest3.ClassComplete = False

DoEvents

Wend

5 We get the points that had been created by the selection of the two points.

myDivPoints = myLineTest3.DivPts

6 We draw circles at each point in the myDivPoints array with a radius of 0.25.

For I = LBound(myDivPoints) To UBound(myDivPoints)

Dim myEllipse As EllipseElement

Dim rotMatrix As Matrix3d

Set myEllipse = CreateEllipseElement2(Nothing, myDivPoints(I), _ 0.25, 0.25, rotMatrix)

ActiveModelReference.AddElement myEllipse

Next I

That is the code. One of the benefits of making the changes to PCE_LineTest3 is that we are using it to return the division points. After the class returns the points, we can do anything with the points we want to. Here is another example of using PCE_LineTest3:

Sub PlaceLine3B()

Dim myDivPoints() As Point3d

Dim myLineTest3 As New PCE_LineTest3

Dim I As Long

myLineTest3.lngDivisions = 16

CommandState.StartPrimitive myLineTest3

While myLineTest3.ClassComplete = False

DoEvents

Wend

myDivPoints = myLineTest3.DivPts

For I = LBound(myDivPoints) To UBound(myDivPoints) = 1

Dim myLineElem As LineElement

Set myLineElem = CreateLineElement2(Nothing, myDivPoints(I), _ myDivPoints(I + 1))

ActiveModelReference.AddElement myLineElem

Next I

End Sub

Follow through the code in PlaceLine3B. What is it doing with the points returned by the PCE_LineTest3 Class?

PlaceLine3B is drawing lines for each segment identified by the PCE_LineTest3 Class.

Let’s look at one more example:

Sub Placeline3C()

Dim myDivPoints() As Point3d

Dim myLineTest3 As New PCE_LineTest3

Dim I As Long

Dim LineBasePt As Point3d

myLineTest3.lngDivisions = 16

CommandState.StartPrimitive myLineTest3

While myLineTest3.ClassComplete = False

DoEvents

Wend

myDivPoints = myLineTest3.DivPts

LineBasePt.X = 3: LineBasePt.Y = 4: LineBasePt.Z = 5

For I = LBound(myDivPoints) To UBound(myDivPoints)

Dim myLineElem As LineElement

Set myLineElem = CreateLineElement2(Nothing, LineBasePt, _ my DivPoints(I))

ActiveModelReference.AddElement myLineElem

Next I

End Sub

What does this code do? Of course, we are using the PCE_LineTest3 class. But what are we doing with the returned points?

[image: Image]

We draw lines from each segment point to a single base point.

In each example where we used the PCE_LineTest3 class, we used a While … Wend structure to allow the user to select two points. After the two points are selected, the value of "ClassComplete" is no longer false and we make use of the returned points. Each of the examples works well without any modification to the class module. This is the most desirable situation: a class module that can be used in a variety of circumstances without any modifications.

Reviewing the code above shows that the class module has three properties. One is named 'lngDivisions', another is named 'ClassComplete', and the last one is named 'DivPts'.

We have seen examples of how we will use PCE_LineTest3. Let’s take a look at the code behind the class module now.

Implements IPrimitiveCommandEvents

Dim pt3BasePoint As Point3d

Dim boolSet As Boolean

Public lngDivisions As Long

Public DivPts As Variant

Public ClassComplete As Boolean

Private Sub IPrimitiveCommandEvents_Cleanup()

End Sub

Private Sub IPrimitiveCommandEvents_DataPoint(Point As Point3d, _

ByVal View As View)

If boolSet = False Then

pt3BasePoint = Point

CommandState.StartDynamics

boolSet = True

Else

Dim pt3EndPoint As Point3d

Dim dblLineAngle As Double

Dim dblSegDist As Double

Dim DivPoints() As Point3d

Dim I As Long

ReDim DivPoints(0 To lngDivisions) As Point3d

DivPoints(0) = pt3BasePoint

DivPoints(UBound(DivPoints)) = Point

pt3EndPoint = Point

dblLineAngle = Atn((pt3EndPoint.Y - pt3BasePoint.Y) / _

(pt3EndPoint.X - pt3BasePoint.X))

dblSegDist = Point3dDistanceXY(pt3BasePoint, pt3EndPoint) / _

lngDivisions

For I = LBound(DivPoints) + 1 To UBound(DivPoints) - 1

DivPoints(I) = Point3dAddAngleDistance(pt3BasePoint, _

dblLineAngle, dblSegDist * (I), 0)

Next I

DivPts = DivPoints

ClassComplete = True

CommandState.StartDefaultCommand

End If

End Sub

Private Sub IPrimitiveCommandEvents_Dynamics(Point As Point3d, _

ByVal View As View, ByVal DrawMode As MsdDrawingMode)

Dim myLineElem As Line Element

Set myLineElem = CreateLineElement2(Nothing, pt3BasePoint, _ Point)

my LineElem.Redraw DrawMode

End Sub

Private Sub IPrimitiveCommandEvents_Keyin(ByVal Keyin As String)

End Sub

Private Sub IPrimitiveCommandEvents_Reset()

CommandState.StartDefaultCommand

End Sub

Private Sub IPrimitiveCommandEvents_Start()

End Sub

We have used most of this code before in our previous class PCE_LineTest2, but let’s focus on the DataPoint event. Previously, we drew circles. Now we are placing the points into an array. Then we are placing that array into a variable that had been publicly declared as a variant. Declaring a variable as public in a class module allows it to be used like a property of an object. In addition to placing the coordinates into the DivPts variable, we set the ClassComplete variable to true. This variable, ClassComplete, is read by the procedure that calls PCE_LineTest3 in the While … Wend structure. Even though we discussed PlaceLine3A previously, here is the procedure again:

Sub PlaceLine3A()

Dim myDivPoints() As Point3d

Dim myLineTest3 As New PCE_LineTest3

Dim I As Long

myLineTest3.lngDivisions = 12

CommandState.StartPrimitive myLineTest3

While myLineTest3.ClassComplete = False

DoEvents

Wend

myDivPoints = myLineTest3.DivPts

For I = LBound(myDivPoints) To UBound(myDivPoints)

Dim myEllipse As EllipseElement

Dim rotMatrix As Matrix3d

Set myEllipse = CreateEllipseElement2(Nothing, myDivPoints(I), _ 0.25, 0.25, rotMatrix)

ActiveModelReference.AddElement myEllipse

Next I

End Sub

Once we use StartPrimitive, we begin looking at the ClassComplete property and wait until ClassComplete is set to true. When ClassComplete is true, we can get the points from the DivPts property of the class.

Optimizing The Dynamics Event

The Dynamics event is very exciting. Each time the mouse moves even the slightest degree, the code within the Dynamics event is executed. What does this mean? Rapid fire VBA code execution!

How 'Rapid Fire'? That’s a good question. One test demonstrated that simply moving the cursor from the left side of a MicroStation window to the right side resulted in the Dynamics event executing over 390 times. This implies that you need to be very careful with the code placed in the dynamics event.

Simple, fast-executing code will not cause problems. However, code that attempts complex calculations or performs other time-consuming operations can cause problems. Even though the examples we have shown in this chapter work well, we may need to minimize processor overhead when working in the dynamics event.

Private Sub IPrimitiveCommandEvents_Dynamics(Point As Point3d, _

ByVal View As View, ByVal DrawMode As MsdDrawingMode)

Dim myLineElem As LineElement

Set myLineElem = CreateLineElement2(Nothing, pt3BasePoint, Point)

my LineElem.Redraw DrawMode

End Sub

Each and every time this dynamics event is triggered, we do the following:

1 Declare a variable as a LineElement.

2 Create a LineElement.

3 Redraw the LineElement.

Three lines of code are in the event — each line takes up processor time. What we don’t see in the code is that the LineElement goes out of scope when we exit the dynamics event. This takes time because VBA has to dump the memory that had been assigned to the object. Imagine setting aside memory, drawing a line, and then dumping the memory over 390 times just because the cursor moves from the left to right.

Let’s compare "PCE_LineTest" with a different implementation of the Dynamics event in "PCE_LineTest4".

PCE_LineTest

Implements IPrimitiveCommandEvents

Dim pt3BasePoint As Point3d

Dim boolSet As Boolean

Private Sub IPrimitiveCommandEvents_Cleanup()

End Sub

Private Sub IPrimitiveCommandEvents_DataPoint(Point As Point3d, _

ByVal View As View)

If boolSet = False Then

pt3BasePoint = Point

CommandState.StartDynamics

boolSet = True

Else

CommandState.StartDefaultCommand

End If

End Sub

Private Sub IPrimitiveCommandEvents_Dynamics(Point As Point3d, _

ByVal View As View, ByVal DrawMode As MsdDrawingMode)

Dim myLineElem As LineElement

Set myLineElem = CreateLineElement2(Nothing, pt3BasePoint, Point)

myLineElem.Redraw DrawMode

End Sub

Private Sub IPrimitiveCommandEvents_Keyin(ByVal Keyin As String)

End Sub

Private Sub IPrimitiveCommandEvents_Reset()

End Sub

Private Sub IPrimitiveCommandEvents_Start()

End Sub

We declare the variable, create the line, redraw it, then terminate it (because it goes out of scope) each time the dynamics event is triggered. Now let’s look at the difference between PCE_LineTest and PCE_LineTest4.

PCE_LineTest4

Implements IPrimitiveCommandEvents

Dim pt3BasePoint As Point3d

Dim boolSet As Boolean

Dim myLineElem As LineElement

Private Sub IPrimitiveCommandEvents_Cleanup()

End Sub

Private Sub IPrimitiveCommandEvents_DataPoint(Point As Point3d, _

ByVal View As View)

If boolSet = False Then

pt3BasePoint = Point

Set myLineElem = CreateLineElement2(Nothing, Point, Point)

CommandState.StartDynamics

boolSet = True

Else

CommandState.StartDefaultCommand

End If

End Sub

Private Sub IPrimitiveCommandEvents_Dynamics(Point As Point3d, _

ByVal View As View, ByVal DrawMode As MsdDrawingMode)

mytineElem.Vertex(1) = Point

myLineElem.Redraw DrawMode

End Sub

Private Sub IPrimitiveCommandEvents_Keyin(ByVal Keyin As String)

End Sub

Private Sub IPrimitiveCommandEvents_Reset()

End Sub

Private Sub IPrimitiveCommandEvents_Start()

End Sub

In PCE_LineTest4, we declare the variable for the LineElement in the General Declarations area. We create the line once in the DataPoint event. When we get to the Dynamics event, all we do is change the EndPoint of the line and redraw it. This is a much more efficient way to work with the Dynamics event.

PCE_LineTest and PCE_LineTest4 are simple and small. Although it may not be apparent when using these two classes, PCE_LineTest4 uses significantly less processor time. Minor changes like the one we made for PCE_LineTest4 may not make an immediate dynamic difference in the efficiency of our code, but little efficiencies add up to significant performance benefits. The opposite is true as well. Inefficiencies add up to significant performance degradation.

REVIEW

We implement interfaces through class modules. Each property or method of the interface that we implement must be declared in the class module. When we implement the interfaces discussed in this chapter, we can have greater control, flexibility, and power in our programming as our applications become more interactive.

[image: Image]

19Using MicroStation’s Built-In User Forms

One ways to increase your speed in developing applications is to use of existing code, objects, and interfaces.

In this Chapter:

[image: Image] Declaring MicroStation user form functions

[image: Image] The FileOpen dialog

[image: Image] The FileCreate dialog

[image: Image] The FileCreateFromSeed dialog

[image: Image] The OpenAlert dialog

[image: Image] The OpenInfoBox dialog

DECLARING MICROSTATION USER FORM FUNCTIONS

Access MicroStation’s built-in User Form functions by using a DLL (Dynamic Link Library). When functions are wrapped in a DLL, they must be declared before they are used. Make these declarations in the general declarations area of a code module.

Declare Function mdlDialog_openAlert Lib _

"stdmdlbltin.dll" (ByVal stringP As String) As Long

Here is the declaration for the OpenAlert dialog box. Let’s break up the declaration into its individual parts:

	Declare Function
	Tells VBA we are going to declare a function that is part of a DLL file.

	mdlDialog_openAltert
	The name of the function we are declaring.

	Lib "stdmdlbltin.dll"
	The name of the DLL Library the in which the function is contained.

	(ByVal stringP as String)
	Parameters for the function. Can be empty () or contain one or more parameters.

	As Long
	The return type of the function.

One of the distinguishing features of a function is that it returns a value. "mdlDialog_openAlert" returns a Long value. Some functions in DLLs need to return more than one value. They do this by changing the values of variables we supply into the functions parameters.

Here is the declaration for the FileOpen Function:

Declare Function mdlDialog_fileOpen Lib _

"stdmdlbltin.dll" (ByVal _

fileName As String, ByVal rFileH As Long, ByVal _

resourceId As Long, ByVal suggestedFileName As String, _

ByVal filterString As String, _

ByVal defaultDirectory As String, _

ByVal titleString As String) As Long

To open a file, we use the FileOpen function. How do we know which file was selected? What if the user clicks the Cancel button? We know which file had been selected through the use of the fileName parameter. The Long return value tells us whether the OK or Cancel button was clicked.

Let’s look at each of the dialog functions one at a time.

The mdlDialog_fileOpen Function

Declare Function mdlDialog_fileOpen Lib _ "stdmdlbltin.dll" (ByVal _

fileName As String, ByVal rFileH As Long, ByVal _

resourceId As Long, _

ByVal suggestedFileName As String, _

ByVal filterString As String, _

ByVal defaultDirectory As String, _

ByVal titleString As String) As Long

Our first example prompts the user to select a file. We supply a file extension, a default directory, and a dialog title.

Sub TestFileOpenA()

Dim strFName As String

Dim lngfhandle As Long

Dim lngrid As Long

Dim retVal As Long

strFName = Space(255)

retVal = mdlDialog_fileOpen(strFName, lngfhandle, lngrid, _

"", "*.dgn", "C:\MicroStation VBA", _

"Open File")

Select Case retVal

Case 0 'Open

strFName = Left(strFName, InStr(1, strFName, Chr(0)) - 1)

MsgBox "File Selected:" & vbCr & strFName

Case 1 'Cancel

MsgBox "No File Selected."

End Select

End Sub

When the procedure TestFileOpenA is executed, we see the following dialog box:

[image: Image]

From this dialog we can see how many of the Procedure Parameters are used. We can see the Title, the Default Directory, the Filter (*.dgn) and we can see that we did not supply a Default File Name because the File Name is blank.

Up to this point, the only thing we have done is displayed a dialog box. Now we must ask a few questions.

Did the user click the Open button or the Cancel button?

Select Case retVal

Case 0 'Open

Case 1 'Cancel

End Select

We look at the return value of the function to see if the Open button was selected (resulting in a return value of 0) or if the Cancel button was selected (returning a value of 1).

If the Cancel button was selected, there is little to do because the user Cancelled the operation. In our example we display a MessageBox stating "No File Selected".

If the user clicks the Open button, the next question is "Which file was selected?"

Use the variable strFName as a parameter when we call the FileOpen function. The goal is to fill it with the path and file name that the user selected. When a variable is declared as a string, it becomes an empty string. It is a variable that can contain letters, numbers, and other characters, but it is empty and it remains empty until we fill it with a string. Before supplying the FileOpen function (and others like it), we fill the variable we are using with spaces. This allows the function to populate the variable and tell us the path and file name.

strFName = Space(255)

The Space function fills the variable with the number of spaces specified.

If we provide a space-buffered variable to the OpenFile function, the variable will be filled with the fully qualified path of the file selected. Supplying a variable with 255 spaces in it returns a variable with 255 characters, even if the path and file name are only 20 characters in length. Using the Left function, we get everything to the left of the first Null Character (ASCII Character of 0).

strFName = Left(strFName, InStr(1, strFName, Chr(0)) - 1)

MsgBox "File Selected:" & vbCr & strFName

[image: Image]

After running the procedure TestFileOpenA and selecting a file to open we see the MessageBox:

We can see that we are generating a File Open dialog box. The user selects a file and clicks "Open" but the dialog box does not open the file. It only tells us which file was selected. It is up to us to open the selected file or perform some other operation on it. In our first examples we will only display the file name in a MessageBox.

Here is a slight variation on TestFileOpenA. Only one change has been made:

Sub TestFileOpenB()

Dim strFName As String

Dim lngfhandle As Long

Dim lngrid As Long

Dim retVal As Long

strFName = Space(255)

retVal = mdlDialog_fileOpen(strFName, lngfhandle, lngrid,

"test4.dgn", "*.dgn", "C:\MicroStation VBA", "Open File")

Select Case retVal

Case 0 'Open

strFName = Left(strFName, InStr(1, strFName, Chr(0)) - 1)

MsgBox "File Selected:" & vbCr & strFName

Case 1 'Cancel

MsgBox "No File Selected."

End Select

End Sub

In this example, we are supplying a default file name of test4.dgn. The dialog box is shown with this default file name in it.

[image: Image]

The File Open dialog box is used to allow the user to select existing files. In TestFileOpenB, we specify a default file name of test4.dgn. This file does not exist in the folder shown above. If the user clicks "Open", we see this dialog box:

[image: Image]

The File Open dialog box does not allow anyone to "Open" a file that does not exist. So, if we get a return value of 0, we can be sure that the file name returned exists.

Our previous example used a file extension, also called a file filter, of "*.dgn". MicroStation understands that this file extension is a "MicroStation DGN File" and shows this in the "Files of type" combo box. TestFileOpenC uses a file filter of "*.xls". This displays Microsoft Excel files in the dialog box.

Sub TestFileOpenC()

Dim strFName As String

Dim lngfhandle As Long

Dim lngrid As Long

Dim retVal As Long

strFName = Space(255)

retVal = mdlDialog_fileOpen(strFName, lngfhandle, lngrid, "",_

"*.xls", "C:\MicroStation VBA", "Open File")

Select Case retVal

Case 0 'Open

strFName = Left(strFName, InStr(1, strFName, Chr(0)) - 1)

MsgBox "File Selected:" & vbCr & strFName

Case 1 'Cancel

MsgBox "No File Selected."

'User hit the Cancel Button

End Select

End Sub

Now, instead of displaying MicroStation DGN files, Microsoft Excel (XLS files) display.

[image: Image]

Let’s look at another example that displays more than one type of file.

Sub TestFileOpenD()

Dim strFName As String

Dim lngfhandle As Long

Dim lngrid As Long

Dim retVal As Long

strFName = Space(255)

retVal = mdlDialog_fileOpen(strFName, lngfhandle, lngrid, "", _

"*.xls; *.mdb; *.dbf", "C:\MicroStation VBA", "Open File")

Select Case retVal

Case 0 'Open

strFName = Left(strFName, InStr(l, strFName, Chr(0)) - 1)

MsgBox "File Selected:" & vbCr & strFName

Case 1 'Cancel

MsgBox "No File Selected."

'User hit the Cancel Button

End Select

End Sub

Now, in addition to Microsoft Excel files, we are allowing for the selection of Access Databases and .dbf database files.

The last FileOpen example we will work with not only allows for the selection of a DGN file but opens the file in memory (not in the MicroStation window) for program use.

Sub TestFileOpenE()

Dim strFName As String

Dim lngfhandle As Long

Dim lngrid As Long

Dim retVal As Long

strFName = Space(255)

retVal = mdlDialog_fileOpentstrFName, lngfhandle, lngrid, _

"", "*.dgn", "C:\MicroStation VBA", "Open File")

Select Case retVal

Case 0 'Open

strFName = Left(strFName, InStr(1, strFName, Chr(0)) - 1)

Dim myDesFile As DesignFile

Set myDesFile = OpenDesignFileForProgram(strFName, True)

MsgBox "Do something with this file."

myDesFile.Close

Case 1 'Cancel

MsgBox "No File Selected."

End Select

End Sub

After the file is opened "ForProgram", we display a MessageBox and then close the file.

The mdlDialog_fileCreate Function

Just as mdlDialog_fileOpen does not actually open an existing file, mdlDialog_fileCreate does not actually create a new file. It only tells us the file name the user selected or entered. In the event the file already exists, the user is prompted to overwrite the file before we are returned the file name and return value.

Here is the declaration for FileCreate. It looks and works very much like the FileOpen function.

Declare Function mdlDialog_fileCreate Lib _

"stdmdlbltin.dll" (ByVal _

fileName As String, ByVal rFileH As Long, _

ByVal resourceId As Long, _

ByVal suggestedFileName As String, _

ByVal filterString As String, _

ByVal defaultDirectory As String, _

ByVal titleString As String) _

As Long

Let’s take a look on how to use the function.

Sub TestFileCreateA()

Dim strFName As String

Dim lngfhandle As Long

Dim lngrid As Long

Dim retVal As Long

strFName = Space(255)

retVal = mdlDialog_fileCreate(strFName, lngfhandle, lngrid, _

"", "*.dgn", "C:\MicroStation VBA", "Create File A")

Select Case retVal

Case 0 'Open

strFName = Left(strFName, InStr(1, strFName, Chr(0)) - 1)

MsgBox "File Selected:" & vbCr & strFName

Case 1 'Cancel

MsgBox "No File Selected."

'User hit the Cancel Button

End Select

End Sub

The FileCreate dialog has the same look and feel as the FileOpen dialog box.

[image: Image]

The return values of the Create File dialog box work the same as with the File Open dialog box. If an existing file is selected, the user is asked if the file should be overwritten.

If a file exists, the only way we are returned the file name and a return value of 0 is if the user clicks "Yes" to over-write the existing file.

[image: Image]

Entering additional file extensions in the File Filter parameter will display the files associated with the entered extensions.

The mdlDialog_fileCreateFromSeed Function

When we use the standard MicroStation File > New dialog box, we are given the ability to select a seed file. We can provide the same functionality by using mdlDialog_fileCreateFromSeed Function.

Declare Function mdlDialog_fileCreateFromSeed Lib _

"stdmdlbltin.dll" (ByVal fileName As String, _

ByVal rFileH As Long, ByVal resourceId As Long, _

ByVal suggestedFileName As String, _

ByVal filterString As String, _

ByVal defaultDirectory As String, _

ByVal titleString As String, _

ByVal seedFile As String, _

ByVal seedDirectory As String, _

ByVal seedFilter As String) As Long

Let’s test the CreateFromSeed function now.

Sub TestFileCreateFromSeedA()

Dim strFName As String

Dim lngfhandle As Long

Dim lngrid As Long

Dim retVal As Long

Dim strSeedFile As String

Dim strSeedDir As String

Dim strSeedFilter As String

strFName = Space(255)

strSeedFile = "seed2d.dgn"

strSeedDir = _

"C:\Docutnents and Settings\All Users\Application " & _

"Data\Documents\Bentley\Workspace\System\Seed\"

strSeedFilter = "*.dgn"

retVal = mdlDialog_fileCreateFromSeed(strFName, lngfhandle, _

lngrid, "", "*.dgn", "C:\MicroStation VBA", _

"Create File from Seed", strSeedFile, strSeedDir, _

strSeedFilter)

Select Case retVal

Case 0 'Open

strFName = Left(strFName, InStr(1, strFName, Chr(0)) - 1)

MsgBox "File Selected:" & vbCr & strFName

Case 1 'Cancel

MsgBox "No File Selected."

'User hit the Cancel Button

End Select

End Sub

Now, in addition to allowing for the selection of a file to create, a seed file selection button is shown in the dialog.

[image: Image]

The mdlDialog_openAlert Function

The mdlDialog_openAlert function generates a standard MicroStation dialog box which allows the user to select "OK" or "Cancel".

Declare Function mdlDialog_openAlert Lib_

"stdmdlbltin.dll" _

(ByVal stringP As String) As Long

One parameter specifies what to display in the box and the return value tells us whether the OK button or the Cancel button was clicked.

Sub TestOpenAlertA()

Dim retVal As Long

retVal = mdlDialog_openAlert("Standard Message Box")

Select Case retVal

Case 3 'OK

MsgBox "User clicked 'OK'"

Case 4 'Cancel

MsgBox "User clicked 'Cancel'"

End Select

End Sub

[image: Image]

The mdlDialog_openInfoBox Function

The Information dialog box provides Information and so has no need of a Cancel button. The only button shown is the OK button. It is useful, however, because it follows MicroStation’s native interface more closely than a MessageBox.

Declare Function mdlDialog_openInfoBox Lib _

"stdmdlbltin.dll" (ByVal _

stringP As String) As Long

Sub TestOpenInfoBox()

Dim retVal As Long

retVal = mdlDialog_openInfoBox("This is a test.")

Select Case retVal

Case 3 'OK

MsgBox "User clicked 'OK'"

End Select

End Sub

[image: Image]

REVIEW

After declaring the functions that display standard MicroStation dialog boxes, using them is simple. There are other ways to display File Open, File Create-type dialog boxes (such as using the Windows API) but using the standard MicroStation dialog boxes is the preferred method when developing in VBA and is so easy to implement.

[image: Image]

20Class Modules

Class modules have a variety of purposes with these primary beneficial uses:

[image: Image] To encapsulate similar functionality into a single object.

[image: Image] To create an object with properties, methods, and events.

[image: Image] To create class modules specifically for custom collections.

Each benefit will be the focus of a section in this chapter. The code we write will target the use of the MicroStation Built-in dialog boxes and other MicroStation-specific objects and functionality.

In this Chapter:

[image: Image] Encapsulating similar functionality

[image: Image] Creating objects with properties, methods, and events

[image: Image] Using class modules with collections

ENCAPSULATING SIMILAR FUNCTIONALITY

We can design classes with the intent to encapsulate similar functionality in a single class or object so we can reuse our code, which is faster than rewriting code. Let’s begin with a class named clsUStationDialog that will be used to display the dialog boxes used in the chapter for FileOpen and FileCreate.

Before we begin looking at the code, let’s identify what we want this class to do.

[image: Image] Display File Open Dialog for MicroStation DGN files.

[image: Image] Display File Open Dialog for Microsoft Excel files.

[image: Image] Display File Open Dialog for ASCII .txt files.

[image: Image] Display File Open Dialog for custom file extensions.

[image: Image] Property needed for File Name.

[image: Image] Property needed for Path Only.

[image: Image] Property needed for Path / File Name.

[image: Image] Property needed for Size of selected File.

[image: Image] Registry Entries to be used to store most recent path.

[image: Image] Registry Entries to be used to store most recent file.

You have accomplished each of the desired tasks already in this book. The focus of this exercise will be to wrap it all into a single class.

We want to display .dgn files, .xls files, and .txt files. We also want to display multiple custom file extensions in the dialog box. We could have an "OpenDGN" method, an "OpenXLS" method, an "OpenTXT" method, and an "OpenCustom" method. The main difference between these methods would be the file extension(s) supplied. So, instead of creating new methods for each file type we may want to browse, we will work with one method, named OpenDialog, that will handle any number of file extensions.

Let’s begin by working with the file extensions. There are usually multiple ways to accomplish the same task when working with VBA. We will use a dynamic array in our class to store the desired file extensions. We need to allow the user (in this case, it is us as developers) to add file extensions and clear the file extension list.

'General Declarations

Dim pFileExts() As String

Private Sub Class_Initialize()

ReDim pFileExts(0)

End Sub

Public Sub ClearFileExts()

ReDim pFileExts(0)

End Sub

Public Sub AddFileExt(FileExt As String)

Dim I As Long

Dim tmpFileExt As String

tmpFileExt = LCase(Replace(FileExt, ".", ""))

For I = 1 To UBound(pFileExts)

If tmpFileExt = pFileExts(I) Then

Exit Sub

End If

Next I

ReDim Preserve pFileExts(UBound(pFileExts) + 1)

pFileExts(UBound(pFileExts)) = tmpFileExt

End Sub

We declare the variable pFileExts as a dynamic array in the General Declarations area of the class module. When the class is initialized, we redeclare pFileExts with an upper-bound of zero (0). If we use the ClearFileExts method, we redeclare pFileExts to an upper-bound of zero. This clears the list of file extensions because we are always going to leave the first element in the array (index of 0) an empty string.

When you attempt to add a file extension, first look at the existing extensions to see if it already exists. If the extension that is being added already exists, exit the procedure doing nothing to the file extension list. If the file extension did not exist, increase the size of your array and place the file extension in the upper-bound element of the array.

You could write all of the code for this class and then try it out after all of the code has been entered, but it is better to write smaller chunks of code and test them before continuing. Here is the code to test the file extension functionality. It is placed in a code module.

Sub TestFileExts()

Dim MyUSD As New clsUStationDialog

MyUSD.AddFileExt ".dgn"

MyUSD.AddFileExt ".DWg"

MyUSD.AddFileExt "Xls"

MyUSD.ClearFileExts

End Sub

As we step through the code, you can see the effect of adding file extensions by adding a watch to the variable MyUSD.

[image: Image]

The first element in the array is always an empty string. As you add file extensions, remove the period character and add it as lowercase.

When you call the ClearFileExts method, remove all elements except for the first element by redeclaring the variable pFileExts with an upper-bound index of zero (0).

You are able to add file extensions to our class module now. You can also clear the list. Give yourself the ability to discover what and how many file extensions have been added by adding two properties to the class module. The first property is "ExtCount" which tells how many file extensions have been added to the class; the other is "GetExts" which returns an array of all file extensions added to the class.

In the past, we created properties for our class modules by declaring a variable as public. This works but there is a better way to work with properties.

The ExtCount property tells how many file extensions have been added to our class. If you declare a variable named ExtCount as public, you will be able to read and write to the variable. This is not good because the property’s value should be based on the actual number of extensions that have been added. You do not want to be able to write to the property since it should be read-only.

Property Get ExtCount() As Long

ExtCount = UBound(pFileExts)

End Property

Now we are using true property code, because the property "ExtCount" is based entirely on the number of file extensions we added to our class.

Specify the Read/Write capabilities of a property using Let and Get statements. If you have a "Property Get" statement without an associated "Property Let" statement, the property is read-only. If you have a "Property Let" statement but do not supply an associated "Property Get" statement, you are creating a write-only property. Write-only properties are uncommon but can be used for storing confidential information such as a password. You may want to be able to write to the property so the class can use it but do not want to be able to read the property. And, when you supply a "Property Get" as well as a "Property Let", you create a read/write property.

Now get the file extensions with the "GetExts" property. This property will be read-only, so use a "Property Get" statement.

Property Get GetExts() As String()

If UBound(pFileExts) = 0 Then

Exit Property

End If

Dim tmpGetExts() As String

ReDim tmpGetExts(UBound(pFileExts) - 1) As String

Dim I As Long

For I = 1 To UBound(pFileExts)

tmpGetExts(I - 1) = pFileExts(I)

Next I

GetExts = tmpGetExts

End Property

First check to see if any file extensions have been added. If the Upper-bound element of the array pFileExts is zero (0), nothing has been added so immediately exit the property. Otherwise, create a new temporary dynamic array to hold the file extensions that have been added. Since the first element in the array pFileExts is empty, loop through pFileExts elements beginning with the second element (an index of 1) and loop to the upper-bound element in the array. After you populate your temporary dynamic array, set the values into the property "GetExts" which is returned to the code asking for the property.

Here is the code that asks for the GetExts property:

Sub TestGetExts()

Dim MyUSD As New clsUStationDialog

Dim FileExts() As String

MyUSD.AddFileExt ".dgn"

MyUSD.AddFileExt "DGN"

MyUSD.AddFileExt ".Dwg"

MyUSD.AddFileExt "Xls"

FileExts = MyUSD.GetExts

End Sub

Notice how we are attempting to add the .dgn file extension twice. If the AddFileExt method is working properly, you see only one dgn extension.

[image: Image]

Here is a view of a Watch added to the variable "FileExts".

Three unique file extensions were added and they are properly retrieved by the GetExts property.

It is now time to allow the user to set and get the default directory for the File Open dialog box. Make this property read/write using "Property Let" and "Property Get".

Declare a variable named pDefFilePath in the General Declarations area of your class.

Private pDefFilePath As String

This variable will be used to store the default path.

Begin with the Property Get statement.

Property Get DefaultPath() As String

DefaultPath = pDefFilePath

End Property

This is easy enough. Place the value stored in the variable pDefFilePath into the property "DefaultPath". Let’s take a look at the "Property Let" statement now for the DefaultPath property.

Property Let DefaultPath(strPathIn As String)

pDefFilePath = strPathIn

End Property

Here is the Let statement. Take the value supplied to us and place it into the Private variable pDefFilePath.

The Let and Get statements work just fine. Let’s try it out. This next code should be placed in a code module.

Sub TestFilePathA()

Dim MyUSD As New clsUStationDialog

MyUSD.DefaultPath = "abc:\/?test"

End Sub

If we run the code, "abc:\/?test" is set as the default path in our class. The code worked exactly as designed. It took the value supplied and plugged it in. So, if the code worked, we are in good shape. Right? Wrong.

Is "abc:\/?test" a legitimate path? At the time of the printing of this book, it is not. So, what are we to do?

When a property is read/write, we could get away with declaring a variable as public in the class. This allows us to read from and write to the variable, making it behave like a property. But the properties of our objects (classes) must be more than variables we can read from and write to. Before any property is truly implemented, consider whether you need to validate the supplied data. In this example, we need to make sure the path exists. There are several ways to do this. Here is one way.

Modify your "Property Let DefaultPath" statement.

Property Let DefaultPath(strPathIn As String)

If Dir(strPathIn, vbDirectory) <> "" Then

pDefFilePath = strPathIn

End If

End Property

Now, instead of blindly applying whatever path we are given, we check to see if it is a valid directory. If it is, apply it to the variable pDefFilePath. If it is not a legitimate path, do nothing.

Let’s run TestFilePathA and see what happens.

[image: Image]

We get an error, not because the path does not exist, but because the supplied path is not a potentially legitimate path. Let’s create a new testing procedure to verify.

Sub TestFilePathB()

Dim MyUSD As New clsUStationDialog

MyUSD.DefaultPath = "c:\test54321"

End Sub

Now, even if the path "c:\test54321" does not exist, it is a path that could be created because it meets the rules for drive letter and folder name. So, even though we expect that we will feed our class legitimate paths, we should handle error 52 just in case.

Property Let DefaultPath(strPathIn As String)

On Error GoTo errhnd

If Dir(strPathIn, vbDirectory) <> "" Then

pDefFilePath = strPathIn

End If

Exit Property

errhnd:

Select Case Err.Number

Case 52 'Bad file name or number

Err.Clear

End Select

End Property

Now, even if we supply an illegitimate path, the program will not crash.

Let’s implement the "DefaultFileName" Property.

Property Get DefaultFile() As String

DefaultFile = pDefFileName

End Property

Property Let DefaultFile(strFileIn As String)

pDefFileName = strFileIn

End Property

Let’s review what we have accomplished thus far. We have taken care of the file extensions. We can set the default path. We can also set the default file. This is all we need to do to begin work on displaying the FileOpen dialog box.

We need to declare the function "mdlDialog_fileOpen" in the General Declarations area of the class module as follows:

Private Declare Function mdlDialog_fileOpen _

Lib "stdmdlbltin.dll" (ByVal fileName As String, _

ByVal rFileH As Long, ByVal _

resourceId As Long, ByVal suggestedFileName As String, _

ByVal filterString As String, ByVal defaultDirectory As String, _

ByVal titleString As String) As Long

Now that the function is declared, we can use it.

Sub OpenDialog()

Dim tmpFilter As String

pRetVal = 1

tmpFilter = "*." & Join(GetExts, "; *.")

pFileNameSelected = Space(255)

pRetVal = mdlDialog_fileOpen(pFileNameSelected, 0, 0, _

pDefFileName, tmpFilter, pDefFilePath, "Open File")

Select Case pRetVal

Case 1 'Cancel

Case 0 'Open

Dim tmpFile As String

Dim xSplit As Variant

tmpFile = Left(pFileNameSelected, InStr(1, _

pFileNameSelected, Chr(0)) - 1)

xSplit = Split(tmpFile. "\")

pFileName = xSplit(UBound(xSplit))

xSplit(UBound(xSplit)) = ""

pFilePath = Join(xSplit, "\")

End Select

End Sub

We need a couple of additional properties for the class:

Property Get SelectedPath() As String

SelectedPath = pFilePath

End Property

Property Get SelectedFile() As String

SelectedFile = pFileName

End Property

Property Get OpenSuccess() As Boolean

Select Case pRetVal

Case 1 'Cancel

OpenSuccess = False

Case 0 'Open

OpenSuccess = True

End Select

End Property

We discussed a great deal of code so far with this class. Let’s take a look at the code in its entirety just to make sure we haven’t missed anything.

'General Declarations

Private Declare Function mdlDialog_fileOpen Lib "stdmdlbltin.dll" (ByVal _

fileName As String, ByVal rFileH As Long, ByVal _

resourceId As Long, ByVal suggestedFileName As String, _

ByVal filterString As String, ByVal defaultDirectory As String, _

ByVal titleString As String) As Long

Private pFilePath As String

Private pFileName As String

Private pDefFilePath As String

Private pDefFileName As String

Private pFileNameSelected As String

Private pRetVal As Long

Private pFileExts() As String

Property Get SelectedPath() As String

SelectedPath = pFilePath

End Property

Property Get SelectedFile() As String

SelectedFile = pFileName

End Property

Property Get OpenSuccess() As Boolean

Select Case pRetVal

Case 1 'Cancel

OpenSuccess = False

Case 0 'Open

OpenSuccess = True

End Select

End Property

Sub OpenDialog()

Dim tmpFilter As String

pRetVal = 1

tmpFilter = "*." & Join(GetExts, "; *.")

pFileNameSelected = Space(255)

pRetVal = mdl Dialog_fileOpen(pFileNameSelected, 0, 0, _

pDefFileName , tmpFilter, pDefFilePath, "Open File")

Select Case pRetVal

Case 1 'Cancel

Case 0 'Open

Dim tmpFile As String

Dim xSplit As Variant

tmpFile = Left(pFileNameSelected, InStr(1, _

pFileNameSelected, Chr(0)) - 1)

xSplit = Split(tmpFile , "\")

pFileName = xSplit(UBound(xSplit))

xSplit(UBound(xSplit)) = ""

pFilePath = Join(xSplit, "\")

End Select

End Sub

Property Get DefaultFile() As String

DefaultFile = pDefFileName

End Property

Property Let DefaultFile(strFileIn As String)

pDefFileName = strFileIn

End Property

Property Get Defaul(Path() As String

DefaultPath = pDefFilePath

End Property

Property Let DefaultPath(strPathIn As String)

On Error GoTo errhnd

If Dir(strPathIn, vbDirectory) <> "" Then

pDefFilePath = strPathIn

End If

Exit Property

errhnd:

Select Case Err.Number

Case 52 'Bad file name or number

Err.Clear

End Select

End Property

Property Get ExtCount() As Long

ExtCount = UBound(pFileExts)

End Property

Property Get GetExts() As String()

If UBound(pFileExts) = 0 Then

Exit Property

End If

Dim tmpGetExts() As String

ReDim tmpGetExts(UBound(pFileExts) - 1) As String

Dim I As Long

For I = 1 To UBound(pFileExts)

tmpGetExts(I - 1) = pFileExts(I)

Next I

GetExts = tmpGetExts

End Property

Private Sub Class_Initialize()

ReDim pFileExts(0)

End Sub

Public Sub ClearFileExts()

ReDim pFileExts(0)

End Sub

Public Sub AddFileExt(FileExt As String)

Dim I As Long

Dim tmpFileExt As String

tmpFileExt = LCase(Replace(FileExt, ".", ""))

For I = 1 To UBound(pFileExts)

If tmpFileExt = pFileExts(I) Then

Exit Sub

End If

Next I

ReDim Preserve pFileExts(UBound(pFileExts) + 1)

pFileExts(UBound(pFileExts)) = tmpFileExt

End Sub

The code that uses this class module is in TestShowDialogA.

Sub TestShowDialogA()

Dim MyUSD As New clsUStationDialog

MyUSD.AddFileExt "dgn"

MyUSD.DefaultPath = "c:\"

MyUSD.DefaultFile = "test.dgn"

MyUSD.OpenDialog

Select Case MyUSD.OpenSuccess

Case True

MsgBox MyUSD.SelectedPath & MyUSD.SelectedFile

End Select

End Sub

Let’s try a variation on TestShowDialogA just to make sure everything is working properly.

Sub TestShowDialogB()

Dim MyUSD As New clsUStationDialog

MyUSD.AddFileExt "dgn"

MyUSD.AddFileExt "dwg"

MyUSD.AddFileExt "dxf"

MyUSD.DefaultPath = "c:\MicroStation VBA"

MyUSD.DefaultFile = "test.dgn"

MyUSD.OpenDialog

Select Case MyUSD.OpenSuccess

Case True

MsgBox MyUSD.SelectedPath & MyUSD.SelectedFile

End Select

End Sub

Each file extension added to the class displays in the FileOpen dialog box.

[image: Image]

Our focus in this section is grouping specific types of functionality into a single class module. We already added functionality for FileOpen, now let’s add FileCreate functionality.

First declare the Function mdlDialog_fileCreate in the General Declarations area of the class module.

Private Declare Function mdlDialog_fileCreate Lib _

"stdmdlbltin.dll" (ByVal _

fileName As String, ByVal rFileH As Long, _

ByVal resourceId As Long, _

ByVal suggestedFileName As String, _

ByVal filterString As String, _

ByVal defaultDirectory As String, _

ByVal titleString As String) As Long

Next, create a new method in the class module using variables and properties that have already been declared.

Sub CreateDialog()

Dim tmpFilter As String

pRetVal = 1

tmpFilter = "*." & Join(GetExts, "; *.")

pFileNameSelected = Space(255)

pRetVal = mdlDialog_fileCreate(pFileNameSelected, 0, 0, _

pDefFileName, tmpFilter, pDefFilePath, "Create File")

Select Case pRetVal

Case 1 'Cancel

Case 0 'Open

Dim tmpFile As String

Dim xSplit As Variant

tmpFile = Left(pFileNameSelected, InStr(1, _

pFileNameSelected, Chr(0)) - 1)

xSplit = Split(tmpFile, "\")

pFileName = xSplit(UBound(xSplit))

xSplit(UBound(xSplit)) = ""

pFilePath = Join(xSplit, "\")

End Select

End Sub

It is now time to test the CreateDialog method of our class.

Sub TestShowDialogC()

Dim MyUSD As New clsUStationDialog

MyUSD.AddFileExt "dgn"

MyUSD.DefaultPath = "c:\"

MyUSD.DefaultFile = "test.dgn"

MyUSD.CreateDialog

Select Case MyUSD.OpenSuccess

Case True

MsgBox MyUSD.SelectedPath & MyUSD.SelectedFile

End Select

End Sub

TestShowDialogC is almost an identical copy of TestShowDialogA. The only difference is we are using CreateDialog instead of OpenDialog. Everything else is the same.

Copy and paste TestShowDialogB to create TestShowDialogD and make the same change.

Sub TestShowDialogD()

Dim MyUSD As New clsUStationDialog

MyUSD.AddFileExt "dgn"

MyUSD.AddFileExt "dwg"

MyUSD.AddFileExt "dxf"

MyUSD.DefaultPath = "c:\MicroStation VBA"

MyUSD.DefaultFile = "test.dgn"

MyUSD.CreateDialog

Select Case MyUSD.OpenSuccess

Case True

MsgBox MyUSD.SelectedPath & MyUSD.SelectedFile

End Select

End Sub

Once again, the only change using CreateDialog instead of OpenDialog.

Let’s expand on TestShowDialogA in a new procedure TestShowDialogE.

Sub TestShowDialogE()

Dim MyUSD As New clsUStationDialog

MyUSD.AddFileExt "dgn"

MyUSD.DefaultPath = "c:\"

MyUSD.DefaultFile = "test.dgn"

MyUSD.OpenDialog

Select Case MyUSD.OpenSuccess

Case True

MsgBox "Open " & MyUSD.SelectedPath & _

MyUSD.SelectedFile

Case False

If MsgBox("Create a new file?", vbYesNo) = vbYes Then

MyUSD.CreateDialog

If MyUSD.OpenSuccess = True Then

MsgBox "Create " & MyUSD.SelectedPath & _

MyUSD.SelectedFile

End If

End If

End Select

End Sub

What are we doing in TestShowDialogE? We prompt the user to select a file to open. If the user selects an existing file, we display the file name in a MessageBox. If the user clicks the Cancel button, the MyUSD.OpenSuccess property will be False, so we to ask if the user wants to create a new file. If the user answers "No", do nothing. If the user answers "Yes", display the FileCreate dialog box and allow the user to create a new file. If the user successfully creates a file using the FileCreate dialog box, display the file path and name in a MessageBox.

Notice how easy it is to add FileCreate functionality to the class module and to use the CreateDialog method in the procedure. When you outline functionality to include in class modules, you can expand them quickly and easily.

From this point on, any time you need to use the FileOpen or FileCreate dialog box, you can use the class you just created. But how can you use it in future projects? Do you need to copy and paste the code each time you want to use it? There is a better way.

From the VBA Project Window (not to be confused with the VBA Project Manager), right-click on the class and select Export File.

[image: Image]

Select a location and save the file.

[image: Image]

Now, as you create a new VBA Project, use the VBA menu File > Import.

[image: Image]

Select the class just exported and it will be imported into the new project.

This concludes the discussion on creating class modules to wrap similar functionality into a single object or class. Let’s look at another way to use classes.

CREATING OBJECTS WITH PROPERTIES, METHODS, AND EVENTS

MicroStation gives us a large number of classes (or objects) with which to work. For example, we used the LineElement object., which has properties such as the StartPoint and EndPoint, but not a MidPoint. Nor does it have ChangeInX, ChangeInY, or ChangeInZ properties. Let’s create a new clsLineElem Class and include a few properties that are not a part of the MicroStation Object Model.

[image: Image]

To simplify matters, we will have our Start and End Point properties implemented by declaring two variables as public within the General Declarations area of the class module.

To make sure things are working correctly, create a test procedure to work with the class.

Create a MidPoint property next.

Sub TestNewLineA()

Dim myLE As New clsLineElem

End Sub

When you run this macro, you will see the following MessageBox:

[image: Image]

What is the problem? In the General Declarations area we declared two variables as public with a type of Point3d. The Point3d variable type is not a standard VBA variable type, so we cannot declare it as we have. Change the declaration to private and change the name as follows:

Private pStartPoint As Point3d

Private pEndPoint As Point3d

Now when you run TestNewLineA, we do not get the error.

So how do we implement the StartPoint and EndPoint properties? After the pStartPoint and pEndPoint variables are declared in the General Declaration area, we could implement the StartPoint and EndPoints properties like this:

Property Let StartPoint(StPt As Point3d)

pStartPoint = StPt

End Property

Property Get StartPoint() As Point3d

StartPoint = pStartPoint

End Property

Property Let EndPoint(EnPt As Point3d)

pEndPoint = EnPt

End Property

Property Get EndPoint() As Point3d

EndPoint = pEndPoint

End Property

Let’s test the properties by creating a procedure in a code module.

Sub TestNewLineB()

Dim myLE As New clsLineElem

myLE.StartPoint = Point3dFromXYZ(4, 4, 4)

myLE.EndPoint = Point3dFromXYZ(10, 10, 10)

End Sub

The code runs without any errors. To make sure, place a Stop (or Break Point) on the End Sub line, which allows us to add a watch to the variable myLE. Here’s what we get:

[image: Image]

Now that the StartPoint and EndPoint properties seem to be working, let’s move on to the MidPoint property. The MidPoint property is calculated from the StartPoint and EndPoints. Since it is calculated, make it read-only by implementing a "Property Get" without an associated "Property Let".

Property Get MidPoint() As Point3d

Dim tmpPoirt As Poirt3d

tmpPoint.X = StartPoint.X + (EndPoint.X - StartPoint.X) / 2

tmpPoint.Y = StartPoint.Y + (EndPoint.Y - StartPoint.Y) / 2

tmpPoint.Z = StartPoint.Z + (EndPoint.Z - StartPoint.Z) / 2

MidPoint = tmpPoint

End Property

A walk through the TestNewLineB procedure displays the results of the MidPoint property.

[image: Image]

The calculations seem to be working correctly. Let’s add a few more properties: ChangeInX, ChangeInY, and ChangeInZ.

Property Get ChangeInX() As Double

ChangeInX = pEndPoint.X - pStartPoint.X

End Property

Property Get ChangeInY() As Double

ChangeInY = pEndPoint.Y - pStartPoint. Y

End Property

Property Get ChangeInZ() As Double

ChangeInZ = pEndPoint.Z - pStartPoint.Z

End Property

Add two more properties: the LineAngleRads and LineAngleDegs properties:

Property Get LineAngleRads() As Double

LineAngleRads = Atn((pEndPoint.Y - pStartPoint.Y) / _

(pEndPoint.X - pStartPoint.X))

End Property

Property Get LineAngleDegs() As Double

LineAngleDegs = Degrees(LineAngleRads)

End Property

Enough with properties. Let’s look at creating methods. The first one will be DrawLine.

Sub DrawLine()

Dim LineElem As LineElement

Set LineElem = CreateLineElement2(Nothing, _

pStartPoint, pEndPoint)

ActiveModelReference.AddElement LineElem

End Sub

The DrawLine method creates a line element based on the pStartPoint and pEndPoint variables. The line is then added to the active model in MicroStation. Now for an example, add the procedure TestNewLineD to a code module:

Sub TestNewLineD()

Dim myLE As New clsLineElem

myLE.StartPoint = Point3dFromXYZ(0, 0, 0)

myLE.EndPoint = Point3dFromXYZ(10, 10, 0)

myLE.DrawLine

myLE.EndPoint = Point3dFromXYZ(-10, 10, 0)

myLE.DrawLine

End Sub

Set the Start and End Point values, then we use the DrawLine method. That is simple enough. Try creating another method for our class module.

This is a method named "DrawLinePerp". It draws a line perpendicular to the one defined by the pStartPoint and pEndPoint properties of the class through the midpoint of the line.

Sub DrawLinePerp()

Dim PerpSt As Point3d

Dim PerpEn As Point3d

Dim PerpMid As Point3d

Dim LineAng As Double

Dim LineLength As Double

LineAng = LineAngleRads

PerpMid = MidPoint

LineLength = Point3dDistance(pStartPoint, pEndPoint)

PerpSt = Point3dAddAngleDistance(PerpMid, LineAng + Pi / 2, _

LineLength / 2, 0)

PerpEn = Point3dAddAngleDistance(PerpMid, LineAng = Pi / 2,_

LineLength / 2, 0)

Dim LineElem As LineElement

Set LineElem = CreateLineElement2(Nothing, _

PerpSt, PerpEn)

ActiveModelReference.AddElement LineElem

End Sub

Now, to test the DrawLinePerp method, create a new procedure in a code module.

Sub TestNewLineE()

Dim myLE As New clsLineElem

myLE.StartPoint = Point3dFromXYZ(0, 0, 0)

myLE.EndPoint = Point3dFromXYZ(8, 8, 0)

myLE.DrawLine

myLE.DrawLinePerp

End Sub

Two lines are drawn. One from (0, 0, 0) to (8, 8, 0) and another perpendicular to the first one through the mid-point of the first one.

Add another method to the class module. First the code, then the explanation:

Sub DrawCircle()

Dim CincElem As EllipseElement

Dim RotMatrix As Matrix3d

Set CircElem = CreateEllipseElement2(Nothing, MidPoint, _

Point3dDistance(pStartPoint, pEndPoint) / 2, _

Point3dDistance(pStartPoint, pEndPoint) / 2, RotMatrix)

ActiveModelReference.AddElement CincElem

End Sub

DrawCircle draws a circle through the end points of the LineElem object.

One of the great things about the class module is that we can add methods and properties whenever we see a need. At this point, the three methods in our class module may be all we need in the application right now. Later, if the next application needs a method named "DrawLineSegments" to specify the number of line segments between the start point and end point, we can add it. We can add any number of methods and properties to our class module but we need to be careful. Be even more cautious when modifying existing methods and Properties.

For instance, we have a property named StartPoint declared as a Point2d type that works in many circumstances. Changing it to a Point3d type might seem as though it would support more methods and properties. But changing a variable from a Point2d to a Point3d may cause code already making use of the Class Module to fail because functions or procedures in the existing code expect a Point2d type. Careful planning helps avoid making changes to class module properties and methods after they are in use.

We covered properties and methods, but what is an event? An event is triggered when a specific activity takes place. We usually write code in events to react to user interaction.

Let’s create an event in our class to be triggered whenever a line is created and drawn in MicroStation.

In the General Declarations area of the class, the following code creates an event:

Public Event LineAdded(AddedLine As LineElement)

An event named "LineAdded" is now part of the class. But how do we trigger this event?

Sub DrawLine()

Dim LineElem As LineElement

Set LineElem = CreateLineElement2(Nothing, _

pStartPoint, pEndPoint)

ActiveModelReference.Add Element LineElem

RaiseEvent LineAdded(LineElem)

End Sub

Whenever you want to trigger an event, use the RaiseEvent statement. Supply the variable LineElem as a parameter, so when you capture the event in code that uses this class module, you are given the line element that was drawn in MicroStation.

Now that we have an event declared and raised in our class module, what’s the next step? How do we get code into the event so that when a line is added, we can do something? That is a good question. To use the event we just created, declare a variable as the class clsLineElem in either another class module or a form "WithEvents". It is easier to demonstrate the use of this event by using a form.

Insert a new form into your VBA Project. Declare a variable "WithEvents" in the General Declarations area of the form’s code as a clsLineElem Object.

[image: Image]

When you declare a variable this way, the variable’s events are available like the events of a CommandButton.

The object myLE (it uses the variable name, not the class name) is now available in the Object ComboBox of the form’s code.

[image: Image]

After selecting myLE in the Object ComboBox, you can see the clsLineElem Events in the Procedure ComboBox.

[image: Image]

Now use the event created in the clsLineElem class.

Let’s review the four components required to make use of an event.

1 Declare the event with "Public Event" in the class module.

2 Raise the event with "RaiseEvent" in a class module property or method.

3 Declare a variable "WithEvents" as the class in the General Declarations area of a class or form.

4 Enter code in the event in the class or form.

USING CLASS MODULES WITH COLLECTIONS

We used class modules to wrap functionality and to create new objects through the use of properties, methods, and events. You can also use classes with custom collections.

A collection is a container that holds objects. Custom VBA collections can contain any type of object. Let’s look at an example of creating a new collection to hold MicroStation Level objects.

Sub TestCollectionA()

Dim myColl As New Collection

Dim myLevel As Level

For Each myLevel In ActiveModelReference.Levels

myColl.Add myLevel

Next

End Sub

The declaration for the Add method of a collection is:

Sub Add(Item, [Key], [Before], [After])

In our first example, we added Levels to a collection by supplying the Item (a Level in this case) to the Item parameter of the Add method. We did not specify a key or a position. We will look at the Key, Before, and After parameters later.

Add a Watch to the collection myColl, then step through the TestCollectionA procedure line by line by pressing the <F8> key.

[image: Image]

Each added object shows up as an item in the collection. You can see the type of object in the Type column. All of the object’s properties display with their values.

Accessing Objects in a Collection

After objects have been added to a collection, you can access them different ways.

Sub TestCollectionB()

Dim myColl As New Collection

Dim myLevel As Level

For Each myLevel In ActiveModelReference.Levels

myColl.Add myLevel

Next

'Now that the collection is populated,

'access the objects with For Each . . Next

Dim myLevel2 As Level

For Each myLevel2 In myColl

Debug.Print myLevel2.Name

Next

End Sub

One way is to use the For Each … Next statement. The example above populates a collection with the levels in the active model. Then you access each object in the collection using For Each … Next.

When objects are added to a collection, the properties, methods, and events of the objects are live. That is they are not static variables holding values. Be careful when accessing the objects that you do not modify properties inadvertently.

Use For Each … Next for easy access to each object in the collection. Here is another way to access objects in a collection:

Sub TestCollectionC()

Dim myColl As New Collection

Dim myLevel As Level

For Each myLevel In ActiveModelReference. Levels

myColl.Add myLevel

Next

'Now that the collection is populated,

'access the objects using the item Index.

Dim myLevel2 As Level

Dim I As Long

For I = 1 To myColl.Count

Set myLevel2 = myColl(I)

Debug.Print myLevel2.Name

Next

End Sub

We are still cycling through each item in the collection but now we are accessing each item by addressing it by the item’s index in the collection.

Sub TestCollectionD()

Dim myColl As New Collection

Dim myLevel As Level

For Each myLevel In ActiveModelReference.Levels

myColl.Add myLevel

Next

'Now that the collection is populated,

'access the objects using the item Index.

Dim myLevel2 As Level

Dim I As Long

For I = myColl.Count To 1 Step -1

Set myLevel2 = myColl(I)

Debug.Print myLevel2.Name

Next

End Sub

Now, instead of addressing the items from the top of the list down, address the items from the bottom up by using a For … Next statement using "Step -1".

Let’s take another look at the Collection Add method declaration:

Sub Add(Item, [Key], [Before], [After])

If you add objects to a collection and provide a key (a unique string in the collection), you can address objects through their key as well as their index. Here is an example of adding levels to the collection myColl and using the level’s name as the item’s key in the collection.

Sub TestCollectionF()

Dim myColl As New Collection

Dim myLevel As Level

For Each myLevel In ActiveModelReference.Levels

myColl.Add myLevel, myLevel.Name

Next

'Now that the collection is populated,

'address a Level by it's Key.

Dim myLevel2 As Level

Set myLevel2 = myColl("Default")

MsgBox myLevel2.Number

End Sub

We know each MicroStation DGN file has a level named "Default". Because we may not know what its index in the collection will be, access the level in the collection through the object’s key.

Keys must be unique strings. In other words, no two objects in a collection can have the same key. Keys are not case-sensitive so you cannot have a key of "test" and a key of "TEST" in the same collection.

Removing Objects from a Collection

You can remove objects from a collection using its key or its index. When removing by index, objects with an index higher than the object removed will decrease their indexes by one. For this reason, to clear an entire collection, begin with the highest index and work to the lowest (always an index of 1) using a "Step -1" statement.

Here is an example of populating a collection with levels, then removing all of the Items using the Remove method.

Sub TestCollectionE()

Dim myColl As New Collection

Dim myLevel As Level

For Each myLevel In ActiveModelReference.Levels

myColl.Add myLevel

Next

'Now that the collection is populated,

'remove the objects using the item Index.

Dim I As Long

For I = myColl.Count To 1 Step -1

myColl.Remove I

Next

End Sub

Using Custom Class Modules

Let’s use the clsLineElem class now.

Sub TestCollectionG()

Dim myLE As clsLineElem

Dim XYA As Double

Dim XYMin As Double

Dim XYMax As Double

Dim myColl As New Collection

XYMin = 0

XYMax = 10

For XYA = XYMin To XYMax

Set myLE = New clsLineElem

myLE.StartPoint = Point3dFnomXY(XYA, XYMin)

myLE.EndPoint = Point3dFnomXY(XYA, XYMax)

myColl.Add myLE

Set myLE = Nothing

Set myLE = New clsLineElem

myLE.StartPoint = Point3dFnomXY(XYMin, XYA)

myLE.EndPoint = Point3dFromXY(XYMax, XYA)

myColl.Add myLE

Set myLE = Nothing

Next XYA

For Each myLE In myColl

myLE.DrawLine

Next

End Sub

In this example, we create multiple clsLineElem objects and add them to a collection. Then we use a For Each … Next statement to access each clsLineElem object in the collection and use the DrawLine method of each object in the collection.

[image: Image]

After the macro is run, we should see a grid like this:

Notice that if we do not use the DrawLine Method on each clsLineElem Class, none of the lines will be drawn.

Let’s take a look at another example of using the clsLineElem class in a collection.

Sub TestCollectionH()

Dim myLE As clsLineElem

Dim XYA As Double

Dim XYMin As Double

Dim XYMax As Double

Dim xClose As Double

Dim yClose As Double

Dim myColl As New Collection

XYMin = 0

XYMax = 10

For XYA = XYMin To XYMax

Set myLE = New clsLineElem

myLE.StartPoint = Point3dFromXY(XYA, XYMin)

myLE.EndPoint = Point3dFromXY(XYA, XYMax)

myColl.Add myLE

Set myLE = Nothing

Set myLE = New clsLineElem

myLE.StartPoint = Point3dFromXY(XYMin, XYA)

myLE.EndPoint = Point3dFromXY(XYMax, XYA)

myColl.Add myLE

Set myLE = Nothing

Next XYA

xClose = CDbl(InputBox("Enter X Value:"))

yClose = CDbl(InputBox("Enter Y Value:"))

For Each myLE In myColl

If myLE.StartPoint.Y = myLE.EndPoint.Y Then

Set myLineElem = CreateLineElement2(Nothing, _

myLE.StartPoint, Point3dFromXY(xClose, yClose))

ActiveModelReference.AddElement myLineElem

Set myLineElem = CreateLineElement2(Nothing, _

myLE.EndPoint, Point3dFromXY(xClose, yClose))

ActiveModelReference.AddElement myLineElem

End If

Next

End Sub

In this procedure, we create a collection of clsLineElem objects. This is the same code that generated the grid in a previous example. Then we look at each clsLineElem in the collection and look at the Y components of the Start and End Points. If they are equal, we know we are dealing with a horizontal line. For each myLineElem Object that is horizontal, we draw a line between the entered X and Y values and the Start and End Points of the myLineElem object.

[image: Image]

The user is prompted to enter an X and Y value. Then we draw lines between the entered X, Y pair and the Start Point and End Point of each clsLineElem object in the collection.

[image: Image]

This example demonstrates how we can place multiple objects in a collection, then use the collection to evaluate objects within the collection.

REVIEW

Classes can encapsulate similar functionality, create objects with unique properties, methods, and events, and group similar objects for a variety of purposes into collections. The more you implement classes in your programs, the more you are following the ideals of object oriented programming.

[image: Image]

21VBA for CAD Managers

VBA is not just for programmers and not just for MicroStation users —. it is a powerful tool for CAD Managers as well.

In this Chapter:

[image: Image] Using VBA for maintaining standards

[image: Image] Using VBA to facilitate cross-company standards

[image: Image] Using VBA to track time in drawings

[image: Image] Auto-loading and auto-running macros

[image: Image] Protecting projects

[image: Image] Distributing VBA projects

[image: Image] Working in high-security mode

USING VBA FOR MAINTAINING STANDARDS

Because standards differ from company to company, VBA can be an important part of customizing and maintaining standards for your individual company. Let’s talk about some ways to use VBA to review DGN files and report problems.

[image: Image] NOTE: For more information on maintaining standards, look at the Standards Checker Interface which provides powerful functionality with built-in reporting capabilities.

The first thing to create is a procedure that looks for unsupported levels.

Sub FindUnsupportedLevels()

Dim GoodLevels(0 To 4) As String

Dim GoodLevelsJ As String

Dim myLevel As Level

GoodLevels(0) = "ROADWAY"

GoodLevels(1) = "SIDEWALK"

GoodLevels(2) = "PAINT"

GoodLevels(3) = "ELECTRIC"

GoodLevels(4) = "GAS"

GoodLevelsJ = UCase("~" & Join(GoodLevels, "~") & "~")

For Each myLevel In ActiveDesignFile.Levels

If InStr(1, GoodLevelsJ, "~" & UCase(myLevel.Name) & "~") = 0 Then

Debug.Print "Unsupported Level Found: " & myLevel.Name

End If

Next

End Sub

Five supported levels are specified. Join the array of level names separated by tilde characters (~). Then look in the joined string using the InStr function. If the level is not found in the supported level name string, print the level name to the Immediate Window.

[image: Image]

This works well for finding un-supported levels. What do you do if a file is supposed to have levels but they aren’t there? Look for missing levels next.

Sub FindMissingLevels()

Dim GoodLevels(0 To 4) As String

Dim LevelFound(0 To 4) As Boolean

Dim myLevel As Level

Dim I As Long

GoodLevels(0) = "ROADWAY"

GoodLevels(1) = "SIDEWALK"

GoodLevels(2) = "PAINT"

GoodLevels(3) = "ELECTRIC"

GoodLevels(4) = "GAS"

GoodLevelsJ = UCase("~" & Join(GoodLevels, "~") & "~")

For Each myLevel In ActiveDesignFile.Levels

For I = LBound(GoodLevels) To UBound(GoodLevels)

If StrComp(GoodLevels(I), myLevel.Name, vbTextCompare) = 0 Then

LevelFound(I) = True

End If

Next I

Next

For I = LBound(GoodLevels) To UBound(GoodLevels)

If LevelFound(I) = False Then

Debug.Print "MISSING LEVEL: " & GoodLevels(I)

End If

Next I

End Sub

Above, the code is ready to report missing levels to the Immediate Window.

When is the last time a CAD Manager turned in a report consisting of a screen capture of the Immediate Window in VBA? Let’s add some code to copied and pasted versions of the two above procedures to write to an ASCII text file.

Sub FindUnsupportedLevelsB()

Dim GoodLevels(0 To 4) As String

Dim GoodLevelsJ As String

Dim myLevel As Level

Dim FFile As Long

GoodLevels(0) = "ROADWAY"

GoodLevels(1) = "SIDEWALK"

GoodLevels(2) = "PAINT"

GoodLevels(3) = "ELECTRIC"

GoodLevels(4) = "GAS"

GoodLevelsJ = UCase("~" & Join(GoodLevels, "~") & "~")

FFile = FreeFile

Open "C:\MicroStation VBA\LevelsUnSupported.txt" For Output As #FFile

For Each myLevel In ActiveDesignFile.Levels

If InStr(1, GoodLevelsJ. "~" & UCase(myLevel.Name) & "~") = 0 Then

Print #FFile, ActiveDesignFile.Path & ActiveDesignFile.Name & _

vbTab & "Unsupported Level Found: " & myLevel.Name

End If

Next

Close #FFile

End Sub

Sub FindMissingLevelsB()

Dim GoodLevels(0 To 4) As String

Dim LevelFound(0 To 4) As Boolean

Dim myLevel As Level

Dim I As Long

Dim FFile As Long

GoodLevels(0) = "ROADWAY"

GoodLevels(1) = "SIDEWALK"

GoodLevels(2) = "PAINT"

GoodLevels(3) = "ELECTRIC"

GoodLevels(4) = "GAS"

GoodLevelsJ = UCase("~" & Join(GoodLevels, "~") & "~")

FFile = FreeFile

Open "C:\MicroStation VBA\LevelsMissing.txt" For Output As #FFile

For Each myLevel In ActiveDesignFile.Levels

For I = LBound(GoodLevels) To UBound(GoodLevels)

If StrComp(GoodLevels(I), myLevel.Name, vbTextCompare) = 0 Then

LevelFound(I) = True

End If

Next I

Next

For I = LBound(GoodLevels) To UBound(GoodLevels)

If LevelFound(I) = False Then

Print #FFile, ActiveDesignFile.Path & ActiveDesignFile.Name & _ vbTab & "MISSING LEVEL: " & GoodLevels(I)

End If

Next I

Close #FFile

End Sub

You are writing to an ASCII file. Place a tab between the filepath/name to make the file tab-delimited. Why tab-delimited? Because it is easy to import the file into Microsoft Excel and other programs capable of reading tab-delimited ASCII files.

What’s next? Consider the pain involved in opening hundreds of DGN files and running this macro one-by-one. VBA is supposed to solve these types of problems and make life easier and more pain-free.

Make a small change to your procedure to append the ASCII file when it is opened. When you open a file for output, the existing file (if it exists) is overwritten. When you open a file for append, the existing file (if it exists) is appended to and created if the file did not previously exist.

Sub FindUnsupportedLevelsC(FileToQuery As DesignFile)

Dim GoodLevels(0 To 4) As String

Dim GoodLevelsJ As String

Dim myLevel As Level

Dim FFile As Long

GoodLevels(0) = "ROADWAY"

GoodLevels(1) = "SIDEWALK"

GoodLevels(2) = "PAINT"

GoodLevels(3) = "ELECTRIC"

GoodLevels(4) = "GAS"

GoodLevelsJ = UCase("~" & Join(GoodLevels, "~") & "~")

FFile = FreeFile

Open "C:\MicroStation VBA\LevelsUnSupported.txt" For Append _ As #FFile

For Each myLevel In FileToQuery.Levels

If InStr(1, GoodLevelsJ, "~" & UCase(myLevel.Name) & "~") = 0 Then

Print #FFile, FileToQuery.Path & FileToQuery.Name & _ vbTab & "Unsupported Level Found: " & myLevel.Name

End If

Next

Close #FFile

End Sub

Sub FindMissingLevelsC(FileToQuery As DesignFile)

Dim GoodLevels(0 To 4) As String

Dim LevelFound(0 To 4) As Boolean

Dim myLevel As Level

Dim I As Long

Dim FFile As Long

GoodLevels(0) = "ROADWAY"

GoodLevels(1) = "SIDEWALK"

GoodLevels(2) = "PAINT"

GoodLevels(3) = "ELECTRIC"

GoodLevels(4) = "GAS"

GoodLevelsJ = UCase("~" & Join(GoodLevels, "~") & "~")

FFile = FreeFile

Open "C:\MicroStation VBA\LevelsMissing.txt" For Append As #FFile

For Each myLevel In FileToQuery.Levels

For I = LBound(GoodLevels) To UBound(GoodLevels)

If StrComp(GoodLevels(I), myLevel.Name, vbTextCompare) = 0 Then LevelFound(I) = True

End If

Next I

Next

For I = LBound(GoodLevels) To UBound(GoodLevels)

If LevelFound(I) = False Then

Print #FFile, FileToQuery.Path & FileToQuery.Name & _ vbTab & "MISSING LEVEL: " & GoodLevels(I)

End If

Next I

Close #FFile

End Sub

In addition to opening a file for Append, we are supplying a parameter to these procedures now. This allows us to specify a DesignFile object to query for levels.

How do we open hundreds of files in a single directory? Before continuing, add a reference to our VBA Project. In the VBA menu, choose Tools > References and select "Microsoft Scripting Runtime" from the alphabetized list. Once a reference has been made to the Microsoft Scripting Runtime, we can use the File System Object to traverse files in a folder.

Sub DoFilesInFolder()

Dim MyFSO As New FileSystemObject

Dim myFolder As Folder

Dim myFile As File

Set myFolder = MyFSO.GetFolder("C:\Documents and Settings\ & _

"All Users\Application Data\Documents\Bentley\WorkSpace\" & _

"Projects\Examples\Architectural\Dgn")

For Each myFile In my Folder.Files

Select Case UCase(Right(myFile.Name, 3))

Case "DGN"

Dim myDGNFile As DesignFile

Set myDGNFile = OpenDesignFileForProgram(myFile.Path)

FindUnsupportedLevelsC myDGNFile

FindMissingLevelsC myDGNFile

myDGNFile.Close

End Select

Next

End Sub

The procedure DoFilesInFolder takes a hard-coded file path and opens each DGN file in the path "ForProgram". This means it is not opened in the MicroStation editor window but we can manipulate the files using VBA.

The example shown opens files added to our hard drives when MicroStation is installed. In less than one second, seven files are opened, levels are identified, and text files are written.

Use the examples shown here to spark your creativity. There are other elements, in addition to levels, you could use to maintain standards. Indeed, an entire book could cover examples of verifying a multitude of criteria. Since this is not the focus of this book, I will leave additional functionality to your imagination.

For more related information, see Chapter 30 "Batch Processing".

CROSS-COMPANY STANDARDS

Two companies need to work with each other’s files but one company has a level named "STREET" while the other has one named "Level 20". How can VBA help companies work with different standards?

The procedure LevelSpecA translates one standard to another for level names. When the procedure finds "Level 20", it changes the name to "STREET". The other level name mappings are easy to see.

Sub LevelSpecA()

Dim myLevel As Level

Dim I As Long

For I = 1 To ActiveDesignFile.Levels.Count

Set myLevel = ActiveDesignFile.Levels(I)

Select Case myLevel.Name

Case "Level 20"

myLevel.Name = "STREET"

ActiveDesignFile.Levels.Rewrite

Case "Level 21"

myLevel.Name = "SIDEWALK"

ActiveDesignFile.Levels.Rewrite

Case "Level 23"

myLevel.Name = "GUTTER"

ActiveDesignFile.Levels.Rewrite

Case "Level 38"

myLevel.Name = "STRIPING"

ActiveDesignFile.Levels.Rewrite

Case "Level 39"

myLevel.Name = "SEWER"

ActiveDesignFile.Levels.Rewrite

Case "Level 40"

myLevel.Name = "PHONE"

ActiveDesignFile.Levels.Rewrite

Case "Level 41"

myLevel.Name = "ELECTRIC"

ActiveDesignFile.Levels.Rewrite

Case "Level 42"

myLevel.Name = "NATGAS"

ActiveDesignFile.Levels.Rewrite

Case "Level 47"

myLevel.Name = "FIBER"

ActiveDesignFile.Levels.Rewrite

End Select

Next I

End Sub

After this procedure is run, the design file meets the company’s standards for level names. We can work on the file with our custom-developed VBA tools. Our designers and drafters do not need to refer to "cheat-sheets" to remember which level name goes with which level name. They see what they are accustomed to seeing and are much more productive as a result.

Before returning the file to the originating company, it would be polite for us to set the Level names back to what they had been.

Sub LevelSpecB()

Dim myLevel As Level

Dim I As Long

For I = 1 To ActiveDesignFile.Levels.Count

Set myLevel = ActiveDesignFile.Levels(I)

Select Case myLevel.Name

Case "STREET"

myLevel.Name = "Level 20"

ActiveDesignFile.Levels.Rewrite

Case "SIDEWALK"

X myLevel.Name = "Level 21"

ActiveDesignFile.Levels.Rewrite

Case "GUTTER"

myLevel.Name = "Level 23"

ActiveDesignFile.Levels.Rewrite

Case "STRIPING"

myLevel.Name = "Level 38"

ActiveDesignFile.Levels.Rewrite

Case "SEWER"

myLevel.Name = "Level 39"

ActiveDesignFile.Levels.Rewrite

Case "PHONE"

myLevel.Name = "Level 40"

ActiveDesignFile.Levels.Rewrite

Case "ELECTRIC"

myLevel.Name = "Level 41"

ActiveDesignFile.Levels.Rewrite

Case "NATGAS"

myLevel.Name = "Level 42"

ActiveDesignFile.Levels.Rewrite

Case "FIBER"

myLevel.Name = "Level 47"

ActiveDesignFile.Levels.Rewrite

End Select

Next I

End Sub

Does the code work? Of course! It works great! It is fast! It is amazing! It is a lot of hard-coded mapping that will be difficult to maintain!

What happens when another level name translation is introduced? You have to change the code and re-distribute the VBA Projects to everyone who uses it. Right? Maybe not.

Let’s think about what we can do to create a level mapping file that tells what level to look for and what its new name should be.

If this chapter were about working with databases, we could do the mapping in a database. If this chapter were about working with Microsoft Excel, we could do the mappings in Excel. But since these topics will be covered later, we will read from a simple ASCII text file.

Now for the file format for our level mapping file. Each line in the file represents one mapping. Each line contains two fields separated by a tab. The first field will be the old level name, the second field will be the new level name.

[image: Image]

Let’s look at the code that makes use of our LevelMap file.

Sub LevelSpecFromFile()

Dim myFile As String

Dim OldLevel() As String

Dim NewLevel() As String

Dim FFile As Long

Dim txtIn As String

Dim xSplit() As String

ReDim OldLevel(0)

ReDim NewLevel(0)

Dim myLevel As Level

Dim I As Long

Dim J As Long

myFile = "C:\MicroStation VBA\LevelMap.txt"

FFile = FreeFile

Open myFile For Input As #FFile

While EOF(FFile) = False

Line Input #FFile, txtIn

If InStr(1, txtIn, vbTab) > 0 Then

xSplit = Split(txtIn, vbTab)

OldLevel(UBound(OldLevel)) = xSplit(0)

NewLevel(UBound(NewLevel)) = xSplit(1)

ReDim Preserve OldLevel(UBound(OldLevel) + 1)

ReDim Preserve NewLevel(UBound(NewLevel) + 1)

End If

Wend

ReDim Preserve OldLevel(UBound(OldLevel) - 1)

ReDim Preserve NewLevel(UBound(NewLevel) - 1)

Close #FFile

For I = 1 To ActiveDesignFile.Levels.Count

Set myLevel = ActiveDesignFile.Levels(I)

For J = LBound(OldLevel) To UBound(OldLevel)

If StrComp(OldLevel(J), myLevel.Name) = 0 Then

myLevel.Name = NewLevel(J)

ActiveDesignFile.Levels.Rewrite

Exit For

End If

Next J

Next I

End Sub

Here is the code. It does not matter how many levels are in the text file. There can be 5 or 5,000 —the code doesn’t change.

TRACKING TIME

Time is money, right? How many times have we heard that? Perhaps the reason we have heard it so many times is because it is true. One benefit of learning VBA, is that you can do things many times faster with VBA than without it.

The concern about spending time in a drawing or working on a project is different from person to person and is often defined by the relationship we have with the drawing.

Drafters

A drafter may look at the time spent in a drawing as the basis for how much money will be paid for the work in the drawing. "The more time spent in a drawing means more money in the paycheck."

Another drafter may look at the time spent in a drawing as an indication of productivity. "I am twice as productive as any other drafter."

Managers

A manager may look at the amount of time spent in a drawing as an indication that a drafter or designer needs additional training. Or perhaps a drafter/designer needs to teach others in the company to be more productive.

Another manager may look at the amount of time spent in a drawing in terms of progress on a project.

Accountants

An accountant may look at the time spent in a drawing in terms of how much money to invoice a customer.

Another accountant may look at the time spent in a drawing for considering raises and setting salaries.

It doesn’t matter what role we play in a company, the basics of tracking time is the same. And if we are working hard (until our backs ache and our tired muscles knot), accurate time reporting will always be on our side.

So what are the basics of tracking time? Who did what and when? Any time MicroStation is open, you can find out who is logged into the computer. Any time you want to capture data, you can get the current date and time. So the only question you need to answer is "what?" What events do you want to capture?

Previously, we discussed using interfaces to capture user input, element selection, etc. You could log each and every command started by the user. It may be helpful at some point to do a usability study on how MicroStation is used, but that is probably overkill for what we are attempting to accomplish here.

You could capture File Open and File Closed events. This would be useful to know would be insufficient or misleading, especially for billing. What if someone opens a file at 4:59 PM on Friday then leaves for the weekend?

Better to capture something else while the file is open to know if the file is being worked on. Let’s try watching the View Update event. This event is not triggered so often that logging information will be a performance problem.

To capture events, you need a new class module. Name it clsTimeTrack. Here is the code in the class module:

Implements IViewUpdateEvents

Dim WithEvents MSApp As Application

Private Sub Class_Initialize()

Dim FFile As Long

FFile = FreeFile

Open "C:\MicroStation VBA\TimeTrack.txt" For Append As #FFile

Print #FFile. "INIT" & vbTab & Now

Close #FFile

Set MSApp = Application

End Sub

Private Sub Class_Terminate()

Dim FFile As Long

FFile = FreeFile

Open "C:\MicroStation VBA\TimeTrack.txt" For Append As #FFile

Print #FFile, "TERM" & vbTab & Now

Close #FFile

End Sub

Private Sub IViewUpdateEvents_AftenRedraw(TheViews() As View, _

TheModels() As ModelReference, _

ByVal DrawMode As MsdDrawingMode)

If DrawMode = msdDrawingModeNormal Then

Dim FFile As Long

FFile = FreeFile

Open "C:\MicroStation VBA\TimeTrack.txt" For Append As #FFile

Print #FFile, "REDR" & vbTab & Now & vbTab & _

Application.UserName & vbTab & _

ActiveDesignFile.Name

Close #FFile

End If

End Sub

Private Sub IViewUpdateEvents_BeforeRedraw(TheViews() As View, _

TheModels() As ModelReference, _

ByVal DrawMode As MsdDrawingMode)

End Sub

Private Sub MSApp_OnDesignFileClosed(ByVal DesignFileName As String)

Dim FFile As Long

FFile = FreeFile

Dim XSplit() As String

XSplit = Split(DesignFileName, "\")

Open "C:\MicroStation VBA\TimeTrack.txt" For Append As #FFile

Print #FFile, "CLOS" & vbTab & Now & vbTab & _

Application.UserName & vbTab & _

XSplit(UBound(XSplit))

Close #FFile

End Sub

Private Sub MSApp_OnDesignFileOpened(ByVal DesignFileName As String)

Dim FFile As Long

Dim XSplit() As String

XSplit = Split(DesignFileName, "\")

FFile = FreeFile

Open "C:\MicroStation VBA\TimeTrack.txt" For Append As #FFile

Print #FFile, "OPEN" & vbTab & Now & vbTab & _

Application.UserName & vbTab & _

XSplit(UBound(XSplit))

Close #FFile

End Sub

Let’s look at the events we are capturing:

	Class_Initialize
	Triggered when the class is first opened.

	Class_Terminate
	Triggered when the class is terminated.

	IViewUpdateEvents_AfterRedraw
	A member of the IViewUpdateEvents interface. Add this class as an EventsHandler. This event is triggered when a view is redrawn.

	OnDesignFileClosed
	A member of the MicroStation application object. When a file is closed, we are given the name of the file.

	OnDesignFileOpened
	A member of the MicroStation application object. When a file is opened, we are given the name of the file.

As the code suggests, we write our time logging data into an ASCII text file and give each captured event a four-letter abbreviation, such as "INIT", "TERM", "REDR", "CLOS", and "OPEN". This tells us what happened at the date and time specified. A tab character separates each field in the text file.

Since the code is written in a class module, use code in a code module to call up the class so the class can capture the events.

Sub TestTimeTrack()

Set myME = New clsTimeTrack

AddModelActivateEventsHandler myME

End Sub

[image: Image]

Here is the output of the Class:

Make a small change to log the full path of the DGN file. Instead of splitting the file name given to us, use the parameter "DesignFileName" in your print statement.

AUTO-LOAD AND AUTO-RUN

Few things strike more terror into the eyes of computer users than telling them that software is tracking their computer usage. If you test the code above, you will see that it works but you don’t want the user to be responsible for turning it on. To be effective, load and execute without any user intervention.

[image: Image]

Loading a project automatically is the easy part. In the VBA Project Manager (Utilities > Macro > Project Manager), click in the Auto Load column to toggle the AutoLoad status of any project. The next time MicroStation opens, any VBA project marked as AutoLoad will be loaded.

Now that our project is AutoLoading, how do we automatically run a procedure?

Sub OnProjectLoad()

TestTimeTrack

End Sub

The OnProjectLoad feature in MicroStation VBA is easy to use. Enter the procedure named "OnProjectLoad()", then anything placed in the procedure will be executed when MicroStation starts.

Of course, even though OnProjectLoad is an incredible feature, use it with restraint. VBA does not ask what the code inside OnProjectLoad is doing. It just begins executing it. If we have code that begins processing data, opening and closing files and a host of other things, it could cause problems. The result could be that, when a user starts MicroStation, it is executing code placed in an OnProjectLoad procedure in an AutoLoad Project but looks as though MicroStation has locked.

After saving your project, exit out of MicroStation. Opening MicroStation again causes the INIT event to be logged into your logging file.

So, at this point the code works on your development machine. Imagine being so excited about this new project that you immediately place it on a shared drive so everyone can begin using it today. You go from machine to machine, load the project, and set it to AutoLoad. You don’t tell the users why you are doing this, but ask them to shut down and restart MicroStation. One by one, you do this but all of a sudden something happens.

Windows allows us to share a folder and we can also share a file. But when more than approximately 20 people attempt to open a file at the same time, Windows begins to complain. So how do you support 100 users? Place the VBA Project on their individual machines? No. Please, no.

MS_VBA_OPEN_IN_MEMORY

The MS_VBA_OPEN_IN_MEMORY configuration variable allows us to specify when VBA Projects should be opened in memory instead of maintaining a handle on the project file. By default, this variable is not defined because opening the file from disk is not normally a problem.

Let’s discuss the acceptable values for this variable, define it, and set its value.

	"all"
	Opens all VBA Projects in memory. This removes the 20-user limit and prevents users with this setting from editing existing VBA Projects because they will only be in memory.

	"readonly"
	Opens Readonly VBA Projects in memory. ReadWrite Projects are opened from file.

	none
	VBA Projects are never opened in memory. All projects are opened from file.

To add the MS_VBA_OPEN_IN_MEMORY variable, go to the MicroStation Workspace > Configuration menu item, then scroll down to the Visual Basic for Applications category

[image: Image]

You can see configuration variables already in use by MicroStation that pertain to VBA.

Click the New button to add a new configuration variable.

[image: Image]

The name of the variable is MS_VBA_OPEN_IN_MEMORY. We discussed the values: here enter "readonly" as the value to manage which files will be opened in memory by setting the ReadOnly flag in Windows. Click the OK button to return to the Configurations dialog box. Click OK in the Configurations dialog box to save the configuration.

[image: Image]

Click "Yes" to save the configuration file. Files marked as "Readonly" will be opened in memory.

Marking a file as ReadOnly is simple. First unload it in the VBA Project Manager. After the file closes, browse to it in Windows Explorer, right-click on the file, and select Properties.

[image: Image]

The Read-only CheckBox can be selected or deselected. Do not select it at this time because you have more changes to make to this project. It is a good idea when you finish a VBA project to make it "Read-only". Click the OK or Cancel button to exit out of the File Properties dialog box.

Open the file again using the VBA Project Manager to continue.

PROTECTING PROJECTS

Normally, we discourage writing passwords on pieces of paper. Why? Because we don’t want anyone to find the paper and discover the password. Although the concept of protecting password is correct, forgetting a password to a protected project can be … can be … hmmmmm, well, devastating.

Password-protecting a finished project is a good idea. Whether we are managers or marketers, we don’t want our hard-earned code to be available to just anyone.

1 In the VBA menu, select Tools > Project Properties.

The Properties menu item is different from project to project.

[image: Image]

2 Click the Properties menu item to display the VBA Project Properties window.

[image: Image]

Two tabs appear. Use the first, General, to give your project a name and description. The Help and Compile areas are outside of the scope of this book so we won’t discuss them here.

Use the Protection tab to set the Projects password.

Projects set as "Locked for viewing" can be loaded and procedures can be executed from the VBA Project Manager but they cannot be opened in the VBA environment for modifications unless the correct password is supplied.

[image: Image]

3 Lock your current project for viewing by selecting the CheckBox and entering a password. Use the super-secret password "dorami". Entering a password and clicking the OK button locks the project for viewing.

4 After saving the project, unload it and then reload it using the VBA Project Manager.

When you get back into VBA after loading your project, you see the project in the project list with the project tree compressed.

5 Click on the Plus symbol to expand the project results in a request for the password. Now what was that password? Was it written down somewhere? Ah, there it is: "dorami".

[image: Image]

[image: Image]

After successfully entering the password, you again have access to the code in your project.

Remember, you cannot modify projects opened as Read Only or opened in memory.

DISTRIBUTING VBA PROJECTS

VBA projects are contained in a single .mvba file. This makes them easy to distribute. Just e-mail a file to anyone in the world who has the same version of MicroStation and they can use your program. Or can they?

From the VBA menu, select Tools > References to display the References dialog box.

[image: Image]

A portion of the References dialog box:

Each selected reference refers to a .dll or .exe file with functionality for use in our programming. The top three items appear in every MicroStation VBA project. We added the Microsoft Scripting Runtime library earlier in the chapter. Before distributing projects, look at the references added to the project because their absence on someone else’s computer will cause problems.

For example, while working with Microsoft Excel we add a reference to the "Microsoft Excel 11.0 Object Library". This helps us develop more quickly and accurately as we work with Excel. The program works great on our development machine but, when placed on a computer without Microsoft Excel installed, strange things happen (and not just with regard to the Excel code). Functions such as UCase, LCase, Trim, etc., display errors telling us their library is not loaded.

[image: Image]

So, when distributing VBA Applications, make sure you know exactly which references are selected and let users know what they need to have installed for your program to work correctly.

WORKING IN HIGH SECURITY MODE

There are benefits to starting MicroStation in High Security mode. Here are two:

1 attempting to enter the VBA area by clicking Utilities > Macro > Visual Basic Editor results in the following error:

[image: Image]

2 attempting to open an unsigned project results in this error:

[image: Image]

Why are these benefits? We can’t run our code.

Because it is easy to write code that can damage MicroStation DGN files and the Windows system as well. High Security Mode prevents unsigned projects from being loaded and executed. Of course the next question is, "How do I sign my Projects?" That is a good question. The answer, however, will not be provided here because explaining how to sign a VBA Project in this book would result in every VBA Project being signed and would defeat the purpose of using High Security Mode as well as the purpose of signing VBA projects.

The main thing to keep in mind is that High Security means high security — VBA projects we create will not run in MicroStation when MicroStation is in High Security Mode.

REVIEW

From a CAD manager’s point of view, VBA can do a lot to aid in maintaining CAD standards. Productivity is important to maintain and, at times, measure. Securing VBA projects means getting productivity from the VBA projects and keeping wandering eyes from playing with your code. Auto-load and auto-run code is powerful and easy to implement. The most difficult thing is knowing when to use these powerful features to your best advantage.

[image: Image]

22MicroStation File-Based Events

Events give us the opportunity to execute code when a specific thing happens. For example, we can write a file name to an ASCII text file each time a file is opened. The event is the called OnDesignFileOpened. This chapter deals with MicroStation File-Based Events.

To illustrate the use of the events we discuss in this chapter, we will use some very powerful programming techniques. Don’t allow the use of these techniques to overshadow the fact that we are discussing file-based events. We looked at two of these events in Chapter 14 already but will address them again here.

In this Chapter:

[image: Image] The "OnDesignFileOpened" Event

[image: Image] The "OnDesignFileClosed" Event

[image: Image] The "ISaveAsEvents_BeforeRemap" Event

[image: Image] The "ISaveAsEvents_AfterRemap" Event

[image: Image] The "ISaveAsEvents_AfterSaveAs" Event

ONDESIGNFILEOPENED

The OpenDesignFileOpened event is part of the MicroStation Application Object. Each time a DesignFile is opened, the OnDesignFileOpened event is triggered. Let’s begin by adding some very simple code to this event.

To begin with, this event is only available when a variable is declared as an "Application" type of object using the "WithEvents" keyword.

Let’s create a new Class Module and name it clsSaveAs.

Dim WithEvents myMS As Application

Where is this declaration made? In the General Declarations area of the Class Module clsSaveAs.

When the variable myMS is declared, the events of this Object display in the Procedure ComboBox in the Class Module.

[image: Image]

Selecting OnDesignFileOpened in the ComboBox results in the automatic declaration of the OnDesignFileOpened Event.

Private Sub myMS_OnDesignFileOpenec(ByVal _

DesignFileName As String)

Dim ffile As Long

ffile = FreeFile

Open "C:\MicroStation VBA\FileOpen.txt" For Append As #ffile

Print #ffile, Now & vbTab & DesignFileName

Close #ffile

End Sub

Here is the code in the OnDesignFileOpened event. It is very simple. We are writing the date/time and the file name to an ASCII Text file at C:\MicroStationVBA\FileOpen.txt.

Writing the code is simple. But we cannot execute the code in an event in the same manner as we do when we place code in a Code Module. We will discuss how we get a Class "up and running" later in the chapter.

ONDESIGNFILECLOSED

This event is triggered when a file is closed. We could write code to write to an ASCII file just as we did with the OnDesignFileOpened event. But there are far more powerful and useful things we can do.

Let’s do some brainstorming on what we could do with the OnDesignFileClosed event. A user closes a file in MicroStation. Is it the end of the day? Is this the last time the file will be opened this week? What changes were made while the file was open? Who was using the file when it was closed? What time was it closed? Had the file been opened earlier in the day?

We don’t have space in this book to write 100 different applications making use of the OnDesignFileClosed event. We have space for exactly one example.

When a file is closed, it may be useful to "capture" the file at the time it is closed. Of course, we could copy the file to a folder. This would accomplish the task but could take up more hard drive space than we want to dedicate to this purpose. If we copy the file but it is zipped (compressed into a .zip file), we would save some disk space. If we place the file in an existing zipped folder or file, this may be even more helpful.

So, how do we compress multiple MicroStation DGN files into a single zip file? VBA is not supposed to be that powerful. Right? Well, we could spend money on a third-party DLL or ActiveX Control. But do we want to spend money when we don’t need to?

Windows XP introduced the use of Compressed (zipped) Folders. A Compressed (zipped) Folder is essentially a zip file (.zip extension) that Windows treats as a folder. Files can be copied to and pasted from a Compressed (zipped) Folder using standard Windows functionality. Let’s leverage this new Windows XP functionality so we can zip files using VBA.

Before we write any code we need to add a Reference to the "Microsoft Shell Controls and Automation" object in VBA (Tools > References). When we do so, we have access to some powerful features developed by Microsoft for developers (in this case, we are the developers). The Shell32.dll Object can do a lot of things. We will only scratch the surface as we discuss a couple of events in this chapter.

As we will see later in this chapter, we will find it is easy to add files to an existing zip file (compressed folder). But if the file does not exist, we need to create it.

Nearly all files we use on a daily basis have two identifying features. The first is the file extension. For example, when we see a file with a .dgn file extension, we instinctively refer to it as a MicroStation file. But there is nothing keeping us from changing the file extension of a .txt file to .dgn. So, even though the file extension is a good indication as to what type of file we are looking at, we do not have any guarantees. The second identifying feature found in most files is a file header. A file header consists of a specific number of bytes at the beginning of a file that helps programs to verify the file type.

A zip file (or a compressed zipped folder) header consists of 24 bytes. How do we know this? Creating a new zipped folder in Windows and opening the file in a Hex Editor shows us the byte values of each byte in the file. The first four byte values in a zip file are 80, 75, 5, and 6. The next 20 bytes have byte values of 0 (zero). So, we can create an empty zip file by writing Chr(80), Chr(75), Chr(5), Chr(6), and then 20 Chr(0) values. This writes a zip file header to a file and once this is done, Windows XP recognizes the file not only because of the file extension but also because of the file header. Other zip file readers/writers also recognize the file as a legitimate zip file. Of course, a zip file is not very useful if it is empty.

Once the zip file is created (if it did not already exist), we can copy files to the 'file/folder' by using the Shell library.

The procedure CopyFileToZipFile is placed in the Class Module, not the Code Module.

Sub CopyFileToZipFile(ZipFile As String, FileToCopy As String, _

CopyFileAs As String)

Dim ffile As Long

Dim myShell As New Shell

Dim zipFolder As Shell32.Folder3

ffile = FreeFile

If Dir(ZipFile) = "" Then

Open ZipFile For Output As #ffile

Print #ffile, Chr(80) & Chr(75) & Chr(5) & Chr(6) & _

Chr(0) & Chr(0) & Chr(0) & Chr(0) & _

Chr(0) & Chr(0) & Chr(0) & Chr(0) & _

Chr(0) & Chr(0) & Chr(0) & Chr(0) & _

Chr(0) & Chr(0) & Chr(0) & Chr(0) & _

Chr(0) & Chr(0) & Chr(0) & Chr(0)

Close #ffile

End If

Set zipFolder = myShell.Namespace(ZipFile)

If StrComp(FileToCopy, CopyFileAs) <> 0 Then

FileCopy FileToCopy, CopyFileAs

zipFolder.CopyHere CopyFileAs

Kill CopyFileAs

Else

zipFolder.CopyHere CopyFileAs

End If

End Sub

The first thing we do is check to see if the .zip file exists. If not, we create the file and print to the file using standard File I/O (Input/Output) commands we have already used multiple times in this book.

Our function CopyFileToZipFile allows us to specify the file we want to copy and the file name we want to use inside the zip file. We will see why this (the ability to specify the file name used by the .zip file) is important later. The variable myShell is declared as a "New Shell" object. This exposes the Referenced Object’s Methods, Properties, and Events. We use the zip file name to get a folder using the Namespace method of the Shell Object. If the FileToCopy variable is not the same as the CopyFileAs variable, we copy FileToCopy to CopyFileAs, and then we Copy the CopyFileAs file to the zip File. The last thing we do is Kill (delete) the file. If, however, the FileToCopy variable is the same as the CopyFileAs variable, we simply copy the design file to the zip file without doing any other copying or killing (that function sounds so violent, doesn’t it?).

[image: Image] NOTE: Among others, the web page at http://www.codeproject.com/csharp/DecompressWinShellAPICS.asp describes the use of the Shell Object to work with Windows XP’s Compressed (zipped) folders.

The CopyFileToZipFile procedure is now ready to be used by the OnDesignFileClosed event.

Private Sub myMS_OnDesignFileClosed(ByVal _ DesignFileName As String)

CopyFileToZipFile "C:\MicroStation VBA\FileClosed.zip", _

DesignFileName, DesignFileName & "." & CLng(Timer * 1000)

End Sub

We use the CopyFileToZipFile procedure by specifying the zip file we want the design file copied into, the File name (full path) to use as the source file, and a Destination file. The Source and Destination files can be the same. So, why would we want to provide a different filename for the zip file?

The reason we want the ability to supply different file names is that we may want the same design file (tasks.dgn for example) to be in the same zip file multiple times. We accomplish this by appending a number to the end of the file. What number? In this example, we are using the Timer function which tells us the number of decimal seconds that have transpired since midnight and multiplying it by 1,000 which gives us the number of milliseconds since midnight. This gives us a fairly good degree of confidence that we will not attempt to copy the same file with the same numeric appendage into the same zip file.

ISAVEASEVENTS INTERFACE

The ISaveAsEvents Interface includes ISaveAsEvents_BeforeRemap, ISaveAsEvents_AfterRemap, and ISaveAsEvents.

The ISaveAsEvents_BeforeRemap event is a member of the ISaveAsEvents Interface. To use members of an interface, we declare the interface in our Class Module. Here is the declaration we need to put into the Class Module we have been working with:

Implements ISaveAsEvents

As with previous discussions on Interfaces, we need to make sure that all events (methods) of the Interface are declared before we begin putting code into any of them.

Private Sub ISaveAsEvents_BeforeRemap(_

ByVal TheDesignFile As DesignFile, _

ByVal SavedFormat As MsdDesignFileFormat, _

ByVal DestinationFilename As String)

End Sub

Private Sub ISaveAsEvents_AfterRemap(_

ByVal TheDesignFile As DesignFile, _

ByVal SavedFormat As MsdDesignFileFormat, _

ByVal DestinationFilename As String)

End Sub

Private Sub ISaveAsEvents_AfterSaveAs()

End Sub

Three events belong to the ISaveAsEvents Interface. They are shown above in the order in which they are executed.

Since the AfterSaveAs event is the last event executed, this is where we place the code that actually does something. But before we do so, let’s take a look at the event.

In the BeforeRemap and AfterRemap events, we are told what the DesignFile, SavedFormat, and DestinationFilename parameter values are. The AfterSaveAs event does not tell us any of this. So, we need to capture the data when it is given to us. We will declare three variables in the General Declarations area of the Class Module to hold the values given to us in the AfterRemap event so we can use the information in the AfterSaveAs event.

Dim FileSaved As String

Dim FileFormat As Long

Dim FilePrevious As String

Now that the variables are declared, they can be used in the AfterRemap event as follows:

Private Sub ISaveAsEvents_AfterRemap(_

ByVal TheDesignFile As DesignFile, _

ByVal SavedFormat As MsdDesignFileFormat, _

ByVal DestinationFilename As String)

FileSaved = DestinationFilename

FileFormat = SavedFormat

FilePrevious = TheDesignFile.FullName

End Sub

OK. We have captured the DesignFile going into the SaveAs command as well as the file format the file is going to be saved as, and the DestinationFilename. What can we do with this?

In a previous example, we added design files to a zip file when the design files were closed. This was a powerful example of the ease with which great functionality can be implemented with only a few lines of code in VBA (and of course, a little knowledge mixed in for good measure). Can we top that functionality in the AfterSaveAs event?

It’s time to brainstorm again. The possibilities are endless. Each function we discuss could be performed on the "TheDesignFile" parameter or the "DestinationFilename" parameter. We could FTP the file to a server half-way around the world. We could e-mail the file to different people based on which project the file is in. We could open the file and extract information and place it in a database. Each of these examples would be useful and could be easily implemented. Let’s do something else, though.

When the user performs a SaveAs, the file that had been opened is given a new file name and optionally, saved as a different file type. The scenario we will work with right now is, when a file experiences a "SaveAs" and is saved as an AutoCAD .dwg file, we will take the original design file (it could already be an AutoCAD .dwg file) and we will prepare it to be written to a CD.

Once again, in this example, we are using functionality introduced in Windows XP. Windows XP allows us to copy and paste files to a CD or DVD writing drive. When we do this, the files are placed into a temporary storage location until we decide to actually write them to a CD. When we 'Send' a file to our CD writer, we see a message informing us we have files waiting to be written to CD:

[image: Image]

So, how do we get files into this temporary storage location? Where is it? Let’s use the Shell Object we just finished working with in the last example in this example as well.

A new procedure needs to be created in the Class Module we used in the previous example. This procedure will be named CopyFiletoCD and it will take one parameter, the file that is to be copied to the CD. Here’s the code. A discussion of the code follows.

Sub CopyFileToCD(FileToCopy As String)

Dim myShell As New Shell

Dim cdFolder As Shell32.Folder3

Set cdFolder = myShell.Namespace(59)

If Not cdFolder Is Nothing Then

cdFolder.CopyHere FileToCopy, 0

End If

End Sub

The first thing we need to do is find out where the temporary storage location is for the user that is logged in. Now, how are we going to do that? We can discover this by supplying a number of 59 to the Namespace Method of the Shell Object. If we do this and the returned folder is not "Nothing" (in other words, if the folder is found), we copy the supplied file into the cdFolder. That’s all there is to it.

One of the great things about this procedure is that we don’t need to purchase CD writing add-ins to make this work. If the user has Windows XP, we can make use of this procedure.

Now, we need to remember that the CopyFileToCD procedure does not actually burn the CD. It only copies the file to the staging area to burn the CD. When we are ready to burn the CD, we place a CD-R or CD-RW into the CD burner, select the CD drive in Windows Explorer, and then go to the Explorer menu File > Write these files to CD

These menu picks begin the process of writing the files in the temporary CD folder to the CD.

[image: Image]

So, we now have code that prepares files for being written to a CD. How do we use it? We will use it in the ISaveAsEvents_AfterSaveAs event.

Private Sub ISaveAsEvents_AfterSaveAs()

Select Case FileFormat

Case msdDesignFileFormatCurrent

Case msdDesignFileFormatDWG

CopyFileToCD FilePrevious

Case msdDesignFileFormatDXF

Case msdDesignFileFormatUnknown

Case msdDesignFileFormatV7

Case msdDesignFileFormatV8

End Select

End Sub

The AfterSaveAs event is the last event to execute when a SaveAs is executed by the user. But the event itself does not tell us what the source file name, destination file name, or format is. We collect this information in the AfterRemap event so we can use it in the AfterSaveAs event.

The example above shows how to use the CopyFileToCD procedure we created but it only executes it when the SaveAs command was used to save an AutoCAD .dwg file. We could place the same line of code under other "Case" statements to accommodate other file formats or we could get rid of the Select Case structure altogether and use CopyFileToCD every time a SaveAs occurs.

We have addressed the functionality in our new Class Module clsSaveAs in a couple of sections. Let’s take a look at the entire Class Module from beginning to end. Remember, the variable declarations appear in the General Declarations area of the Class Module. Particular attention should be paid to the use of the variables FileSaved, FileFormat, and FilePrevious.

Here is the Class Module code from beginning to end:

Dim WithEvents myMS As Application

Implements ISaveAsEvents

Dim FileSaved As String

Dim FileFormat As Long

Dim FilePrevious As String

Private Sub Class_Initialize()

Set myMS = Application

End Sub

Private Sub ISaveAsEvents_AfterRemap(_

ByVal TheDesignFile As DesignFile, _

ByVal SavedFormat As MsdDesignFileFormat, _

ByVal DestinationFilename As String)

FileSaved = DestinationFilename

FileFormat = SavedFormat

FilePrevious = TheDesignFile.FullName

End Sub

Private Sub ISaveAsEvents_AfterSaveAs()

Select Case FileFormat

Case msdDesignFileFormatCurrent

Case msdDesignFileFormatDWG

CopyFileToCD FilePrevious

Case msdDesignFileFormatDXF

Case msdDesignFileFormatUnknown

Case msdDesignFileFormatV7

Case msdDesignFileFormatV8

End Select

End Sub

Private Sub ISaveAsEvents_BeforeRemap(_

ByVal TheDesignFile As DesignFile, _

ByVal SavedFormat As MsdDesignFileFormat, _

ByVal DestinationFilename As String)

End Sub

Private Sub myMS_OnDesignFileClosed(ByVal _ DesignFileName As String)

CopyFileToZipFile "C:\MicroStation VBA\FileClosed.zip", _

DesignFileName, DesignFileName & "." & CLng(Timer * 1000)

End Sub

Private Sub myMS_InDesignFileOpened(ByVal _ DesignFileName As String)

Dim ffile As Long

ffile = FreeFile

Open "C:\MicroStation VBA\FileOpen.txt" For Append As #ffile

Print #ffile. Now & vbTab & DesignFileName

Close #ffile

End Sub

Sub CopyFileToCD(FileToCopy As String)

Dim myShell As New Shell

Dim cdFolder As Shell32.Folder3

Set cdFolder = myShell.Namespace(59)

If Not cdFolder Is Nothing Then

cdFolder.CopyHere FileToCopy, 0

End If

End Sub

Sub Copy FileToZipFile(ZipFile As String, FileToCopy As String, _CopyFileAs As String)

Dim ffile As Long

Dim myShell As New Shell

Dim zipFolder As Shell32.Folder3

ffile = FreeFile

If Dir(ZipFile) = "" Then

Open ZipFile For Output As #ffile

Print #ffile, Chr(80) & Chr(75) & Chr(5) & Chr(6) & _

Chr(0) & Chr(0) & Chr(0) & Chr(0) & _

Chr(0) & Chr(0) & Chr(0) & Chr(0) & _

Chr(0) & Chr(0) & Chr(0) & Chr(0) & _

Chr(0) & Chr(0) & Chr(0) & Chr(0) & _

Chr(0) & Chr(0) & Chr(0) & Chr(0)

Close #ffile

End If

Set zipFolder = myShell.Namespace(ZipFile)

If StrComp(FileToCopy, CopyFileAs) <> 0 Then

FileCopy FileToCopy, CopyFileAs

zipFolder.CopyHere CopyFileAs

Kill CopyFileAs

Else

zipFolder.CopyHere CopyFileAs

End If

End Sub

Thus far, we have written a lot of code but we have been unable to run it because the code is contained in a Class Module. Let’s discuss how to make use of the Class Module code.

The code in a Class Module must be called up by code in a Code Module or UserForm. We will use a Code Module for this example.

Sub TestSaveAs()

Dim mySaveAs As New clsSaveAs

AddSaveAsEventsHandler mySaveAs

End Sub

This is pretty simple. We declare a variable as a clsSaveAs (the name of the Class Module we just finished working in) and add it to the SaveAsEventsHandler. When this is done, the clsSaveAs Object is brought into memory and begins responding to the SaveAs events as well as the OnDesignFileOpened and OnDesignFileClosed events.

REVIEW

VBA can be a powerful development environment. In this chapter, we zipped files (compressed them) and prepared files for burning to a CD. Windows XP helped us accomplish these tasks. The same tasks can be accomplished in other Operating Systems but would be programmed differently. Independent of the Operating System or the desired functionality, we now have the knowledge to execute code when the user performs a SaveAs or when a file is opened or closed.

Before beginning any project, we need to take time to brainstorm on what functionality we want in the project. We should think about the best possible functionality, the ultimate program. Limiting ourselves because we aren’t sure how we can accomplish a task or two or three or more is self-limiting. Even the oldest dogs can learn new tricks — in this case, VBA tricks.

[image: Image]

23Responding to MicroStation Attachment Events

The next four chapters (this one included) continue to deal with responding to events in MicroStation. This chapter reviews the IAttachmentEvents Interface. Five events are exposed.

In this Chapter:

[image: Image] The IAttachmentEvents Interface

[image: Image] AfterAttach

[image: Image] AfterDetach

[image: Image] AttachmentModified

[image: Image] BeforeAttach

[image: Image] BeforeDetach

THE IATTACHMENTEVENTS INTERFACE

Let’s create a new Class Module named clsAttachmentEvents. Each event implemented by the IAttachmentEvents Interface must be declared. Adding simple Debug.Print statements inside each event helps us to understand the order in which the events are triggered.

Private Sub IAttachmentEvents_AfterAttach(ByVal _ TheAttachment As Attachment)

Debug.Print "AfterAttach"

End Sub

Private Sub IAttachmentEvents_AfterDetach(ByVal _ TheAttachment As Attachment)

Debug.Print "AfterDetach"

End Sub

Private Sub IAttachmentEvents_AttachmentModified(ByVal _ TheAttachment As Attachment)

Debug.Print "AttachmentModified"

End Sub

Private Sub IAttachmentEvents_BeforeAttach(FileName As String, _ AllowAttachment As Boolean)

Debug.Print "BeforeAttach"

End Sub

Private Sub IAttachmentEvents_BeforeDetach(ByVal _ TheAttachment As Attachment)

Debug.Print "BeforeDetach"

End Sub

Two of the events refer to attaching a reference file and two refer to detaching a reference file.

AFTERATTACH

Private Sub IAttachmentEvents_AfterAttach(ByVal _ TheAttachment As Attachment)

End Sub

After a DesignFile is attached to the current design file, the After Attach Event is triggered. When this event occurs, we can be certain the file is actually attached and is available for processing. The parameter "TheAttachment" is provided in the event so we can begin working with the attachment immediately.

The "TheAttachment" Parameter is declared as an Attachment type of Object. Perhaps understanding this object a little better will help us to know what we can do with this event. The list is several pages long so we will just take a look at a few of the properties and methods.

[image: Image] Sub AddElement(Element As Element)

[image: Image] Sub AddElements(Elements() As_Element)

[image: Image] Property AttachName As String {read-only}

[image: Image] Property Description As String

[image: Image] Property DesignFile As DesignFile {read-only}

[image: Image] Property DisplayFlag As Boolean

[image: Image] Property Is3D As Boolean {read-only}

[image: Image] Property IsActive As Boolean {read-only}

[image: Image] Property IsReadOnly As Boolean {read-only}

[image: Image] Property IsTrueScale As Boolean {read-only}

[image: Image] Property Level As Level

[image: Image] Property Levels As Levels {read-only}

[image: Image] Property LogicalDescription As String

[image: Image] Property LogicalName As String

[image: Image] Property MasterOrigin As Point3d {read-only}

[image: Image] Sub Move(Offset As Point3d, ApplyToClipElement As Boolean)

[image: Image] Property Name As String

[image: Image] Function Reattach(FileName As String, ModelName As _ String) As Attachment

[image: Image] Sub Redraw([DrawMode As MsdDrawingMode = _ msdDrawingModeNormal])

[image: Image] Sub RemoveElement(Element As Element)

[image: Image] Sub ReplaceElement(OldElement As Element, _ NewElement As Element)

[image: Image] Property RevisionNumber As String

[image: Image] SubRewrite()

[image: Image] Sub Rotate(Pivot As Point3d, AboutX As Double, AboutY _ As Double, AboutZ As Double, ViewSpecifier As Variant)

[image: Image] Property Rotation As Matrix3d {read-only}

[image: Image] Property ScaleFactor As Double

[image: Image] Function Scan([ScanCriteria As ElementScanCriteria]) _ As ElementEnumerator

[image: Image] Sub SelectElement(Element As Element, [DisplayAsSelected _ As Boolean = True])

[image: Image] Property Transparency As Double

As we look at these properties and events, let’s think about how we could make use of them AFTER the attachment is attached.

Let’s look at the DesignFile Property When an Attachment takes place, we can get the DesignFile of the Attachment and get the DesignFile’s Path. Let’s add a Date/Time Stamp with the Attachment’s file name to the Active Model.

Private Sub IAttachmentEvents_AfterAttach(ByVal _ TheAttachment As Attachment)

Dim TxtPt As Point3d

TxtPt.X = 0

TxtPt.Y = -100

Dim RotMatrix As Matrix3d

Dim myText As TextElement

Set myText = CreateTextElement1(Nothing, Now & "…" & _

TheAttachment.DesignFile.Path, TxtPt, RotMatrix)

ActiveModelReference.AddElement myText

End Sub

Each time an Attachment takes place, we are writing the Path of the Attachment’s DesignFile as Text to the ActiveModelReference. As the code stands right now, the text will be added to the same place whether it is the first attachment or the hundredth. We could add code to change the position of the Text Insertion Point, etc., but we will move to another example that makes use of the AfterAttach Event.

Private Sub IAttachmentEvents_AfterAttach(ByVal _ TheAttachment As Attachment)

Dim FFile As Long

FFile = FreeFile

Open "C:\MicroStation VBA\AttachmentLog.txt" For Append As #FFile

Print #FFile, Now & vbTab & ActiveDesignFile.Path & vbTab & _ TheAttachment.DesignFile.Path

Close #FFile

End Sub

If we follow the code shown directly above, we will see that we are writing the ActiveDesignFile’s Path and the Attachment’s Path to an ASCII text file named AttachmentLog.txt. This log file can be used to track file dependencies.

One more example demonstrates additional use of the Attachments Properties:

Private Sub IAttachmentEvents_AfterAttach(ByVal _ TheAttachment As Attachment)

Dim PtA As Point3d

Dim PtB As Point3d

Dim myRange As Range3d

Dim MyRec As LineElement

Dim LinePts(0 To 4) As Point3d

myRange = TheAttachment.Range(True)

PtA = myRange.High

PtB = myRange.Low

LinePts(0).X = PtA.X: LinePts(0).Y = PtA.Y

LinePts(1).X = PtB.X: LinePts(1).Y = PtA.Y

LinePts(2).X = PtB.X: LinePts(2).Y = PtB.Y

LinePts(3).X = PtA.X: LinePts(3).Y = PtB.Y

LinePts(4).X = PtA.X: LinePts(4).Y = PtA.Y

Set MyRec = Application.CreateLineElement1(Nothing, LinePts)

ActiveModelReference.AddElement MyRec

End Sub

This example draws a rectangle around the outer rectangular boundary of the Attachment.

We have looked at three examples of using the AfterAttach Event. These three examples cannot exist in the Class simultaneously. The example we want to see working should remain un-commented but the remainder of the AfterAttach examples should be commented out in the code.

As with other Interfaces, we need to add a Class to the Event Handler. The Class we are working in now is named clsAttachmentEvents.

Here’s the code that adds the Class to the Event Handler:

Sub TestAttachmentsA()

Dim myAE As New clsAttachmentEvents

AddAttachmentEventsHandler myAE

End Sub

AFTER DETACH

Two events relate to the Detaching of Attachments. One is Before Detach and the other is After Detach. As the names imply, Before Detach occurs prior to After Detach.

The After Detach event is the last opportunity we have to do anything with the Attachment.

Let’s try some code that could be used to notify someone that an Attachment has been detached.

Private Sub IAttachmentEvents_AfterDetach(ByVal _ TheAttachment As Attachment)

Shell "c:\Program Files\Internet Explorer\iexplore.exe " & _

"""http://www.trackmydgndrawings.com/log.asp?filename=" & _

ActiveDesignFile.Name & "&attachment=" & _

TheAttachment.DesignFile.Name & """", vbMaximizedFocus

End Sub

The Shell function is a standard VBA function. In this example, we use it to execute Internet Explorer, going to a fictitious web site with the ActiveDesignFile.Name and the "TheAttachmentDesignFile.Name". If the log.asp file can read these parameters in the HTTP request, we now have a web server tracking files as they are detached.

ATTACHMENTMODIFIED EVENT

The AttachmentModified Event gives us the same information as the AfterAttach and AfterDetach events. We are given the parameter "TheAttachment" with which to work. This event may be useful to track the fact that changes have been made to an attachment but will not help us with the nature of the modification. We would need to look at additional events to get more detailed information on that.

Private Sub IAttachmentEvents_AttachmentModified(_ ByVal TheAttachment As Attachment)

Debug.Print "AttachmentModified"

End Sub

BEFOREATTACH EVENT

Private Sub IAttachmentEvents_BeforeAttach(FileName As String, _ AllowAttachment As Boolean)

The BeforeAttach Event is triggered before an Attachment takes place. We are supplied with the FileName and are given the opportunity to cancel the attachment by setting the AllowAttachment parameter to False.

Private Sub IAttachmentEvents_BeforeAttach(FileName As String, _ AllowAttachment As Boolean)

If GetAttr(FileName) And vbReadOnly Then

MsgBox "Attaching Read-Only Files is Prohibited."

AllowAttachment = False

End If

End Sub

In this example, if the file that is being attached is set as Readonly, we show a MessageBox stating the attaching read-only files is prohibited. After the MessageBox, we set the AllowAttachment parameter to False. This means the user is not shown the Attachment dialog box. If an attempt is made to attach a file and the file is not read-only, we do nothing and the Attach File procedure continues.

BEFOREDETACH EVENT

Private Sub IAttachmentEvents_BeforeDetach(ByVal_ TheAttachment As Attachment)

The last event we need to discuss is the BeforeDetach Event. Once again, an Attachment Object is provided to us as a parameter of the event. This event is triggered just prior to the AfterDetach Event.

We do not have the ability to keep a 'detachment' from occurring. So, one of the few things we can do is log the fact that the detachment took place.

Private Sub IAttachmentEvents_BeforeDetach(ByVal_ TheAttachment As Attachment)

Dim FFile As Long

FFile = FreeFile

Open "C:\MicroStation VBA\DetachmentLog.txt" For Append As #FFile

Print #FFile, Now & vbTab & Application.UserName & _ vbTab & TheAttachment.DesignFile.FullName

Close #FFile

End Sub

In this example, we are writing to a log file. We capture the Date and Time, the User that is detaching the file, and the full name of the file being detached.

REVIEW

The ability to attach files to an existing design file is powerful. It allows us to design more quickly and with fewer errors. Accuracy is improved because we can look at an entire design at one time. Do the walls line up with the foundation? Using the IAttachmentEvents Interface allows us to intercept events so we can track which files are being attached, detached, and modified.

[image: Image]

24Model Events

The last chapter dealt with Attachment Events. This one deals with Model Events. Two separate interfaces expose Model-related events. The Interfaces are named "IModelActivateEvents" and "IModelChangeEvents". To simplify matters, we will implement both Interfaces in the same Class Module. The Class Module will be named clsModelEvents.

In this Chapter:

[image: Image] The AfterActivate Event

[image: Image] The BeforeActivate Event

[image: Image] The ModelChange Event

Implementing each of the Interfaces in a single Class Module makes it easy to identify the order in which these events are triggered.

Here is the code in our Class Module clsModelEvents:

Implements IModelActivateEvents

Implements IModelChangeEvents

Private Sub IModelActivateEvents_AfterActivate(ByVal TheModel _ As Model Reference)

Debug.Print "AfterActivate: " & vbTab & vbTab & _

TheModel.DesignFile.Name & vbTab & TheModel.Name

End Sub

Private Sub IModelActivateEvents_BeforeActivate(ByVal TheModel As _ ModelReference)

Debug.Print "BeforeActivate: " & vbTab & _

TheModel.DesignFile.Name & vbTab & TheModel.Name

End Sub

Private Sub IModelChangeEvents_ModelChange(ByVal TheModel As _ ModelReference, ByVal Change As MsdModelChangeType)

Debug.Print "Change: " & vbTab & vbTab & vbTab & _

TheModel.DesignFile.Name & vbTab & TheModel.Name & " - " & _

ModelChange(Change)

End Sub

Function ModelChange(ChangeIn As MsdModelChangeType) As String

Select Case ChangeIn

'Active

Case MsdModelChangeType.mdlModelChangeBeforeActive

ModelChange = "BeforeActive"

Case MsdModelChangeType.mdlModelChangeActive

ModelChange = "Active"

'Create

Case MsdModelChangeType.mdlModelChangeBeforeCreate

ModelChange = "BeforeCreate"

Case MsdModelChangeType.mdlModelChangeCreate

ModelChange = "Create"

'Delete

Case MsdModelChangeType.mdlModelChangeBeforeDelete

ModelChange = "BeforeDelete"

Case MsdModelChangeType.mdlModelChangeDelete

ModelChange = "Delete"

'Name

Case MsdModelChangeType.mdlModelChangeBeforeName

ModelChange = "BeforeName"

Case MsdModelChangeType.mdlModelChangeName

ModelChange = "Name"

'Properties

Case MsdModelChangeType.mdlModelChangeBeforeProperties

ModelChange = "BeforeProperties"

Case MsdModelChangeType.mdlModelChangeProperties

ModelChange = "Properties"

'Settings

Case MsdModelChangeType.mdlModelChangeBeforeSettings

ModelChange = "BeforeSettings"

Case MsdModelChangeType.mdlModelChangeSettings

ModelChange = "Settings"

'UnCreate

Case MsdModelChangeType.mdlModelChangeBeforeUnCreate

ModelChange = "BeforeUnCreate"

Case MsdModelChangeType.mdlModelChangeUnCreate

ModelChange = "UnCreate"

'UnDelete

Case MsdModelChangeType.mdlModelChangeBeforeUnDelete

ModelChange = "BeforeUnDelete"

Case MsdModelChangeType.mdlModelChangeUnDelete

ModelChange = "UnDelete"

'PropagateAnnotationScale

Case

MsdModelChangeType.mdlModelChangePropagateAnnotationScale

ModelChange = "PropagateAnnotationScale"

End Select

End Function

The Function "ModelChange" receives a constant value and 'converts' it to text. This makes it easier to see what is taking place.

As with other Interfaces, the Class Module must be instantiated in a Code Module:

Private myME As clsModelEvents

Sub AddEvents()

RemoveEvents

Set myME = New clsModelEvents

AddModelActivateEventsHandler myME

AddModelChangeEventsHandler myME

End Sub

Sub RemoveEvents()

If myME Is Nothing = False Then

RemoveModelActivateEventsHandler myME

RemoveModelChangeEventsHandler myME

Set myME = Nothing

End If

End Sub

When a Model is switched in a design file, we see the following results in the Immediate Window:

[image: Image]

As we can see here, the order of the events are:

IModelActivateEvents_BeforeActivate

IModelChangeEvents_ModelChange (With BeforeActive Event)

IModelActivateEvents_AfterActivate

IModelChangeEvents_ModelChange (With Active Event)

Each event supplies us with a ModelReference so we know which model is about to be Activated. The ModelChange Event is triggered twice when the active Model is being changed. First, we get a ModelChange Event with the "BeforeActivate" constant and then a ModelChange Event with an "Active" Constant.

REVIEW

As with other events we have discussed, Model Events are implemented through an Interface. Doing something as simple as adding Debug. Print statements can often lead us to understanding how, when, and why events are triggered. A little creativity and some VBA know-how can result in the creation of powerful solutions.

[image: Image]

25Level Events

Levels are extremely important to the organization of a design file. Since they are so important, an Interface is provided just for Level Events.

The ILevelChangeEvents Interface exposes only one event. This event, however, handles twelve types of changes. They are:

[image: Image] AfterChangeActive

[image: Image] AfterCreate

[image: Image] AfterDelete

[image: Image] BeforeChangeActive

[image: Image] BeforeDelete

[image: Image] ChangeAttribute

[image: Image] ChangeCode

[image: Image] ChangeDisplay

[image: Image] ChangeName

[image: Image] ChangeName

[image: Image] ChangeParent

[image: Image] TableRedo

[image: Image] TableUndo

The change type names are fairly self-explanatory. We had better look at the actual event before we continue.

Private Sub ILevelChangeEvents_LevelChanged(_

ByVal ChangeType As MsdLevelChangeType, _

ByVal TheLevel As Level, _

ByVal TheModel As Model Reference)

End Sub

Three parameters are passed to us in the LevelChanged event. The first gives us the type of change. This is provided to us in the form of an Enumeration Constant. Values for the ChangeType parameter are:

MsdLevelChangeType.msdLevelChangeAfterChangeActive = 9

MsdLevelChangeType.msdLevelChangeAfterCreate = 2

MsdLevelChangeType.msdLevelChangeAfterDelete = 3

MsdLevelChangeType.msdLevelChangeBeforeChangeActive = 17

MsdLevelChangeType.msdLevelChangeBeforeDelete = 18

MsdLevelChangeType.msdLevelChangeChangeAttribute = 8

MsdLevelChangeType.msdLevelChangeChangeCode = 5

MsdLevelChangeType.msdLevelChangeChangeDisplay = 7

MsdLevelChangeType.msdLevelChangeChangeName = 4

MsdLevelChangeType.msdLevelChangeChangeParent = 6

MsdLevelChangeType.msdLevelChangeTableRedo = 15

MsdLevelChangeType.msdLevelChangeTableUndo = 14

Let’s begin by using a Function to 'convert' the constant provided to a String and a simple Debug.Print statement. This allows us to implement the Interface and experiment with it to see when and how Level Events are handled.

Implements ILevelChangeEvents

'before change active shows the old level name

Private Sub ILevelChangeEvents_LevelChanged(_

ByVal ChangeType As MsdLevelChangeType, _

ByVal TheLevel As Level, _

ByVal TheModel As Model Reference)

Debug.Print TheLevel.Name & vbTab & TheModel.DesignFile.Name & _

vbTab & TheModel.Name & vbTab & GetChangeType(ChangeType)

End Sub

Function GetChangeType(ChangeIn As MsdLevelChangeType) As String

Select Case ChangeIn

Case MsdLevelChangeType.msdLevelChangeAfterChangeActive

GetChangeType = "AfterChangeActive"

Case MsdLevelChangeType.msdLevelChangeAfterCreate

GetChangeType = "AfterCreate"

Case MsdLevelChangeType.msdLevelChangeAfterDelete

GetChangeType = "AfterDelete"

Case MsdLevelChangeType.msdLevelChangeBeforeChangeActive

GetChangeType = "BeforeChangeActive"

Case MsdLevelChangeType.msdLevelChangeBeforeDelete

GetChangeType = "BeforeDelete"

Case MsdLevelChangeType.msdLevelChangeChangeAttribute

GetChangeType = "ChangeAttribute"

Case MsdLevelChangeType.msdLevelChangeChangeCode

GetChangeType = "ChangeCode"

Case MsdLevelChangeType.msdLevelChangeChangeDisplay

GetChangeType = "ChangeDisplay"

Case MsdLevelChangeType.msdLevelChangeChangeName

GetChangeType = "ChangeName"

Case MsdLevelChangeType.msdLevelChangeChangeParent

GetChangeType = "ChangeParent"

Case MsdLevelChangeType.msdLevelChangeTableRedo

GetChangeType = "ChangeTableRedo"

Case MsdLevelChangeType.msdLevelChangeTableUndo

GetChangeType = "ChangeTableUndo"

End Select

End Function

The following code is placed in a Code Module. It is used to call up the Class "clsLevelEvents".

Private myLC As clsLevelEvents

Sub AddEvents()

Set myLC = New clsLevelEvents

AddLevelChangeEventsHandler myLC

End Sub

Sub RemoveEvents()

If myLC Is Nothing = False Then

RemoveLevelChangeEventsHandler myLC

Set myLC = Nothing

End If

End Sub

Running AddEvents adds the Class clsLevelEvents to the LevelChangeEventsHandler. Now, if we make modifications to Levels in MicroStation design files, we will see lines added to the Immediate Window reflecting the events.

Since we can only have one LevelChanged Event in a single Class Module, the best way to implement this Event is through the use of a Select Case Statement.

Private Sub ILevelChangeEvents_LevelChanged(_

ByVal ChangeType As MsdLevelChangeType, _

ByVal TheLevel As Level, _

ByVal TheModel As Model Reference)

Select Case ChangeType

Case MsdLevelChangeType.msdLevelChangeAfterChangeActive

Case MsdLevelChangeType.msdLevelChangeAfterCreate

Case MsdLevelChangeType.msdLevelChangeAfterDelete

Case MsdLevelChangeType.msdLevelChangeBeforeChangeActive

Case MsdLevelChangeType.msdLevelChangeBeforeDelete

Case MsdLevelChangeType.msdLevelChangeChangeAttribute

Case MsdLevelChangeType.msdLevelChangeChangeCode

Case MsdLevelChangeType.msdLevelChangeChangeDisplay

Case MsdLevelChangeType.msdLevelChangeChangeName

Case MsdLevelChangeType.msdLevelChangeChangeParent

Case MsdLevelChangeType.msdLevelChangeTableRedo

Case MsdLevelChangeType.msdLevelChangeTableUndo

End Select

End Sub

Now we are ready to populate our Select Case statement to deal with the Level Changes. It should be said that we do not have the ability to prohibit changes from taking place in this Interface. We can only react to the events.

Let’s take a look at some of the more useful events in this Interface:

THE ACTIVE EVENT

Case MsdLevelChangeType.msdLevelChangeAfterChangeActive

Dim FFile As Long

FFile = FreeFile

Open "c:\levelactivated.txt" For Append As #FFile

Print #FFile, Now & vbTab & _

TheLevel.Name & vbTab & _

TheModel.Name & vbTab & _

TheModel.DesignFile.FullName

Close #FFile

A simple log is kept of when the Active Level is changed. We log the date/time, name of the Level, name of the Model, and the Design File’s full name.

THE AFTERCREATE EVENT

Case MsdLevelChangeType.msdLevelChangeAfterCreate

Dim FFile2 As Long

FFile2 = FreeFile

Open "c:\levelcreated.txt" For Append As #FFile2

Print #FFile2, Now & vbTab & _

Application.UserName & vbTab & _

TheLevel.Name & vbTab & _

TheModel.Name & vbTab & _

TheModel.DesignFile.FullName

Close #FFile2

Knowing that a Level was created is helpful. Knowing who created it can be critical. This event is triggered after a Level is created. A log file is created/appended showing a Date/Time Stamp, the User who created the Level and other miscellaneous information.

THE AFTERDELETE EVENT

Case MsdLevelChangeType.msdLevelChangeAfterDelete

MsgBox "Level " & TheLevel.Name & " has been deleted."

By the time this Event is triggered, very little can be done with the Level. We can still get its name, however.

THE BEFORECHANGEACTIVE EVENT

Case MsdLevelChangeType.msdLevelChangeBeforeChangeActive

Debug.Print "Level """ & Thelevel.Name & _ """ is about to be deactivated."

The name of this event may suggest that we are being told which Level is about to become active. Not so. We are only told which Level is about to become deactivated. We do not know which Level is about to become activated until the AfterChangeActive Event.

THE BEFOREDELETE EVENT

Case MsdLevelChangeType.msdLevelChangeBeforeDelete

Debug.Print "Before Delete: " & TheLevel.Name & vbCr & _ vbTab & TheLevel.Description

Before a Level is deleted, we can gather a little more information. After it is deleted, the only thing we can get is the Name property. In this example, we are pulling the Description and the Name.

THE CHANGEATTRIBUTE EVENT

Case MsdLevelChangeType.msdLevelChangeChangeAttribute

Debug.Print "Change Attribute: " & TheLevel.Name & vbCr & _

vbTab & TheLevel.Description & vbCr & _

vbTab & TheLevel.IsActive & vbCr & _

vbTab & TheLevel.ElementColor

Levels have a large number of Attributes. In this example, we are only looking at four of them.

REVIEW

Every model makes use of levels. They are critical to organizing our design files and models. Knowing when levels are modified can be helpful especially when we are dealing with standards.

[image: Image]

26Change Track Events

The last Interface exposing MicroStation events that we will look at in this book is the "Change Track Events" Interface. This Interface exposes four events: BeginUndoRedo, ElementChanged, FinishUndoRedo, and Mark. We will look at two of them.

In this Chapter:

[image: Image] The BeginUndoRedo Event

[image: Image] The ElementChanged Event

BEGINUNDOREDO EVENT

Private Sub IChangeTrackEvents_BeginUndoRedo(_

ByVal AfterUndoRedo As Element, _

ByVal BeforeUndoRedo As Element, _

ByVal Action As MsdChangeTrackAction, _

ByVal IsUndo As Boolean)

End Sub

The BeginUndoRedo Event is triggered before any Undo or any Redo action takes place. The parameter 'AfterUndoRedo' points to the element with all of its properties after the Undo or Redo action takes place. The 'BeforeUndoRedo' parameter points to the element with all of its properties before the Undo or Redo action takes place. The 'Action' parameter tells us which type of action has taken place. 'IsUndo' helps us know whether the action was an Undo or a Redo. Let’s take a look at some code in this event:

Private Sub IChangeTrackEvents_BeginUndoRedo(_

ByVal AfterUndoRedo As Element, _

ByVal BeforeUndoRedo As Element, _

ByVal Action As MsdChangeTrackAction, _

ByVal IsUndo As Boolean)

Debug.Print AfterUndoRedo.Level.Name & vbTab & _

BeforeUndoRedo.Level.Name & vbTab & _

Action & vbTab & IsUndo

End Sub

In this example we are writing the Level Names of the elements that are modified, Action, and IsUndo parameters to the Immediate Window. For example, if we changed the Level of an element, and then issued an Undo and then a Redo, we would see the following lines in the Immediate Window:

[image: Image]

We can see the After and Before Level names, the Type (3), and the fact that the first action was an Undo and the next one was a Redo (based on True and False values). The Level names and Undo/Redo values make perfect sense. But what about the number 3? It tells us the Type of event. Right? The value points to an item in the MsdChangeTrackAction enumeration.

msdChangeTrackActionAdd = 2

msdChangeTrackActionAppData = 8

msdChangeTrackActionDelete = 1

msdChangeTrackActionDrop = 6

msdChangeTrackActionMark = 7

msdChangeTrackActionModelAdd = 9

msdChangeTrackActionModelDelete = 10

msdChangeTrackActionModify = 3

msdChangeTrackActionModifyFence = 5

msdChangeTrackActionNewFilePositionAndModify = 4

We can see here that we were performing Undo/Redo actions on a modification to an element.

We should keep in mind that the constants contained in this enumeration are used in other areas of the Change Track Events Interface as well as the BeginUndoRedo Event.

ELEMENT CHANGED EVENT

Private Sub IChangeTrackEvents_ElementChanged(_

ByVal AfterChange As Element, _

ByVal BeforeChange As Element, _

ByVal Action As MsdChangeTrackAction, _

CantBeUndone As Boolean)

End Sub

Whenever an element is changed, the ElementChanged event is triggered. The parameters provided in this event are very similar to the BeginUndoRedo event. We are given a reference to the element before and after the change is made, the type of action, and whether the action can be undone.

Let’s take a look at several implementations of the ElementChanged event:

Private Sub IChangeTrackEvents_ElementChanged(_

ByVal AfterChange As Element, _

ByVal BeforeChange As Element, _

ByVal Action As MsdChangeTrackAction, _

CantBeUndone As Boolean)

Debug.Print BeforeChange.Level.Name & vbTab & _

AfterChange.Level.Name & vbTab & _

Action & vbTab & CantBeUndone

End Sub

The code is simple and straight forward. When an element is modified, we are given the element before and after it is modified, the type of action, and whether or not the action can be undone.

[image: Image]

As we can see here, an element’s level was changed from "Default" to "New Level (0)" to "New Level (1)" and back to "Default". Each action type is 3 and the actions can be undone because the "CantBeUndone" parameter is passed to us with a value of False.

The Change Type is 3. A review of the constants in the MsdChangeTrackAction enumerator reveals that we are dealing with a "msdChangeTrackActionModify" action.

Let’s build upon the event by adding a little more code:

Private Sub IChangeTrackEvents_ElementChanged(_

ByVal AfterChange As Element, _

ByVal BeforeChange As Element, _

ByVal Action As MsdChangeTrackAction, _

CantBeUndone As Boolean)

Select Case Application.CommandState.CommandName

Case "Delete Element"

Debug.Print "Delete Element"

Debug.Print vbTab & BeforeChange.Level.Name & vbTab & _ Action & vbTab & CantBeUndone

Case Else

Debug.Print Application.CommandState.CommandName

Debug.Print vbTab & BeforeChange.Level.Name & vbTab & _

AfterChange.Level.Name & vbTab & _

Action & vbTab & CantBeUndone

End Select

End Sub

Taking a peek at the CommandState.CommandName property can give us a hint as to what was taking place just prior to the element’s change.

[image: Image]

We can see here that we encountered a "msdChangeTrackActionNewFilePositionAndModify" (4), a "msdChangeTrackActionModify" (3), and a "msdChangeTrackActionDelete" (1). In the above example, we were basing our actions on the CommandName property of the CommandState object. When we saw a "Delete Element" CommandName, we only showed the Level of the 'BeforeChange' object because after an item is deleted, the 'AfterChange' object is set to "Nothing" — the object has been deleted.

Basing our reactions to events on a CommandName may work in some circumstances but basing our reactions on the "Action" produces more reliable results.

Private Sub IChangeTrackEvents_ElementChanged(_

ByVal AfterChange As Element, _

ByVal BeforeChange As Element, _

ByVal Action As MsdChangeTrackAction, _

CantBeUndone As Boolean)

Select Case Action

Case msdChangeTrackActionAdd

Case msdChangeTrackActionAppData

Case msdChangeTrackActionDelete

Case msdChangeTrackActionDrop

Case msdChangeTrackActionMark

Case msdChangeTrackActionModelAdd

Case msdChangeTrackActionModelDelete

Case msdChangeTrackActionModify

Case msdChangeTrackActionModifyFence

Case msdChangeTrackActionNewFilePositionAndModify

End Select

End Sub

We can now build on this framework. Let’s take a look at a few examples.

Example 1

Private Sub IChangeTrackEvents_ElementChanged(_

ByVal AfterChange As Element, _

ByVal BeforeChange As Element, _

ByVal Action As MsdChangeTrackAction, _

CantBeUndone As Boolean)

Select Case Action

Case msdChangeTrackActionAdd

Case msdChangeTrackActionAppData

Case msdChangeTrackActionDelete

Case msdChangeTrackActionDrop

Case msdChangeTrackActionMark

Case msdChangeTrackActionModelAdd

Case msdChangeTrackActionModelDelete

Case msdChangeTrackActionModify

Select Case AfterChange.Type

Case MsdElementType.msdElementTypeTextNode, _ MsdElementType.msdElementTypeText

If AfterChange.Level.Name <> "TEXT" Then

AfterChange. Level = _

ActiveDesignFile.Levels("TEXT")

AfterChange.Rewrite

End If

End Select

Case msdChangeTrackActionModifyFence

Case msdChangeTrackActionNewFilePositionAndModify

End Select

End Sub

When an element is modified, we check to see if it is a TextNode or Text element. If it is one of these types of elements, we check to see what level the element is on. If it is not on the "TEXT" level, we place it on the "TEXT" level and Rewrite it so the change is 'saved' to the file.

Example 2

Private Sub IChangeTrackEvents_ElementChanged(_

ByVal AfterChange As Element, _

ByVal BeforeChange As Element, _

ByVal Action As MsdChangeTrackAction, _

CantBeUndone As Boolean)

Select Case Action

Case msdChangeTrackActionAdd

Debug.Print "Add: " & AfterChange.Type & vbTab & _

AfterChange.ID.High & vbTab & _

AfterChange.ID.Low

Case msdChangeTrackActionAppData

Case msdChangeTrackActionDelete

Case msdChangeTrackActionDrop

Case msdChangeTrackActionMark

Case msdChangeTrackActionModelAdd

Case msdChangeTrackActionModelDelete

Case msdChangeTrackActionModify

Case msdChangeTrackActionModifyFence

Case msdChangeTrackActionNewFilePositionAndModify

End Select

End Sub

[image: Image]

Knowing what type of element is added can come in handy. Let’s add a function so we can see the type of element as a description instead of a number. We will modify the Event to make use of this new function.

Private Sub IChangeTrackEvents_ElementChanged(_

ByVal AfterChange As Element, _

ByVal BeforeChange As Element, _

ByVal Action As MsdChangeTrackAction, _

CantBeUndone As Boolean)

Select Case Action

Case msdChangeTrackActionAdd

Debug.Print "Add: " & GetType(AfterChange.Type) & vbTab & _

AfterChange.ID.High & vbTab & _

AfterChange.ID.Low

Case msdChangeTrackActionAppData

Case msdChangeTrackActionDelete

Case msdChangeTrackActionDrop

Case msdChangeTrackActionMark

Case msdChangeTrackActionModelAdd

Case msdChangeTrackActionModelDelete

Case msdChangeTrackActionModify

Case msdChangeTrackActionModifyFence

Case msdChangeTrackActionNewFilePositionAndModify

End Select

End Sub

Function GetType(TypeIn As MsdElementType) As String

Select Case TypeIn

Case msdElementTypeArc

GetType = "Arc"

Case msdElementTypeBsplineBoundary

GetType = "BSplineBoundary"

Case msdElementTypeBsplineCurve

GetType = "BSplineCurve"

Case msdElementTypeBsplineKnot

GetType = "BSplineKnot"

Case msdElementTypeBsplinePole

GetType = "BSplinePole"

Case msdElementTypeBsplineSurface

GetType = "BSplineSurface"

Case msdElementTypeBsplineWeight

GetType = "BSplineWeight"

Case msdElementTypeCellHeader

GetType = "CellHeader"

Case msdElementTypeCellLibraryHeader

GetType = "CellLibraryHeader"

Case msdElementTypeComplexShape

GetType = "ComplexShape"

Case msdElementTypeComplexString

GetType = "ComplexString"

Case msdElementTypeCone

GetType = "Cone"

Case msdElementTypeConic

GetType = "Conic"

Case msdElementTypeCurve

GetType = "Curve"

Case msdElementTypeDesignFileHeader

GetType = "DesignFileHeader"

Case msdElementTypeDgnStoreComponent

GetType = "DgnStoreComponent"

Case msdElementTypeDgnStoreHeader

GetType = "DgnStoreHeader"

Case msdElementTypeDigSetData

GetType = "DigSetData"

Case msdElementTypeDimension

GetType = "Dimension"

Case msdElementTypeEllipse

GetType = "Ellipse"

Case msdElementTypeGroupData

GetType = "GroupData"

Case msdElementTypeLevelMask

GetType = "LevelMask"

Case msdElementTypeLevelSymbology

GetType = "LevelSymbology"

Case msdElementTypeLine

GetType = "Line"

Case msdElementTypeLineString

GetType = "LineString"

Case msdElementTypeMatrixDoubleData

GetType = "MatrixDoubleData"

Case msdElementTypeMatrixHeader

GetType = "MatrixHeader"

Case msdElementTypeMatrixIntegerData

GetType = "MatrixIntegerData"

Case msdElementTypeMeshHeader

GetType = "MeshHeader"

Case msdElementTypeMicroStation

GetType = "MicroStation"

Case msdElementTypeMultiLine

GetType = "MultiLine"

Case msdElementTypeNamedGroupComponent

GetType = "NamedGroupComponent"

Case msdElementTypeNamedGroupHeader

GetType = "NamedGroupHeader"

Case msdElementTypePointString

GetType = "PointString"

Case msdElementTypeRasterComponent

GetType = "RasterComponent"

Case msdElementTypeRasterFrame

GetType = "RasterFrame"

Case msdElementTypeRasterHeader

GetType = "RasterHeader"

Case msdElementTypeRasterReference

GetType = "RasterReference"

Case msdElementTypeRasterReferenceComponent

GetType = "RasterReferenceComponent"

Case msdElementTypeReferenceAttachment

GetType = "ReferenceAttachment"

Case msdElementTypeReferenceOverride

GetType = "ReferenceOverride"

Case msdElementTypeShape

GetType = "Shape"

Case msdElementTypeSharedCell

GetType = "SharedCell"

Case msdElementTypeSharedCell Definition

GetType = "SharedCell Definition"

Case msdElementTypeSolid

GetType = "Solid"

Case msdElementTypeSurface

GetType = "Surface"

Case msdElementTypeTable

GetType = "Table"

Case msdElementTypeTableEntry

GetType = "TableEntry"

Case msdElementTypeTag

GetType = "Tag"

Case msdElementTypeText

GetType = "Text"

Case msdElementTypeTextNode

GetType = "TextNode"

Case msdElementTypeView

GetType = "View"

Case msdElementTypeViewGroup

GetType = "ViewGroup"

End Select

End Function

[image: Image]

Example 3

When an element is deleted, the action recorded is 'msdChangeTrackActionDelete'.

Private Sub IChangeTrackEvents_ElementChanged(_

ByVal AfterChange As Element, _

ByVal BeforeChange As Element, _

ByVal Action As MsdChangeTrackAction, _

CantBeUndone As Boolean)

Select Case Action

Case msdChangeTrackActionAdd

Case msdChangeTrackActionAppData

Case msdChangeTrackActionDelete

Debug.Print GetType(BeforeChange.Type) & " Deleted"

Case msdChangeTrackActionDrop

Case msdChangeTrackActionMark

Case msdChangeTrackActionModelAdd

Case msdChangeTrackActionModelDelete

Case msdChangeTrackActionModify

Case msdChangeTrackActionModifyFence

Case msdChangeTrackActionNewFilePositionAndModify

End Select

End Sub

[image: Image]

When an element is deleted, we only have access to the 'BeforeChange element.

Example 4

We have had several examples that deal with the 'Action' parameter instead of counting on the 'CommandName'. Our next example makes use of both.

Private Sub IChangeTrackEvents_ElementChanged(_

ByVal AfterChange As Element, _

ByVal BeforeChange As Element, _

ByVal Action As MsdChangeTrackAction, _

CantBeUndone As Boolean)

Dim myLevel As Level

Dim LevelCount As Long

Select Case Action

Case msdChangeTrackActionAdd

Case msdChangeTrackActionAppData

Case msdChangeTrackActionDelete

Case msdChangeTrackActionDrop

Case msdChangeTrackActionMark

Case msdChangeTrackActionModelAdd

Case msdChangeTrackActionModelDelete

Case msdChangeTrackActionModify

Case msdChangeTrackActionModifyFence

Case msdChangeTrackActionNewFilePositionAndModify

Select Case GetType(AfterChange.Type)

Case "Table"

Select Case CommandState.CommandName

Case "New Level "

LevelCount = ActiveDesignFile.Levels.Count

Set myLevel = _

ActiveDesignFile.Levels(LevelCount - 1)

Debug.Print myLevel.Name & " Added."

End Select

End Select

End Select

End Sub

[image: Image]

The 'NewFilePositionAndModify' change type tracks modifications to the design file and non-element objects such as Levels. In this example, we use the CommandName property of the CommandState object in addition to the 'Action' parameter so we know when a Level is added or deleted from the fide. For more information on Level modifications, review the ILevelChangeEvents interface.

ACTIVATING THE CHANGETRACKEVENTS INTERFACE

As with other Interfaces, we implement each of the Interfaces events in a Class Module and then add the Event Handler. The code that adds the Event Handler is run from within a Code Module as follows:

Private myCTE As clsChangeTrackEvents

Sub AddEvents()

RemoveEvents

Set myCTE = New clsChangeTrackEvents

AddChangeTrackEventsHandler myCTE

End Sub

Sub RemoveEvents()

If myCTE Is Nothing = False Then

RemoveChangeTrackEventsHandler myCTE

Set myCTE = Nothing

End If

End Sub

REVIEW

The ChangeTrackEvents Interface can be used for a thousand different purposes. Fortunately, it normally takes only a little bit of experimentation before we can implement it and begin getting the results we need.

[image: Image]

27Non-Graphical Info - Databases

Databases allow us to store a great deal of information in a single 'storehouse'. They can be used to store a variety of data regarding elements in our design files. When this information is stored in a database instead of in our design files, the design file is smaller in size and the information is available outside of the MicroStation environment.

This chapter focuses on MicroStation’s 'Database Link' functionality. A later chapter discusses additional ways we can work with databases.

In this Chapter:

[image: Image] How MicroStation 'links' elements to Databases

[image: Image] How to create a Microsoft Access Database from scratch to 'link' to a Design File

[image: Image] Making use of UDL (Universal Data Link) files

[image: Image] Linking elements in MicroStation to a Database using VBA

[image: Image] Creating Database Records using SQL

[image: Image] Creating a User Interface to view Database Information

How MICROSTATION 'LINK' ELEMENTS TO DATABASES

MicroStation allows us to 'link' an element to a database record by attaching a "DatabaseLink" object to the element. Databases contain Tables. Each Table contains Rows (or records). Each Row contains Columns. The "DatabaseLink" object contains the information necessary for MicroStation to find the Table and Row that is linked to the Element. The DatabaseLink Properties that store these pieces of information are the "EntityNumber" and the "Mslink" properties.

[image: Image]

At the top of this image, we see a DatabaseLink object that is attached to an element in a design file. Let’s begin by taking a look at the DatabaseLink’s EntityNumber Property.

The EntityNumber of a DatabaseLink helps us discover which Table the DatabaseLink is pointing to. The EntityNumber value is numeric. It does not tell us which Table to look in, it only tells us how to find which Table to look in. Each database that is used with DatabaseLinks has an "mscatalog" table. The "mscatalog" table is used to match up the DatabaseLink.EntityNumber property with the database Table we need to look in. When we find a matching "entitynum" value in the "mscatalog" table, the "tablename" field tells us which table we should look in for the record.

Now that we know which Table we need to look in, we begin looking in that Table for a matching "mslink" value.

In the above example, a DatabaseLink object was found attached to an element in MicroStation. The EntityNumber of the DatabaseLink object is 18. In the "mscatalog" table, the EntityNumber 18 points us to the Table named "parcel". In the "parcel" Table, a value of 531 was found in the "mslink" field and this provides the match between the Element in MicroStation to a record (or Row) in the database. This is how MicroStation links elements to database records. If more than one record is linked to an element, multiple DatabaseLink objects will be attached to the element in MicroStation.

Now, we have discussed the theory behind linking elements in MicroStation to records in databases. Let’s look at an actual example.

1 Open the file … \Examples\Civil\Dgn\cogo.dgn. This file is installed with MicroStation.

2 Next, zoom into the upper-left hand corner of the file.

[image: Image]

If we look at this file and the illustration shown above, we will see that we were looking at Parcel Number 13 on Hayden Drive.

3 Now, let’s open the database file

… \Examples\Dotabase\Oledb\Examples\Access\gis.mdb in Microsoft Access. This is the database that is attached to this file. A review of the "mscatalog" table reveals the database tables in this Access Database that MicroStation can work with. Opening the "parcel" table reveals the records we just looked at.

So far we have looked into how MicroStation 'links' elements in design files to records in databases. More information can be found in MicroStation’s help file by searching for "Database". A large number of help topics will appear. Much of what displays relates to using MicroStation’s database tools. But we are going to be concentrating on VBA programming tools in this chapter.

CREATING A DATABASE FROM SCRATCH

MicroStation supports Oracle, ODBC, OLEDB, and SQL Server (through the BUDBC Database Server Selection). We are going to use an OLEDB connection with a Microsoft Access database. OLEDB drivers are installed as part of the Microsoft Windows operating system and we will use these drivers to not only communicate with the database but create a new database.

Let’s begin by creating a new Microsoft Access database. Since this is a book about programming, we will demonstrate how this can be done even if Microsoft Access is not installed on our computers. We will begin with the code and then offer an explanation.

Sub CreateDB()

Dim myCat As New ADOX.Catalog

Dim dbLocation As String

Dim ConnString As String

dbLocation = "C:\MicroStation VBA\DatabaseLinkTest.mdb"

ConnString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & _ dbLocation

myCat.Create ConnString

End Sub

This code makes use of the "Microsoft ADO Ext. 2.8 for DDL and Security" Reference. Before executing the procedure, we need to add this Reference in VBA. This code creates a new database. The database is empty; there are no tables in it. Creating Tables is our next step. There are many ways we can add Tables to an existing database. We will discuss three of them here.

One way to add Tables to an existing database is to use the same ADOX Reference we just used to create the database.

Sub CreateDB2()

Dim myCat As New ADOX.Catalog

Dim dbLocation As String

Dim ConnString As String

dbLocation = "C:\MicroStation VBA\DatabaseLinkTest.mdb"

ConnString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & _ dbLocation

myCat.ActiveConnection = ConnString

Dim myTable As New Table

Dim myColumn As ADOX.Column

myTable.Name = "Lots"

'mslink Column

myTable.Columns.Append "mslink", adInteger

'Owner Column

Set myColumn = New ADOX.Column

myColumn.Name = "Owner"

myColumn.Type = adVarWChar

myColumn.Attributes = adColNullable

myColumn.DefinedSize = 50

myTable.Columns.Append myColumn

'Sold Column

Set myColumn = New ADOX.Column

myColumn.Name = "Sold"

myColumn.Type = adBoolean

myTable.Columns.Append myColumn

'DateSold Column

Set myColumn = New ADOX.Column

myColumn.Name = "DateSold"

myColumn.Type = adDate

myColumn.Attributes = adColNullable

myTable.Columns.Append myColumn

'Acres Column

Set myColumn = New ADOX.Column

myColumn.Name = "Acres"

myColumn.Type = adDouble

myColumn.Attributes = adColNullable

myTable.Columns.Append myColumn

'SaleAmount Column

Set myColumn = New ADOX.Column

myColumn.Name = "SaleAmount"

myColumn.Type = adCurrency

myColumn.Attributes = adColNullable

myTable.Columns.Append myColumn

myCat.Tables.Append myTable

myCat.ActiveConnection = Nothing

End Sub

When we create the "mslink" column, we do so by appending the Columns collection 'in-line'. When we create a column 'in-line', we do not have as much control over the properties of the column (field). For example, we may or may not want a field (column) to be required. If we do not want a column to be required, we can specify the Field’s Attributes property as 'adColNullable'. This means the column can have a value of 'null'.

The second way we can create a table is to use the "ActiveX Data Objects Library" Reference. A new Reference needs to be added before we can run the procedure CreateDB3. When we open the References dialog box to add "ActiveX Data Objects" as a Reference, we may see several Libraries to choose from. We should select the highest version of the library available.

In this example, we will execute an SQL Statement on the database to create a new Table named "Expenses". Here is the example:

Sub CreateDB3()

Dim myDB As New ADODB.Connection

Dim dbLocation As String

Dim ConnString As String

dbLocation = "C:\MicroStation VBA\DatabaseLinkTest.mdb"

ConnString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & _ dbLocation

myDB.Open ConnString

myDB.Execute "Create Table Expenses (mslink Counter, " & _ "LotLink Long, Description Char(100), Amount Double)"

End Sub

When we created the mslink field we gave it a 'Counter' type. This causes the field to be an "auto-number" field that automatically assigns a numeric value to this field each time a new record is created. The value for this field begins with one (1) and increases by one each time a new record is created. This "auto-number" field type is not available in all databases but it is available in Microsoft Access databases so we will use it in this example.

The last method we will discuss makes use of the MicroStation Visual SQL Query Builder. The Query Builder can be used to get information out of databases that are connected to MicroStation but can also be used to execute standard SQL statements on a connected database.

Before we use the Query Builder we must connect to the database. Before MicroStation can connect to a database, it needs to know a few pieces of information. First, MicroStation needs to know what type of database it will be 'talking' to. Next, MicroStation needs to know where the database is located. With these two basic pieces of information, MicroStation can begin talking to a database. So, how does MicroStation know what type of database we have and where it is located? One of the best ways to provide this information is through the use of a UDL file.

In MicroStation, select the menu Settings > Database > Connect.

[image: Image]

The Database Connection dialog box opens:

[image: Image]

After selecting "OLEDB" from the Database Server, select "New" from the Database Source combo box.

[image: Image]

When we select "New", a new UDL file is created and we are asked to enter the UDL file parameters.

[image: Image]

What two critical pieces of information do we need to provide to MicroStation? First, the type of Database. We specify the type of Database by selecting which OLE DB Provider (database driver) to use. When we are working with a Microsoft Access database, we select "Microsoft Jet 4.0 OLE DB Provider" from the list. Clicking the Next button allows us to continue.

The Connection tab gives us the ability to provide information regarding the location of the database we want to connect to. The interface in the Connection tab varies based on the selection in the Provider tab.

[image: Image]

When we are working with a "Jet" (Microsoft Access) Database, we can type in the file name or browse for the file by clicking the button as shown. If we are working with a SQL Server database, we are asked to select the SQL Server Name (it could be any server on the network that has SQL Server installed) and then select which Database on the selected server we want to connect to.

Parameters are also provided to allow us to enter a User name and Password if the database we are connecting to requires these parameters.

After we click the Browse button we can select the Access database we have just created. After selecting the file, the file path displays in the UDL Properties dialog box.

The TestConnection button is used to see if we have provided the UDL file with enough information to connect to the selected database.

[image: Image]

If we have provided the enough information, we will see a MessageBox stating "Test connection succeeded". This is the MessageBox we want to see. From time to time, however, a different MessageBox displays.

[image: Image]

For example, if we selected the wrong 'Provider' for the selected database, we will see an error message. If the database we have selected is open 'exclusively' somewhere else, we will see an error.

After clicking OK in the Test Connection MessageBox, we next click OK in the UDL dialog box. If all goes well, we will see this MessageBox:

[image: Image]

MicroStation depends on a table named "MSCatalog" to associate DatabaseLink objects with database records. Since we have not created an MSCatalog table in the database we just attached to MicroStation, we are notified that this table needs to be created and are given a hint as to how we can do so from within MicroStation.

Let’s follow the directions specified in this MessageBox by going to the menu Settings > Database > Setup. When we do so we are shown this MessageBox:

[image: Image]

Let’s have MicroStation create the MSCatalog Table by clicking OK.

Next, we are shown the Database Setup dialog box. We will deal with this in a little while. For now, close it by clicking the OK button.

When MicroStation creates the MSCatalog Table, it may need to detach and then re-attach to the database so we may see the UDL file properties again. If this happens, we need to make sure that the correct 'Provider' and 'Connection' settings are made prior to closing the UDL File Properties dialog box.

OK. We have just performed a number of steps to connect our DatabaseLinkTest.mdb database to MicroStation. Now that the database is connected, we can create a new Table by using the SQL Builder (Settings > Database > Query Builder).

[image: Image]

As has been already stated, the Visual SQL Query Builder dialog can be used to get information from a connected database. When we are retrieving information from a database, we often use the "Select" SQL statement. So, the box we are going to type in is titled "SQL Select Statement". But we can do much more than simply 'select' database records in this TextBox.

When we type SQL statements in the "SQL Select Statement" TextBox and click the Execute button, the statement entered is executed by the connected database. Let’s try creating a new Table named "History" by executing a SQL Statement. The History Table will be used to store historic ownership data.

[image: Image]

CREATE TABLE History (mslink Integer, Owner Char(50), PurchaseDate Date, SoldDate Date)

Here is the statement we will use to create our new "History" Table. After clicking the Execute button, the new Table is created (as long as the SQL statement is correct). How do we know if it has been created? We can click the Tables button.

[image: Image]

If the History table was not created, it will not show up in the "Select Table" list and we would know that the SQL Statement we used needs to be modified until it works properly.

Double-clicking on "History" in the list and then clicking the Close button displays the "History" table in the Query Builder dialog box.

[image: Image]

Here we can see the fields created in the History table.

MAKING USE OF UDL FILES

Thus far, we have discussed the mechanism behind MicroStation’s linking of design elements to database records and have created a new Access Database. During the creation of the Access Database, we created a new UDL file. A UDL file has two primary components. The "Provider" and the "Connection" components are used to specify the database driver and database location. One of the great things about UDL files is that if the location of our database changes, we can make one change in one file (the UDL file) and the programs we wrote and the MicroStation links we created continue to work perfectly. We can even 'scale up' the database platform we are using from Microsoft Access to SQL Server or Oracle and our programs continue to function with only a couple of simple changes to the UDL file.

Let’s take one more look at a procedure we ran earlier:

Sub CreateDB3()

Dim myDB As New ADODB.Connection

Dim dbLocation As String

Dim ConnString As String

dbLocation = "C:\MicroStation VBA\DatabaseLinkTest.mdb"

ConnString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & _ dbLocation

myDB.Open ConnString

myDB.Execute "Create Table Expenses (mslink Counter, " & _ "LotLink Long, Description Char(lOO), Amount Double)"

End Sub

In this procedure, we provide a "Location" and a "Connection String" in the code. This allows us to 'connect' to a database at a specific 'location'. It demonstrates that it is possible to work with databases without the use of a UDL file. But what happens if the database’s location or file name changes? We need to change the code if we have hard-coded the database connection information in our programs. If we are the only one using the program, this may not seem like much of a problem. But if multiple people are using our program, it is much easier to change a UDL file than it is to change code, especially if we have 'Locked' our code in VBA. And even the most basic computer user can be instructed to double-click on a UDL file and browse for a different database.

We will discuss UDL file usage in greater detail in a later chapter. But for now, we should just keep in mind that using a UDL file provides the perfect combination of power and flexibility.

LINKING MICROSTATION ELEMENTS TO DATABASE RECORDS

The process of linking a MicroStation Element to a Database Record is very simple.

Here is the declaration for "CreateDatabaseLink":

Function CreateDatabaseLink(Mslink As Long, _

Entity As Long, _

LinkType As MsdDatabaseLinkage, _

IsInformation As Boolean, _

DisplayableAttributeType As Long) As DatabaseLink

And here is an example using CreateDatabaseLink:

Sub DatabaseLinkA()

Dim myElem As Element

Dim myLink As DatabaseLink

Set myElem = CommandState.GetLocatedElement(True)

Set myLink = CreateDatabaseLink(1, 1, msdDatabaseLinkageOleDb, _ True, 0)

myElem.AddDatabaseLink myLink

myElem.Rewrite

End Sub

After the DatabaseLink is created, we add it to an element in MicroStation.

It should be noted that Database Links can be created and added to elements without a database even being attached. In the example above, we create a Database Link with an MSLink of 1 (one) and an Entity of 1 (one).

Remember, the Entity Property points to the Table we are to look in (by referencing the Entitynum field in the MSCatalog Table) and the Mslink Property points to the record in the Table.

This code assumes that the MSCatalog Table has a record with an "Entitynum" of 1 and that the table it references has a record with an "MSLink" of 1.

The following code looks at the selected element in MicroStation and displays each DatabaseLink attached to it with the Database Link’s properties in a MessageBox:

Sub GetDatabaseLinksA()

Dim myElem As Element

Dim myLinks() As DatabaseLink

Dim myLink As DatabaseLink

Dim I As Long

Set myElem = CommandState.GetLocatedElement(True)

myLinks = myElem.GetDatabaseLinks

For I = LBound(myLinks) To UBound(myLinks)

Set myLink = myLinks(I)

MsgBox myLink.DatabaseType & vbCr & _

myLink.DisplayableAttributeType & vbCr & _

my Link.EntityNumber & vbCr & _

my Link.IsInformation & vbCr & _

my Link.Mslink

Next I

End Sub

[image: Image]

CREATING DATABASE RECORDS USING SQL

Thus far we have successfully created a new database, added new Tables to the new database, and know how to attach DatabaseLinks to Elements in MicroStation. The only thing we are missing in our database is data! We need to know how to add records to the database we created. We do this by using the same SQL Query Builder we used to add a Table to the database. Let’s add a record to the "Lots" Table.

[image: Image]

The SQL Statement is:

INSERT INTO Lots (mslink, Owner) VALUES (1. 'Jones Family')

In this example, we create a new record in the table "Lots". The Fields "mslink" and "Owner" are given values of "1" and "Jones Family" respectively. Additional fields and values can be added by placing them in the appropriate places. For more information on SQL Statements, review the "Additional Sources" section at the end of this book.

CREATING A USER INTERFACE TO VIEW DATABASE INFORMATION

Let’s capitalize on what we now know about Database Links by creating a User Interface to view and edit "Lot" information.

Here is our interface. The TextBoxes and CheckBox will be used to display associated information from the fields in the table "Lots".

[image: Image]

Here is the code that is behind the interface:

Const UDLFile As String = "C:\Documents and Settings\All Users\" & _

"Application Data\Documents\Bentley\WorkSpace\" & _

"Projects\Examples\Database\Oledb\Udl\" & _

"DatabaseLinkTest.udl"

Dim MSLinkID As Long

Private Sub btnClose_Click()

Unload Me

End Sub

Private Sub btnUpdate_Click()

Dim myDB As New ADODB.Connection

Dim myRS As New ADODB.Recordset

myDB.Open "File name=" & UDLFile

myRS.Open "Select * from Lots Where MSLink = " & MSLinkID, _ myDB, adOpenForwardOnly, adLockOptimistic

If myRS.EOF = False Then

If txtOwner.Text <> "" Then

myRS("Owner") = txtOwner.Text

Else

myRS("Owner") = Null

End If

myRS("Sold") = chkSold.Value

If IsDate(txtDateSold.Text) Then

myRS("DateSold") = CDate(txtDateSold.Text)

Else

myRS("DateSold") = Null

End If

If IsNumeric(txtAcres.Text) Then

myRS("Acres") = CDbl(txtAcres.Text)

Else

myRS("Acres") = Null

End If

If IsNumeric(txtSaleAmount.Text) Then

myRS("SaleAmount") = CDbl(txtSaleAmount.Text)

Else

myRS("SaleAmount") = Null

End If

myRS.Update

End If

End Sub

Private Sub UserForm_Initialize()

Dim myElem As Element

Dim myLinks() As DatabaseLink

Dim myLink As DatabaseLink

Dim I As Long

Dim myDB As New ADODB.Connection

Dim myRS As New ADODB.Recordset

myDB.Open "File name=" & UDLFile

Set myElem = CommandState.GetLocatedElement(True)

myLinks = myElem.GetDatabaseLinks

For I = LBound(myLinks) To UBound(myLinks)

Set myLink = myLinks(I)

If myLink.EntityNumber = 1 Then

myRS.Open "Select * from Lots Where mslink = " & _

myLink.Mslink, _

myDB, adOpenForwardOnly, adLockReadOnly

If myRS.EOF = False Then

MSLinkID = myLink.Mslink

If IsNull(myRS("Owner")) Then

txtOwner.Text = ""

Else

txtOwner.Text = myRS("Owner")

End If

chkSold.Value = myRS("Sold")

If IsNull(myRS("DateSold")) Then

txtDateSold.Text = ""

Else

txtDateSold.Text = myRS("DateSold")

End If

If IsNull(myRS("Acres")) Then

txtAcres.Text = ""

Else

txtAcres.Text = myRS("Acres")

End If

If IsNull(myRS("SaleAmount")) Then

txtSaleAmount.Text = ""

Else

txtSaleAmount.Text = myRS("SaleAmount")

End If

myRS.Close

myDB.Close

Exit Sub

End If

myRS.Close

End If

Next I

myDB.Close

End Sub

When the form is initialized, we look at the selected element in MicroStation and then get the "Lot" information through the DatabaseLink object. Not only are we displaying what information is in the database, but we allow the user to make changes to the database by changing the values in the TextBoxes and CheckBox. When the user clicks the Update Database button, the database record is updated based on what is entered in the form.

REVIEW

Databases can store a large variety of information. This information is categorized into Tables. Database Tables have fields (or columns) defined in them and each record in a table can have values in these fields.

DatabaseLink Objects are used to associate MicroStation Elements with Database Records. In order for DatabaseLinks to work with Databases, the Database must have a table named "mscatalog". The DatabaseLink Objects are associated with the specified table through the MSLink Property.

Databases will be discussed in more detail in a later chapter.

[image: Image]

28Tags

Tags are useful for storing and displaying information that is associated with elements in a Design File. They are often used to display the same 'type' of information from file to file but the data stored in each Tag is different. For example, "Drawn By" is a useful piece of information for every file but the actual value may vary from file to file.

The macros presented in this chapter are to be used with the project named "Building" which is installed with MicroStation.

In this Chapter:

[image: Image] Getting Information from Tags based on a Selection

[image: Image] Getting All Tags in a File

[image: Image] Working with Tagsets

[image: Image] Getting All Tags of All Files in a Folder

[image: Image] Changing a Tag’s Value

[image: Image] Changing multiple Tags in Multiple Files

[image: Image] Exporting Tag Information to a File

GETTING INFORMATION FROM TAGS BASED ON A SELECTION

Let’s begin our look into the wonderful world of tags by having the user (in this case it is probably us) select a Tag and get some basic information from it.

Sub GetSelectedTagA()

Dim myTag As TagElement

Dim myElemEnum As ElementEnumerator

Set myElemEnum = _ Application.ActiveModelReference.GetSelectedElements

While myElemEnum.MoveNext

Select Case myElemEnum.Current.Type

Case MsdElementType.msdElementTypeTag

Set myTag = myElemEnum.Current

If myTag Is Nothing = False Then

MsgBox myTag.Value

End If

End Select

Wend

End Sub

In this example, we create an ElementEnumerator to look at each element selected in MicroStation. We look at each selected element to see if it is a Tag. If it is a Tag, we display the Tag’s value in a MessageBox.

The Tag’s value is of great importance to us. But there is more to a Tag than its Value. Let’s expand the macro to include the Tag’s Name.

Sub GetSelectedTagB()

Dim myTag As TagElement

Dim myElemEnum As ElementEnumerator

Set myElemEnum = _ Application.ActiveModelReference.GetSelectedElements

While myElemEnum.MoveNext

Select Case myElemEnum.Current.Type

Case MsdElementType.msdElementTypeTag

Set myTag = myElemEnum.Current

If myTag Is Nothing = False Then

MsgBox myTag.TagDefinitionName & vbTab & myTag.Value

End If

End Select

Wend

End Sub

The Tag’s Name is very important. It can be used to help us know if the Tag’s Value is telling us who created the drawing, who checked the drawing, or who printed the drawing. GetSelectedTagB gives us more information than the previous procedure but can be improved upon. Let’s get the Tag’s TagSetName.

Sub GetSelectedTagC()

Dim myTag As TagElement

Dim myElemEnum As ElementEnumerator

Set my ElemEnum = _ Application.ActiveModelReference.GetSelectedElements

While myElemEnum.MoveNext

Select Case myElemEnum.Current.Type

Case MsdElementType.msdElementTypeTag

Set myTag = myElemEnum.Current

If myTag Is Nothing = False Then

MsgBox myTag.TagSetName & vbTab & _

myTag.TagDefinitionName & vbTab & myTag.Value

End If

End Select

Wend

End Sub

The TagSet tells us to which 'group' a Tag belongs. For example, does the Tag belong to a Title Block? Does it belong to a Door Schedule?

At this point we are getting some very useful information. If four tags are selected, we see four MessageBoxes. If one tag is selected, we see one MessageBox. Let’s expand our code some more to include all Tags that belong to the same TagSet.

In our next example, we are going to display Tag information again. And we are going to make use of the selected Tag. But we are going to display all Tags that are siblings to the selected tag. We do this by getting the all Tags belonging to the selected tag’s 'BaseElement'.

Sub GetSelectedTagD()

Dim myTag As TagElement

Dim sibTags() As TagElement

Dim myElemEnum As ElementEnumerator

Dim I As Long

Set myElemEnum = _ Application.ActiveModelReference.GetSelectedElements

While myElemEnum.MoveNext

Select Case myElemEnum.Current.Type

Case MsdElementType.msdElementTypeTag

Set myTag = myElemEnum.Current

sibTags = myTag.BaseElement.GetTags

For I = LBound(sibTags) To UBound(sibTags)

MsgBox sibTags(I).TagSetName

& vbTab & sibTagst(I).TagDefinitionName _ & vbTab & sibTags(I).Value

Next I

Exit Sub

End Select

Wend

End Sub

We use GetTags on the selected Tag’s BaseElement. GetTags fills an array composed of Tags belonging to an Element. We use a For … Next loop to look at each Tag’s TagSetName, TagDefinitionName, and Value.

GETTING ALL TAGS IN A FILE

We have just seen how we can extract Tag information based on a selection in MicroStation. Let’s move from the 'selection' method to scanning an entire file for Tag Elements and displaying each tag’s information in a MessageBox.

Sub GetTagsA()

Dim myTag As TagElement

Dim myElemEnum As ElementEnumerator

Dim myFilter As New ElementScanCriteria

myFilter.ExcludeAllTypes

myFilter.IncludeType msdElementTypeTag

Set myElemEnum = _ Application.ActiveModelReference.Scan(myFilter)

While myElemEnum.MoveNext

Set myTag = myElemEnum.Current

MsgBox myTag.TagSetName & vbTab & myTag.TagDefinitionName_

& vbTab & myTag.Value

Wend

End Sub

After we create a new ElementScanCriteria object, we first exclude all types from the filter and then include the Tag element type. The entire file is 'scanned' and only Tag elements are enumerated. There are times when we want the user to select a Tag. There are other times when we may want to process an entire file without the need of user intervention. We have presented these two scenarios here.

We will discuss how to extract Tag information into Microsoft Excel in a later chapter.

WORKING WITH TAGSETS

Tags are grouped into 'TagSets'. We have been showing each Tag’s TagSetName property in our previous examples. Let’s take a look at the active design file’s TagSets.

Sub GetTagsSetsA()

Dim myTagSet As TagSet

For Each myTagSet In Application.ActiveDesignFile.TagSets

MsgBox myTagSet.Name

Next

End Sub

Now that we know how to identify each TagSet in a file we can look at each TagDefinition in each TagSet in a file.

Sub GetTagsSetsB()

Dim myTagSet As TagSet

Dim myTagDef As TagDefinition

For Each myTagSet In Application.ActiveDesignFile.TagSets

For Each myTagDef In myTagSet.TagDefinitions

MsgBox myTagSet.Name & vbTab & myTagDef.Name

Next

Next

End Sub

And now we will perform the same basic function, only we will display more Tag information:

Sub GetTagsSetsC()

Dim myTagSet As TagSet

Dim myTagDef As TagDefinition

For Each myTagSet In Application.ActiveDesignFile.TagSets

For Each myTagDef In myTagSet.TagDefinitions

MsgBox "SetName: " & myTagSet.Name & vbCr & _

"TagName: " & myTagDef.Name & vbCr & _

"Prompt: " & myTagDef.Prompt & vbCr & _

"Default: " & myTagDef.DefaultValue

Next

Next

End Sub

GETTING ALL TAGS OF ALL FILES IN A FOLDER

As we have already seen, getting all Tags in a File can be accomplished with only a few lines of code. But taking time to open each file in a specific folder and then running a macro such as GetTagsSetsC can take a little time. Especially if there are hundreds or even thousands of files. Let’s take a look at some code that will open each design file in a folder and 'export' its Tag information by printing it to the Immediate Window in VBA. Of course, writing the information to a file would be much more useful. We will see an example of that later.

Before we proceed we need to add a Reference to the "Microsoft Scripting Runtime". The File System Object will be used to help us easily traverse all files in a folder.

Sub GetFolderTags()

Dim myDGN As DesignFile

Dim myFSO As New Scripting.FileSystemObject

Dim myFolder As Scripting.Folder

Dim myFile As Scripting.File

Dim myTagSet As TagSet

Dim myTagDef As TagDefinition

Dim TargetTagset As String

Dim myTag As TagElement

Dim myElemEnum As ElementEnumerator

Dim myFilter As New ElementScanCriteria

TargetTagset = "TitleBlock"

Set myFolder = myFSO.GetFolder("C:\Documents and Settings\" & _ "All Users\Application Data\" & _ "Bentley\WorkSpace\Projects\" & _ "Examples\Building\Dgn")

For Each myFile In myFolder.Files

Select Case myFile.Type

Case "Bentley MicroStation Design File"

Set myDGN = Application.OpenDesignFileForProgram(_ myFile.Path, True)

For Each myTagSet In myDGN.TagSets

Select Case UCase(myTagSet.Name)

Case UCase(TargetTagset)

myFilter.ExcludeAllTypes

myFilter.IncludeType msdElementTypeTag

Set myElemEnum = _

myDGN.Models(1).Scan(myFilter)

While myElemEnum.MoveNext

Set myTag = myElemEnum.Current

Debug.Print myFile.Name & vbTab & _

myTag.TagSetName & vbTab & _

myTag.TagDefinitionName; vbTab & _

myTag.Value & vbTab & _ vbTab & myTag.ID.High & _ vbTab & myTag .ID.Low

Wend

End Select

Next

myDGN.Close

End Select

Next

End Sub

This example opens each design file in the specified folder "for program". This means the file is opened in memory and is not displayed in MicroStation. Files can be opened and manipulated very quickly when they do not need to be 'rendered' to the screen.

One piece of information we are extracting in this example that we hadn’t extracted before is the High and Low elements of the ID property. This ID property is very important because it provides a unique identifier for an Element in MicroStation and it persists from session to session. So, storing the ID property of an Element in a database, for example, would allow us to quickly and easily identify the Element in MicroStation hours, days, weeks, or months after we first worked with it.

CHANGING A TAG'S VALUE

Now we are going to create and use a Procedure named ChangeTag. It uses the High and Low elements of the ID property to get and then set a Tag’s value. Here’s the procedure:

Sub ChangeTag(IDHigh As Long, IDLow As Long, NewValue As String)

Dim TagID As DLong

Dim myTag As TagElement

TagID.High = IDHigh

TagID.Low = IDLow

Set myTag = Application.ActiveDesignFile.GetElementByID(TagID)

myTag.Value = NewValue

myTag.Rewrite

End Sub

When we have an ID, we can get its element by using the GetElementByID procedure. After we set the Tag’s value based on the ID, we Rewrite the Tag element. This procedure cannot be executed by itself. It needs something else to 'call' it. Let’s take a look at a procedure that does just that:

Sub TestChangeTagA()

Dim myTag As TagElement

Dim myEnum As ElementEnumerator

Set myEnum = ActiveModelReference.GetSelectedElements

While myEnum.MoveNext

Select Case myEnum.Current.Type

Case MsdElementType.msdElementTypeTag

ChangeTag myEnum.Current.ID.High, _

myEnum.Current.ID.Low, "ABC"

End Select

Wend

End Sub

In the "real world", we would be storing the High and Low elements of the ID property in a database or in some other storage mechanism. In our example here, we get the ID property from selected elements. Then we use our new procedure ChangeTag to change the Tag’s value.

CHANGING MULTIPLE TAGS IN MULTIPLE FILES

As we learn more about VBA programming we discover that we can make significant changes on a large scale in a short period of time. So, we can do a lot of good or we can do a lot of damage with our code. When we begin working with multiple files using VBA, extreme caution should be taken to make sure that the changes we are making are good.

Changing a tag in a single file is not nearly as exciting as changing multiple tags in multiple files. Nor is it as dangerous. The procedure we are going to create, ChangeTag2, allows us to specify four parameters.

Sub ChangeTag2(FileName As String, TagSet As String, _ TagName As String, NewValue As String)

Dim myDGN As DesignFile

Dim myFilter As New ElementScanCriteria

Dim myElemEnum As ElementEnumerator

Dim myTag As TagElement

Dim myModelRef As ModelReference

Set myDGN = Application.OpenDesignFileForProgram(FileName, False)

myFilter.ExcludeAllTypes

myFilter.IncludeType msdElementTypeTag

For Each myModelRef In myDGN.Models

Set myElemEnum = myModelRef.Scan(myFilter)

While myElemEnum.MoveNext

Set myTag = myElemEnum.Current

If StrComp(myTag.TagSetName, TagSet) = 0 Then

If StrComp(myTag.TagDefinitionName, _ TagName) = 0 Then

myTag.Value = NewValue

myTag.Rewrite

End If

End If

Wend

Next

myDGN.Save

myDGN.Close

End Sub

In this procedure, we open the specified file "ForProgram", scan the file for Tags with a specific TagSet and TagName and set its value. Here’s a procedure that makes use of ChangeTag2.

Sub TestChangeTagB()

Dim myFSO As New Scripting.FileSystemObject

Dim myFolder As Scripting.Folder

Dim myFile As Scripting.File

Set myFolder = myFSO.GetFolder ("C:\Documents and SettingsV & _

"All Users\Application Data\" & _

"Bentley\WorkSpace\Projects\" & _

"Examples\Building\Dgn")

For Each myFile In myFolder.Files

Select Case myFile.Type

Case "Bentley MicroStation Design File"

ChangeTag2 myFile.Path, "TitleBlock", _

"Checked By", "J Winters"

End Select

Next

End Sub

Running the above procedure changes each design file in the specified folder and saves it. All Tags named "Checked By" in the "TitleBlock" TagSet are given a value of "J Winters". Powerful? Yes. Dangerous? Potentially. Let’s be careful so the programming we do is a benefit to our employers instead of the derailing of our careers.

EXPORTING TAG INFORMATION TO A FILE

All of the MessageBoxes and Debug.Print statements will not do us any good because the data extracted and displayed is not in a format that can be saved. We will begin with a simple ASCII Text file.

[image: Image]

Here is the output we want to create. It is the same information that we had been printing to the Immediate Window:

Sub ExportFolderTags()

Dim myDGN As DesignFile

Dim myFSO As New Scripting.FileSystemObject

Dim myFolder As Scripting.Folder

Dim myFile As Scripting.File

Dim myTagSet As TagSet

Dim myTagDef As TagDefinition

Dim TargetTagset As String

Dim myTag As TagElement

Dim myElemEnum As ElementEnumerator

Dim myFilter As New ElementScanCriteria

Dim FFile As Long

FFile = FreeFile

Open "C:\MicroStation VBA\Tags.txt" For Output As #FFile

TargetTagset = "TitleBlock"

Set my Folder = myFSO.GetFolder("C:\Documents and Settings\" & _

"All Users\Application Data\" & _

"Bentley\WorkSpace\Projects\" & _

"Examples\Building\Dgn")

For Each myFile In myFolder.Files

Select Case myFile.Type

Case "Bentley MicroStation Design File"

Set myDGN = Application.OpenDesignFileForProgram(_ myFile.Path, True)

For Each myTagSet In myDGN.TagSets

Select Case UCase(myTagSet.Name)

Case UCase(TargetTagset)

myFilter.ExcludeAllTypes

myFilter.IncludeType msdElementTypeTag

Set myElemEnum = _

myDGN.Models(1).Scan(myFilter)

While myElemEnum.MoveNext

Set myTag = myElemEnum.Current

Print #FFile, myFile.Name & vbTab & _

myTag.TagSetName & vbTab & _

myTag.TagDefinitionName; vbTab & _

myTag.Value & vbTab & _ vbTab & myTag.ID.High & _ vbTab & myTag.ID.Low

Wend

End Select

Next

myDGN.Close

End Select

Next

Close #FFile

End Sub

Writing to a Text file is simple. Of course, an ASCII .txt file is useful for reviewing in Notepad but isn’t formatted. Let’s modify the above example and instead of creating a .txt file we will create an .htm file.

Sub ExportFolderTagsToHTML()

Dim myDGN As DesignFile

Dim myFSO As New Scripting.FileSystemObject

Dim myFolder As Scripting.Folder

Dim myFile As Scripting.File

Dim myTagSet As TagSet

Dim myTagDef As TagDefinition

Dim TargetTagset As String

Dim myTag As TagElement

Dim myElemEnum As ElementEnumerator

Dim myFilter As New ElementScanCriteria

Dim FFile As Long

FFile = FreeFile

Open "C:\MicroStation VBA\Tags.htm" For Output As #FFile

Print #FFile, "<table width=660 border=1>" & vbCr

Print #FFile, vbTab & "<tr><td></td></tr>" & vbCr

TargetTagset = "TitleBlock"

Set myFolder = myFSO.GetFolder("C:\Documents and Settings\" & _

"All Users\Application Data\" & _

"Bentley\WorkSpace\Projects\" & _

"Examples\Building\Dgn")

For Each myFile In myFolder.Files

Select Case myFile.Type

Case "Bentley MicroStation Design File"

Print #FFile, "<tr><td colspan=5>" & _

myFile.Path & "</td></tr>" & vbCr

Print #FFile, vbTab & "<tr><td>Tag Set Name</td>" & _

"<td>Tag Name</td>" & _

"<td>Value</td>" & _

"<td>ID High</td>" & _

"<td>ID Low</td></tr>"

Set myDGN = Application.OpenDesignFileForProgram(_ myFile.Path, True)

For Each myTagSet In myDGN.TagSets

Select Case UCase(myTagSet.Name)

Case UCase(TargetTagset)

myFilter.ExcludeAllTypes

myFilter.IncludeType msdElementTypeTag

Set myElemEnum = _ myDGN.Models(1).Scan(myFilter)

While my ElemEnum.MoveNext

Set myTag = myElemEnum.Current

Print #FFile, vbTab & "<tr><td>" & _

myTag.TagSetName & "</td>" & _

"<td>" & myTag.TagDefinitionName & _ "</td>" & _

"<td>" & myTag.Value & "</td>" & _

"<td>" & myTag.ID.High & "</td>" & _

"<td>" & myTag.ID.Low & "</td></tr>" & vbCr

Wend

End Select

Next

myDGN.Close

End Select

Next

Print #FFile. "</table>"

Close #FFile

End Sub

[image: Image]

A little HTML code is all it takes to display the data we are exporting into a more visually pleasing and better organized format. And since web browsers can be found on most computers independent of the operating system, HTML is a standard format that can be read by nearly everyone.

REVIEW

Tags contain useful information. The ability to access tags through VBA gives us control over not only tags in the active design file but in every file in a specific folder and so forth. Reading values and changing them is easy to do as we have just seen. Exporting tag data into ASCII files allows us to work with the data or view it in other programs such as Notepad and in a web browser.

We will provide an example of extracting Tag information into Microsoft Excel in a later chapter. Tag information could also be extracted to a database or used as the body of an e-mail. We are only limited by our imagination.

[image: Image]

29XML

Imagine for a moment that we are tasked with the responsibility of developing a new method of describing and housing data. This method of describing data must be flexible enough to handle a great variety of data models, data types, etc. For example, it must be able to describe a car, a family of people, and a farm. What would we come up with? Hopefully we would come up with something like XML because XML is designed to handle a variety of data structures and types.

In this Chapter:

[image: Image] What is XML?

[image: Image] XML File Structure

[image: Image] Reading XML Files With VBA

WHAT IS XML?

XML is an abbreviation for Extensible Markup Language. XML documents often have a file extension of "xml". Even though XML files conform to a common specification, the data it contains can vary greatly from file to file and from 'structure' to 'structure'.

Companies and organizations create their own XML Document Definitions to store their own type of data with their own data structures. For example, there are XML documents to store financial transactions, another to store GIS information, and yet another to store architectural bills of material. XML formats have been devised to store genealogy, sports statistics, and cooking recipes. Programs such as Microsoft Excel and Microsoft Access can export their data to XML files.

XML FILE STRUCTURE

The XML File Structure is what allows it to be so flexible and powerful. Here is a small snippet of an XML file:

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata"

generated="2005-12-28T08:57:09">

<parcel>

<mslink>1</msl ink)

<old_map_no>119-L</old_map_no>

<group_no>A</group_no>

<parcel_no>9</parcel_no>

<clt_no>119-LA 9</clt_no>

<owner>CANTRELL WILLIAM B & EVELYN W</owner>

<parc_value>9000</parc_value>

<house_num>220</house_num>

<str_name>BRIDGEWATER RD</str_name>

<city>KNOXVILLE</city>

<state>TENNESSEE</state>

<zip_code>37919</zip_code>

<county>KNOX</county>

<district>NW-COUNTY</district>

<zone_class>RA</zone_class>

<block_num>0</block_num>

<lot_num>0</lot_num>

<subd_name>CRESTWOOD HILLS UNIT 1</subd_name>

<parc_area>16036</parc_area>

<perimeter>511</perimeter>

<mapid>6</mapid>

<currdate>1986-09-19T00:00:00</currdate>

<txt>This is a memo field, used for really long text, entries</txt>

</parcel>

This XML file is an export from a Microsoft Access database. To be more precise, it is an export from the gis.mdb file installed with MicroStation. The "Parcel" table was exported to an XML file.

XML files are being used more and more in place of traditional databases. And looking at the structure, it is easy to see why. We can see Nodes for City, State, Zip_Code, County, District, Parc-Area, Perimeter, and so forth.

READING XML FILES

There are several ways we can read an XML file. We could use standard VBA file Input/Output calls, reading each line of the XML file and parsing it. But there is a better way.

Microsoft has given us some tools to work with XML files. Adding a Reference to a Microsoft XML DLL file is the first step.

[image: Image]

Each computer has different versions of the Microsoft XML libraries. In the example above, v6.0 is the highest version so we will use it in our examples here.

Sub ReadXMLFile()

Dim myXML As New MSXML2.DOMDocument

Dim myXElem As MSXML2.IXMLDOMElement

Dim myXRecord As MSXML2.IXMLDOMElement

Dim myXField As MSXML2.IXMLDOMElement

myXML.async = False

myXML.validateOnParse = False

myXML.Load "c:\MicroStation VBA\parcel.xml"

Set myXElem = myXML.documentElement

For Each myXRecord In myXElem.childNodes

Debug.Print "****NEW RECORD****"

For Each myXField In myXRecord.childNodes

Debug.Print myXField.baseName & ".." & myXField.Text

Next

Next

End Sub

Our first example loads the XML file and then prints each record with its children (the fields) in the Immediate window.

[image: Image]

The procedure ReadXMLFile starts at the beginning of the file and looks at each item until it reaches the end.

If we only want to display the record with a mslink of 531, we could use the following code:

Sub ReadXMLFileB()

Dim myXML As New MSXML2.DOMDocument

Dim myXElem As MSXML2.IXMLDOMElement

Dim myXRecord As MSXML2.IXMLDOMElement

Dim myXField As MSXML2.IXMLDOMElement

myXML.async = False

myXML.validateOnParse = False

myXML.Load "c:\MicroStation VBA\parcel.xml"

Set myXElem = myXML.documentElement

For Each myXRecord In myXElem.childNodes

If myXRecord.childNodes(0).Text = "531" Then

For Each myXField In myXRecord.childNodes

Debug.Print myXField.baseName & ".." & myXField.Text

Next

End If

Next

End Sub

In this example, we look at each record in the XML file and when we find one with a mslink of 531, we print the records fields to the Immediate window. The code works to be sure, but it is not very efficient.

Let’s take a look at this next example. Instead of looking at each and every record in the XML file, we are going to get only the "mslink" properties, look at them, and then print each field in the Immediate window.

Sub ReadXMLFileC()

Dim myXML As New MSXML2.DOMDocument

Dim myXElem As MSXML2.IXMLDOMElement

Dim myXList As MSXML2.IXMLDOMNodeList

Dim myXRecord As MSXML2.IXMLDOMElement

Dim myXField As MSXML2.IXMLDOMElement

myXML.async = False

myXML.validateOnParse = False

myXML.Load "c:\MicroStation VBA\parcel.xml"

Set myXElem = myXML.documentElement

Set myXList = myXML.getElementsByTagName("mslink")

For Each myXRecord In myXList

If myXRecord.Text = "531" Then

For Each myXField In myXRecord.parentNode.childNodes

Debug.Print. myXField.baseName & ".." & myXField.Text

Next

End If

Next

End Sub

The code runs faster than the previous example. It is better than the previous example but we can improve. We are going to look for the first node that has a "mslink" value of 531.

Sub ReadXMLFileD()

Dim myXML As New MSXML2.DOMDocument

Dim myXField As MSXML2.IXMLDOMElement

Dim myXNode As MSXML2.IXMLDOMNode

myXML.async = False

myXML.validateOnParse = False

myXML.Load "c:\MicroStation VBA\parcel.xml"

Set myXElem = myXML.documentElement

Set myXNode = myXML.selectSingleNode("//parcel[mslink=531]")

For Each myXField In myXNode.childNodes

Debug.Print myXField.baseName & ".." & myXField.Text

Next

End Sub

Now we are getting somewhere. Now we are letting the Microsoft XML Library do the work for us. It is fast, efficient, and very easy to modify. It doesn’t matter how deep the "parcel" object is in the XML file. This code finds the first instance where the "mslink" property of the "parcel" object is equal to 531.

If we take a look at the screen capture shown previously, we will see that there are a good number of fields we have to work with. One of them is "parc_value". We could modify the code above, looking for "parc_value" instead of "mslink" and find a parcel valued at 250,000. But the code would only work if a parcel was valued at exactly 250,000. Let’s examine the code that will return all parcels (not only one) with a value greater than or equal to $250,000.

Sub ReadXMLFileE()

Dim myXML As New MSXML2.DOMDocument

Dim myXList As MSXML2.IXMLDOMNodeList

Dim myXField As MSXML2.IXMLDOMElement

Dim myXNode As MSXML2.IXMLDOMNode

myXML.async = False

myXML.validateOnParse = False

myXML.Load "c:\MicroStation VBA\parcel.xml"

Set myXList = myXML.selectNodes("//parcel[parc_value>=250000]")

Debug.Print myXList.Length & " Found."

For Each myXNode In myXList

Debug.Print "*****PARCEL*****"

For Each myXField In myXNode.childNodes

Debug.Print myXField.baseName & ".." & myXField.Text

Next

Next

End Sub

[image: Image]

The code is beginning to look a little like an SQL statement. What it really is, is an XPath statement.

A careful comparison between the screen capture shown here and one a few pages ago shows us that this one is missing the "group_no" field and the "house_num" field. In a previous example, we used childNodes(0) to get the "mslink" field. We addressed the "mslink" field by an index number instead of its name. We can see here that some records do not have all fields represented, so we should be extremely careful when addressing fields (or nodes) by their index. It is far better to address a field by its name.

This next example displays information about each record where the parcel area is greater than or equal to 1 Acre.

Sub ReadXMLFileF()

Dim myXML As New MSXML2.DOMDocument

Dim myXList As MSXML2.IXMLDOMNodeList

Dim myXField As MSXML2.IXMLDOMElement

Dim myXNode As MSXML2.IXMLDOMNode

myXML.async = False

myXML.validateOnParse = False

myXML.Load "c:\MicroStation VBA\parcel.xml"

Set myXList = myXML.selectNodes("//parcel[parc_area>=43560]")

Debug.Print myXList.Length & " Parcels Found >= 1 Acre."

For Each myXNode In myXList

Debug.Print myXNode.selectSingleNode(".//mslink").Text & vbTab & _

myXNode.selectSingleNode(".//owner").Text & vbTab & _

myXNode.selectSingleNode(".//parc_area").Text

Next

End Sub

In the above example, we use "selectNodes" to select multiple nodes meeting the criteria specified. We then look at each Node that is found and get its (the node's) "mslink", "owner", and "parc_area" values. Note that we are using ".//" with a period (.) instead of "//". When we use a period we are stating that we want to look relative to the current context. If we did not use the period in the above example, it would find the first "mslink", "owner", and "parc_area" nodes in the XML document.

Let’s look at one more example of reading this Access-exported XML document.

Sub ReadXMLFileG()

Dim myXML As New MSXM12.DOMDocument

Dim myXList As MSXML2.IXMLDOMNodeList

Dim myXField As MSXML2.IXMLDOMElement

Dim myXNode As MSXML2.IXMLDOMNode

myXML.async = False

myXML.validateOnParse = False

myXML.Load "c:\MicroStation VBA\parcel.xml"

Set myXList = myXML.selectNodes("//parcel[parc_area>=43560 " & _ "and parc_area<=87120]")

Debug.Print myXList.Length & " Parcels Found Between 1 and 2 Acres."

For Each myXNode In myXList

Debug.Print myXNode.selectSingleNode(".//mslink").Text & _ vbTab & _

myXNode.selectSingleNode(".//owner").Text & _ vbTab & _

myXNode.selectSingleNode(".//parc_area").Text

Next

End Sub

Now we have expanded the filter to only return nodes with "parc_area" values between 1 and 2 Acres. We are once again exporting the "mslink", "owner", and "parc_area" node values to the Immediate Window.

[image: Image]

As was mentioned previously, XML documents have a specific structure. The XML file we have been working with is an export from Microsoft Access. Let’s take a look now at an XML file exported from Microsoft Excel.

[image: Image]

The "towerdat.xls" spreadsheet is installed with MicroStation. When exported as a "Spreadsheet XML" document, we can traverse the data using the Microsoft XML Reference.

Sub ReadXMLFile1()

Dim myXML As New MSXML2.DOMDocument

Dim myWSheets As MSXML2.IXMLDOMNodeList

Dim myWSheet As MSXML2.IXMLDOMNode

Dim myRows As MSXML2.IXMLDOMNodeList

Dim myRow As MSXML2.IXMLDOMNode

Dim myCells As MSXML2.IXMLDOMNodeList

Dim myCell As MSXML2.IXMLDOMNode

myXML.async = False

myXML.validateOnParse = False

myXML.Load "c:\MicroStation VBA\towerdat.xml"

Set myWSheets = myXML.get ElementsByTagName("Worksheet")

For Each myWSheet In myWSheets

Set myRows = myWSheet.selectNodes(".//Row")

For Each myRow In myRows

Set myCells = myRow.selectNodes(".//Cell")

For Each myCell In myCells

Debug.Print myCell.Text

Next

Next

Next

End Sub

The structure for a Microsoft XML file is different than that of a Microsoft Access Database XML export. After declaring the variables we are going to use and Loading the XML file, we get all Worksheets in the file. Then we look at each Worksheet and get all Rows for the worksheet. Then we get all Cells in each Row and look at each Cell. The result of this first Excel XML macro is that the values (stored in the Text property) of each Cell is shown in the Immediate Window.

[image: Image]

Even though XML provides a standard mechanism for storing and retrieving information, the structures are different from format to format. The XML file specification can be read in its entirety at "http://www.w3.org/XML.

We see the values all right. But how do we know which Row and Column we are looking at when we get a value? To answer this question, we must understand a little more about the Worksheet XML structure.

Each and every Cell could have an "Address" property. This may be convenient for us as developers but it would cause the size of the XML file to increase. So, Index properties are used when needed to identify where a specific Row or Cell is located.

The first Row found in the Worksheet has an Attribute named "Index". The "Index" tells us the Row number we are looking at. The first Cell in each Row also has an Attribute named "Index". The Cell’s Index tells us in which Column the Cell is located. So, between the Index of the Row and the Index of the Cell we know exactly where the first Cell in the first Row is located.

The second Cell in the first Row is a different matter. If the first Cell is in Column 2 and the second Cell does not have an Index Attribute, the second Cell listed is in Column 3. The next Cell in the same Row is in Column 4 if it does not have an Index Attribute. If the next Cell has an Index Attribute value of 8, it is located in Column 8. Indexes are only used on the first Cell and whenever a cell is not directly adjacent to another Cell.

The second Row works in a similar manner. If the second Row in the XML file has an Index Attribute, the Row number is specified in the Index Attribute. If an Index Attribute is not supplied, the Row is directly below the previous Row.

A slight modification of the original code allows us to track the Row and Column of the Cell.

Sub ReadXMLFile2()

Dim myXML As New MSXML2.DOMDocument

Dim myWSheets As MSXML2.IXMLDOMNodeList

Dim myWSheet As MSXML2.IXMLDOMNode

Dim myRows As MSXML2.IXMLDOMNodeList

Dim myRow As MSXML2.IXMLDOMNode

Dim myCells As MSXML2.IXMLDOMNodeList

Dim myCell As MSXML2.IXMLDOMNode

Dim myRowAtt As MSXML2.IXMLDOMAttribute

Dim myColAtt As MSXML2.IXMLDOMAttribute

Dim myAtts As MSXML2.IXMLDOMNamedNodeMap

Dim CurRow As Long

Dim CurCol As Long

myXML.async = False

myXML.validateOnParse = False

myXML.Load "c:\MicroStation VBA\towerdat.xml"

Set myWSheets = myXML.getElementsByTagName("Worksheet")

For Each myWSheet In myWSheets

CurRow = 1

CurCol = 1

Set myRows = myWSheet.selectNodes(".//Row")

For Each myRow In myRows

Set myAtts = myRow.Attributes

Set myRowAtt = myAtts.getNamedItem("ss:Index")

If Not myRowAtt Is Nothing Then

CurRow = myRowAtt.Text

Else

CurRow = CurRow + 1

End If

CurCol = 1

Set myCells = myRow.selectNodes(".//Cell")

For Each myCell In myCells

Set myAtts = myCell.Attributes

Set myColAtt = myAtts.getNamedItem("ss:Index")

If Not myColAtt Is Nothing Then

CurCol = myColAtt.Text

Else

CurCol = CurCol + 1

End If

Debug.Print "R" & CurRow & "C" & CurCol & "=" & myCell.Text

Next

Next

Next

End Sub

In the above Procedure, ReadXMLFile2, we are printing the Row and Column of the Cell as well as the Text. We do this by looking for Index Attributes of Rows and Cells. When found, we use them as the current values for the variables "CurRow" and "CurCol". When they are not found we increase the "CurRow" and "CurCol" values by 1 (based on whether we are looking at a Row Object (when we increase the "CurRow" variable) or a Cell Object (when we increase the "CurCol" variable).

[image: Image]

Here is the output of ReadXMLFile2. Notice that some of the Cells we find have an Empty String ("") for their Text property

REVIEW

XML is a technology that has been talked about for years and is becoming used more widely. The ability to read XML files is not only useful now but will become more critical in the days to come.

Since each xml Document Definition varies, a little time may be needed to learn how to 'traverse' a new XML file type.

[image: Image]

30Batch Processing

The ability to rapidly process 10, 100, or even 1000 files is as simple as it is powerful.

In this Chapter:

[image: Image] Processing Files listed in an ASCII File

[image: Image] Processing All Files in a Folder

[image: Image] Processing All Files in a Folder and SubFolders

[image: Image] Creating a User Interface for File Selection

[image: Image] Logging Batch File Processing

PROCESSING FILES LISTED IN AN ASCII FILE

It is not uncommon to have a list of files that need processing in an ASCII text file. Here is an example:

[image: Image]

The first example we will examine opens this file ProcessThese.txt and reads each line in it. Each line in the file displays in a MessageBox.

Sub ProcessASCII()

Dim FileToOpen As String

Dim BatchFile As String

Dim FFile As Long

FFile = FreeFile

BatchFile = "C:\MicroStation VBA\BatchProcessing\ProcessThese.txt"

Open BatchFile For Input As #FFile

While EOF(FFile) = False

Line Input #FFile, FileToOpen

MsgBox FileToOpen

Wend

End Sub

[image: Image]

Now that we have the basics in place, let’s build on them.

Sub ProcessASCIIB()

Dim FileToOpen As String

Dim BatchFile As String

Dim FFile As Long

FFile = FreeFile

BatchFile = "C:\MicroStation VBA\BatchProcessing\ProcessThese.txt"

Open BatchFile For Input As #FFile

While EOF(FFile) = False

Line Input #FFile, FileToOpen

Application.OpenDesignFile FileToOpen, True

MsgBox "Do Something"

Wend

End Sub

Now, instead of just showing the file name in a MessageBox, we are opening each file in MicroStation. We are doing so with the "Read Only" parameter set to True. This is useful when we need to extract information from files but don’t want to make any changes to the file. Note that at this point we are only opening the files, we are not closing them.

Let’s make a change to the ASCII file format. After the path and name of the file we will have lines specifying which Levels we want to process. Each "Level" line in the file should begin with a Tab and then should have the Level name. After adding Level names to the file, we will perform a SaveAs to the file with a new filename of ProcessTheseLevels.txt.

[image: Image]

Now, instead of opening each file and displaying the file name in a MessageBox we will open each file and display each Level name in a MessageBox.

Sub ProcessASCIIC()

Dim FileToOpen As String

Dim BatchFile As String

Dim strLIN As String

Dim FFile As Long

FFile = FreeFile

BatchFile = _ "C:\MicroStation VBA\BatchProcessing\ProcessThesetevels.txt"

Open BatchFile For Input As #FFile

While EOF(FFile) = False

Line Input #FFile, strLIN

Select Case Left(strLIN, 1)

Case vbTab

MsgBox "Do something to Level " & _ Replace(strLIN, vbTab, "")

Case Else

FileToOpen = strLIN

Application.OpenDesignFile FileToOpen, True

End Select

Wend

End Sub

The Procedure ProcessASCIIC works very well as long as the files specified in the file exist. What happens if we attempt to open a file that does not exist?

[image: Image]

Prior to attempting to open any file, we should make sure the file exists.

Sub ProcessASCIID()

Dim FileToOpen As String

Dim BatchFile As String

Dim strLIN As String

Dim FFile As Long

Dim FileIsOpen As Boolean

FFile = FreeFile

BatchFile =

"C:\MicroStation VBA\BatchProcessing\ProcessTheseLevels.txt"

Open BatchFile For Input As #FFile

While EOF(FFile) = False

Line Input #FFile, strLIN

Select Case Left(strLIN, 1)

Case vbTab

If FileIsOpen = True Then

MsgBox "Do something to Level " & _ Replace(strLIN, vbTab, "")

End If

Case Else

FileToOpen = strLIN

If Dir(FileToOpen) = "" Then

FileIsOpen = False

Else

FileIsOpen = True

Application.OpenDesignFile FileToOpen, True

End If

End Select

Wend

End Sub

The Dir Function is a standard VBA function that returns the name of a file if it exists. If the file does not exist, the Dir Function returns an empty string ("").

In this example, if the file does not exist, we pass it up and move to the next file. We could display a MessageBox stating that the file doesn’t exist but that could be problematic. When we are Batch Processing files, we may start processing on Friday at 4:55 PM expecting the processing to take place over the weekend. If we attempt to process a file that does not exist and an error dialog box shows up, the MessageBox could be sitting there from Friday at 5:05 PM until we come into the office on Monday morning.

We will look at logging our Batch Processing later in this chapter. Logging the fact that a requested file does not exist would be much better than displaying a MessageBox and waiting for user input.

PROCESSING ALL FILES IN A FOLDER

When we have an ASCII file to tell us exactly which files to open, everything is clear. We know where the files are (or where they are supposed to be). Quite often, what we need to do, however, is open every design file in a specific folder.

There are several ways we can get all of the file names in a folder. We could use the Visual Basic Dir Function. Let’s try something different. For our example here, we will use the Microsoft Scripting Runtime Reference. After adding this reference, the following code executes:

Sub ProcessInFolderA()

Dim myFSO As New Scripting.FileSystemObject

Dim myFolder As Scripting.Folder

Dim myFile As Scripting.File

Dim RootFolder As String

RootFolder = "C:\MicroStation VBA\BatchProcessing"

Set myFolder = myFSO.GetFolder(RootFolder)

For Each myFile In my Folder.Files

Select Case UCase(myFile.Type)

Case "BENTLEY MICROSTATION DESIGN FILE"

Debug.Print myFile.Path

End Select

Next

End Sub

Each file in the RootFolder is examined. In this example we are looking at the "Type" of file. The file "Type" is associated with the file extension. We can see the Type of a file when looking at our files using Windows Explorer. Another way to find design files is to look at the file extension.

Sub ProcessInFolderB()

Dim myFSO As New Scripting.FileSystemObject

Dim myFolder As Scripting.Folder

Dim myFile As Scripting.File

Dim RootFolder As String

RootFolder = "C:\MicroStation VBA\BatchProcessing"

Set myFolder = myFSO.GetFolder(RootFolder)

For Each myFile In myFolder.Files

Select Case UCase(RighttmyFile.Name, 3))

Case "DGN"

Debug.Print myFile.Path

End Select

Next

End Sub

Instead of looking at the "Type", we are now looking at the last three letters in the file name. If we find a DGN file, we know we are looking at a MicroStation design file and we print it to the Immediate (Debug) window.

We are off to a good start. Instead of printing the Path of each DGN file in the RootFolder to the Debug window, we should open the file in MicroStation and ‘Process’ it. The procedure ProcessInFolderB works well as long as the files we want to process are in the folder "C:\MicroStation VBA\BatchProcessing". Of course, we wouldn’t want to change our code every time we need to process files in a different folder, now would we?

Sub ProcessInFolderC()

Dim myFSO As New Scripting.FileSystemObject

Dim myFolder As Scripting.Folder

Dim myFile As Scripting.File

Dim RootFolder As String

RootFolder = InputBox("Enter Root Folder:")

Set myFolder = myFSO.GetFolder(RootFolder)

For Each myFile In myFolder.Files

Select Case UCase(Right(myFile.Name, 3))

Case "DGN"

Debug.Print myFile.Path

End Select

Next

End Sub

This is a step in the right direction. We are using an InputBox to allow the user to type in the RootFolder path. It is a little tedious but gets us out of having hard-coded paths in our Procedure.

What would be great is allowing the user to browse for and select the RootFolder. But how can we do this? When we use VBA we have access to a wealth of resources at our finger tips. Let’s make use of one of these resources right now.

We have seen that adding References to DLLs and Libraries gives us instant access to powerful functionality. The Reference we want to add now is called "Microsoft Shell Controls and Automation". After we do this we can run the next Procedure:

Sub PickAFolder()

Dim myShell As New Shell32.Shell

Dim myRootFolden As Shell32.Folder3

Set myRootFolder = myShell.BnowseForFolder(0, "Pick", 0)

MsgBox myRootFolder.Self.Path

End Sub

[image: Image]

Can it be any easier? Add a simple reference and a few lines of code and users can select any folder on their computer or anywhere on their network. Let’s put it to work now in conjunction with our Batch Processing code.

[image: Image]

Sub ProcessInFolderD()

Dim myFSO As New Scripting.FileSystemObject

Dim myFolder As Scripting.Folder

Dim myFile As Scripting.File

Dim myShell As New Shell32.Shell

Dim myRootFolder As Shell32.Folder3

Set myRootFolder = myShell.BrowseForFolder(O, "Pick", 0)

Set myFolder = myFSO.GetFolder(myRootFolder.Self.Path)

For Each myFile In myFolder.Files

Select Case UCase(Right(myFile.Name, 3))

Case "DGN"

Debug.Print myFile.Path

End Select

Next

End Sub

Now, instead of asking the user to type in the Root Folder, the user selects the folder. Each DGN file in the selected folder displays in the Immediate Window.

PROCESSING ALL FILES IN A FOLDER AND SUBFOLDERS

We now want to allow the user to select a folder and ‘process’ all files in the selected folder as well as all files in the selected folder’s subfolders. Before we look into what is required to do this, we need to discuss a programming technique called "Recursive Execution".

Normally, one procedure or function calls another procedure or function. When a function or procedure calls itself, however, it is termed "recursive". Let’s take a look at an example that once again uses the "Microsoft Scripting Runtime" and "Microsoft Shell Controls and Automation" References.

Sub ProcessInFolderE()

Dim myFSO As New Scripting.FileSystemObject

Dim myFolder As Scripting.Folder

Dim myShell As New Shell32.Shell

Dim myRootFolder As Shell32.Folder3

Set myRootFolder = myShell.BrowseForFolder(0, "Pick", 0)

Set myFolder = myFSO.GetFolder(myRootFolder.Self.Path)

ProcessFilesAndSubs myFolder

End Sub

Sub ProcessFilesAndSubs(FolderIn As Scripting.Folder)

Dim my File As Scripting.File

Dim mySubFolder As Scripting.Folder

For Each myFile In FolderIn.Files

Select Case UCase(Right(myFile.Name, 3))

Case "DGN"

Debug.Print myFile.Path

End Select

Next

For Each mySubFolder In FolderIn.SubFolders

ProcessFilesAndSubs mySubFolder

Next

End Sub

ProcessInFolderE should look very familiar. We are allowing the user to select a folder. Once the folder is selected, we call the ProcessFilesAndSubs procedure, using the variable myFolder to supply the FolderIn parameter.

Now we are inside ProcessFilesAndSubs. After declaring a couple of variables, we examine each file in the "FolderIn" folder. If the right three characters of the file name are DGN, we print the file path to the Immediate Window (also called the Debug Window). After we finish looking at each of the files in the supplied folder, we begin looking at each of the subfolders in the supplied "FolderIn" folder. For each subfolder we find, we use it as the argument for the "FolderIn" parameter in ProcessFilesAndSubs, the procedure we are already in. This is what makes this procedure recursive. We are already in the procedure and we ask VBA to begin executing the procedure again. This time, we are using a different folder as the "FolderIn" parameter.

[image: Image]

Here is the output of this Procedure:

As you can see here, we began by processing the files in C:\MicroStationVBA\BatchProcessing. After this, we began looking at the subfolders of our Root Path. First we found "BatchA". We process the files in "BatchA" and then begin looking at the subfolders of "BatchA". Each time we find a subfolder we look at the files of that subfolder and then look for subfolders in that subfolder. It can sound a little confusing. We can see here that we found two subfolders named "BatchA-1" and "BatchA-2" under the path C:\MicroStation VBA\BatchProcessing.

The net result of using the code shown above in this manner is that every file in every subfolder as well as those in the root folder are identified. Once they are identified, they can be processed.

CREATING A USER INTERFACE FOR FILE SELECTION

We know how to read an ASCII file. We know how to process all files in a specific folder (and its subfolders). What happens if we only want to process specific files in a folder? We could make a modification to procedures already shown in this chapter to display a MessageBox asking if the user wants to process a file before doing so. Although this would give the user a little choice, the user would have to sit in front of the computer answering "Yes", "Yes", "No", "Yes", "No", "No". Choice? Yes. Batch Processing? Not really.

We are going to create a user interface that allows the user to select the files to be processed. After the files are selected, we will have a GO button that will begin the processing. Two ListBoxes will be in the GUI. One will display all files in the currently selected folder. The other will hold the files that have been selected for batch processing. We want the user to be able to choose which folder to select from. Buttons will be used to move "Selected" or "All" files from one ListBox to the other. We will also allow the user to double-click a file to move it from one ListBox to the other.

[image: Image]

Here is the code behind the interface.

Private Sub btnBrowse_Click()

Dim myFSO As New Scripting.FileSystemObject

Dim myFolder As Scripting.Folder

Dim myFile As Scripting.File

Dim myShell As New Shell32.Shell

Dim myRootFolder As Shell32.Folder3

Set myRootFolder = myShell.BrowseForFolder(0, "Pick", 0)

If myRootFolder Is Nothing Then Exit Sub

Set myFolder = myFSO.GetFolder(myRootFolder.Self.Path)

txtCurrentFolder.Text = myRootFolder.Self.Path

lstFilesInFolder.Clear

For Each myFile In my Folder.Files

Select Case UCase(Right(myFile.Name, 3))

Case "DGN"

If IsFileIn(myFile.Path, lstFilesToProcess) _ = False Then

lstFilesInFolder.AddItem myFile.Path

End If

End Select

Next

End Sub

Private Sub btnGo_Click()

Dim I As Long

For I = 1 To lstFilesToProcess.ListCount

Debug.Print lstFilesToProcess.List(I - 1)

Next I

End Sub

Private Sub btnIntoAll_Click()

Dim I As Long

For I = 1 To lstFilesInFolder.ListCount

lstFilesInFolder.Selected(I - 1) = True

Next I

MoveSelection lstFilesInFolder, lstFilesToProcess

End Sub

Private Sub btnOutAll_Click()

Dim I As Long

For I = 1 To lstFilesToProcess.ListCount

lstFilesToProcess.Selected(I - 1) = True

Next I

MoveSelection lstFilesToProcess, lstFilesInFolder

End Sub

Private Sub btnIntoSelected_Click()

MoveSelection lstFilesInFolder, lstFilesToProcess

End Sub

Private Sub btnOutSingle_Click()

MoveSelection lstFilesToProcess, lstFilesInFolder

End Sub

Private Sub lstFilesInFolder_DblClick(ByVal Cancel As _ MSForms.ReturnBoolean)

MoveSelection lstFilesInFolder, lstFilesToProcess

End Sub

Private Sub lstFilesToProcess_DblClick(ByVal Cancel As _

MSForms.ReturnBoolean)

MoveSelection lstFilesToProcess, lstFilesInFolder

End Sub

Function IsFileIn(FilePath As String, ListToCheck As ListBox) As Boolean

Dim I As Long

IsFileIn = False

For I = 1 To ListToCheck.ListCount

If StrComp(ListToCheck.List(I - 1), FilePath) = 0 Then

IsFileIn = True

Exit Function

End If

Next I

End Function

Function MoveSelection(ListBoxFrom As ListBox, ListBoxTo As ListBox)

Dim I As Long

For I = 1 To ListBoxFrom.ListCount

If ListBoxFrom.Selected(I - 1) = True Then

If IsFileIn(ListBoxFrom.List(I - 1), ListBoxTo) _ = False Then

ListBoxTo.AddItem ListBoxFrom.List(I - 1)

Else

End If

End If

Next I

For I = ListBoxFrom.ListCount To 1 Step -1

If ListBoxFrom.Selected(I - 1) = True Then

ListBoxFrom.RemoveItem I - 1

End If

Next I

End Function

[image: Image]

A few items worthy of mention that may not be apparent at first glance:

[image: Image] We set the MultiSelect property of the ListBoxes to ‘Extended’ so more than one item can be selected and the user can use the <Control> and <Shift> keys to aid in the selection of items in the list.

[image: Image] To simplify the design process and reduce the potential for bugs, only one Procedure, "MoveSelection" is used to move items from one ListBox to the other. Each of the buttons calls this same Procedure, even the Double-Click events of the ListBoxes

[image: Image] Clicking the GO button simply prints the files in the Process ListBox to the Immediate Window. The reader can insert whatever code will process the files.

[image: Image] Although not in this project, the addition of a few lines of code allows the user to select a CheckBox specifying to "Search Sub-Folders" as well as the selected folder.

[image: Image] The "Current Folder" TextBox is ‘Locked'. This allows the user to select and copy the path from the TextBox to the Windows Clipboard but the user cannot type into the TextBox. This is helpful because we can be sure that the path in the TextBox actually exists because it is being selected by the user, not typed in on the keyboard.

LOGGING FILE BATCH PROCESSING

Log files are nothing new. They tell us what has been done, what hasn’t been done, what is being done, and what is about to be done.

Here are some of the ways we can track our Processing Activities:

[image: Image] Using a ‘Log File'; for example, an ASCII file with a "log" file extension.

[image: Image] Track Processing Activities in a Database.

[image: Image] Store Processing Information in the Registry.

[image: Image] ‘Log’ activities over the Internet.

[image: Image] E-mail Transaction Logs to various recipients.

Using a Log File

Using a Log File is perhaps the easiest method of logging activities. Some of the benefits of using a Log File are:

[image: Image] .log files are easily found and read by using Notepad.

[image: Image] .log files can reside on the local computer or on the network.

[image: Image] .log files can be backed up with other resources.

[image: Image] .log files are not dependent on other resources such as Internet connectivity.

[image: Image] .log files can be used so batch processing programs can ‘recover’ in case of power outages, file corruption, etc.

There are a few questions we need to answer when working with .log files. First of all, where will the file be located? It could be in a fixed hard-coded folder such as C:\Log Files. It could be located in the same path as the .mvba file. It could be located on a network share such as Z:\Batch Processing\Log Files.

Saving files to the same folder where the .mvba file is located is very useful. If we are running a macro, we know an .mvba file exists. If the .mvba file has been saved, it has an actual path. If we can find that path, we can write a .log file to the path and we can easily find it.

Sub TestLogFile()

WriteToLog "Opening C:\test.dgn"

End Sub

Sub WriteToLog(LogFileText As String)

Dim myVBE As Object

Dim xSplit As Variant

Dim FFile As Long

Set myVBE = Application.VBE

xSplit = Split(myVBE.ActiveVBProject.Filename, "\")

xSplit(UBound(xSplit)) = "BatchProcess.log"

FFile = FreeFile

Open Join(xSplit, "\") For Append As #FFile

Print #FFile, LogFileText

Close #FFile

End Sub

What happens when we have multiple users working from the same .mvba file? Yes, the log file will be appended to but we could have a problem if one computer attempts to open it when it is already opened by another computer or user.

Let’s look at an example that creates a unique .log file for each computer name. This makes use of a Windows API function named GetComputerName.

'General Declarations Area

Public Declare Function GetComputerName Lib "kernel32" Alias _

"GetComputerNameA" (ByVal lpBuffer As String, _

nSize As Long) As Long

Sub TestLogFileB()

WriteToLogB "Opening C:\test.dgn"

End Sub

Sub WriteToLogB(LogFileText As String)

Dim myVBE As Object

Dim xSplit As Variant

Dim FFile As Long

Set myVBE = Application.VBE

xSplit = Split(myVBE.ActiveVBProject.Filename, "\")

xSplit(UBound(xSplit)) = "BatchProcess_" & ThisComputerName & ".log"

FFile = FreeFile

Open Join(xSplit, "\") For Append As #FFile

Print #FFile, LogFileText

Close #FFile

End Sub

Function ThisComputerName() As String

ThisComputerName = Space(255)

GetComputerName ThisComputerName, Len(ThisComputerName)

ThisComputerName = Left(ThisComputerName, InStr(1, _ ThisComputerName, Chr(0)) - 1)

End Function

Now, each computer running this code has its own BatchProcess .log file. We could base the log file on the "UserName" that is logged into the computer but this could cause problems because we may log onto multiple computers using the same "UserName" that has been established specifically for Batch Processing. It is more likely that the Computer Name on the Network will be unique from machine to machine rather than the user logged into each computer.

Tracking Activities with a Database

Tracking activities with a database can be extremely useful. Databases can be queried easily for information. Reports can be made from databases. An .asp file can be created and run from a web browser to provide real-time tracking of batch processing. The benefits are numerous.

We will be jumping into databases later in this book so we will not provide any examples right now. Let’s keep logging activities in mind, though, when we get into databases.

Storing Information in the Registry

The Windows Registry has become a common storage medium for all sorts of information. Whenever we see a "Recently Opened File" list it is likely stored in the Registry. Software serial numbers, installation dates, installation locations, and file associations are among some of the other things we will find there. Although we don’t want to add great volumes of information to the Registry, we can add some logging information such as "CurrentFile" and "LastFile".

Sub WriteToRegistry()

SaveSetting "MicroStation VBA", "Batch Processing", _ "LastFile", "C:\FileA.dgn"

SaveSetting "MicroStation VBA", "Batch Processing", _ "CurrentFile", "C:\FileB.dgn"

End Sub

[image: Image]

Writing information to the Registry is simple. Reading information from the Registry is just as simple.

Sub ReadFromRegistry()

Dim LastFile As String

Dim CurrentFile As String

LastFile = GetSetting("MicroStation VBA", _ "Batch Processing", "LastFile")

CurrentFile = GetSetting("MicroStation VBA", _ "Batch Processing", "CurrentFile")

Debug.Print LastFile

Debug.Print CurrentFile

End Sub

Logging Activities over the Internet

The Internet is used for all sorts of activities. Normally we use it to get information. It can also be used to transmit information. For example, if we open a web browser to

http://www.google.com/search?q=MicroStation

Google returns thousands upon thousands of pages related to MicroStation.

If, however, we entered

http://www.microstationlogging.com?filename=filea.dgn

this fictitious web site could log the file, the date/time, the IP Address, etc. But we don’t want the user to have to type in the URL every time a file is processed. Right? Let’s have our software send the request.

It is time for another Reference.

"Microsoft Internet Controls"

Sub LogToWeb()

Dim Local File As String

Dim myInet As New InternetExplorer

Local File = "filea.dwg"

myInet.Navigate

"http://www.microstationlogging.com?filename=" & _

Local File

While myInet.Busy

DoEvents

Wend

End Sub

The code consists of only a few lines. LogToWeb navigates to the specified URL, in this case, the fictitious website, www.microstationlogging.com. If this were a real website, and if the default page at that web site received the parameter "filename", it could log the file name sent to it into a database on the web server.

Logging information to the Web has its advantages. For one, it doesn’t matter where in the world the individual who is running the program is. If the computer is connected to the Internet, it can have its activities logged. Web servers are specifically designed for high traffic, high volume situations so we could have hundreds or even thousands of people using this site to log their activities without causing any problems. Others may hit the site to see real-time statistics as to what is happening, who is working and who isn't, average time per file, etc. The sky’s the limit. And it is all possible by making a simple Reference in VBA and then navigating to a specific URL.

This same technique can be used to get information from a website. Although this is not a chapter on Internet Technologies, a small example won’t hurt.

Sub GetFromWeb()

Dim I As Long

Dim Local File As String

Dim myInet As New InternetExplorer

Dim TheURL As String

Dim xSplitA As Variant

Dim xSplitB As Variant

Dim xSplitC As Variant

Dim xSplitD As Variant

Dim TrainingDate As Date

Dim TrainingLocation As String

Dim TrainingCost As String

Dim MsgBoxText As String

TheURL = "http://bentleyinstitute.bentley.com/" & _ "courseinfo.aspx?course=TRC001810-1/0001"

myInet.Navigate TheURL

While myInet.ReadyState <> READYSTATE_COMPLETE

DoEvents

Wend

xSplitA = Split(myInet.Document.body.innerHTML, "InPersonLabClasses")

xSplitB = Split(xSplitA(1), "<TR ")

For I = LBound(xSplitB) To UBound(xSplitB)

xSplitC = Split(xSplitB(1) , "<TD>")

If IsArray(xSplitC) = True Then

If UBound(xSplitC) >= 3 Then

xSplitD = Split(xSplitC(1), "<")

TrainingDate = CDate(Replace(xSplitD(0), ".", "/"))

xSplitD = Split(xSplitC(2), "<")

TrainingLocation = xSplitD(0)

xSplitD = Split(xSplitC(3), "<")

TrainingCost = xSplitD(0)

MsgBoxText = MsgBoxText & TrainingDate & vbTab & _ TrainingCost & vbTab & TrainingLocation & vbCr

End If

End If

Next I

MsgBox MsgBoxText, vbInformation, "MicroStation VBA Training"

End Sub

The Bentley Institute sponsors VBA Training from time to time. We can find training dates, locations, and costs on their web site. This macro is designed to display this information in a MessageBox.

[image: Image]

As the time of this writing, three classes are scheduled. Their dates, costs, and locations are shown here in this MessageBox. The code is designed to find specific HTML tags and annotation to ‘drill down’ to the information we want. The HTML for this page may change in the future, but this shows how easy it is to create our own information gathering tools using VBA.

E-mailing Transaction Logs

E-mail. It seems as though we can’t get away from it. At one time it was restricted to our computers at work or at home. Now it follows us around on PDAs, cell phones, and Blackberry devices. So, can we make use of this technology using VBA? Of course we can, with one string attached. This string, of course, is a Reference.

[image: Image]

If the Reference does not show up in the list, clicking the Browse button and browsing to C:\Windows\system32\cdosys.dll does the trick.

CDO. What does it stand for? Collaborative Data Objects. In plain English, e-mail.

Sub TestEmail()

Dim myMai1 As New CDO.Message

myMail.To = "batch@microstationlogging.com"

myMail.From = "batch@microstationlogging.com"

myMail.Subject = "MicroStation VBA Batch Process Log"

myMail.HTMLBody = "Fi1e name: fi1ea.dgn
" & _ "Computer :" & ThisComputerName & "
" & _ "Date : 1/1/2005"

myMail.Configuration.Fields.Item("http://schemas.microsoft.com/" & _ "cdo/configuration/sendusing") = 2

myMail.Configuration.Fields.Item("http://schemas.microsoft.com/" & _ "cdo/configuration/smtpserver") = _ "yoursmtpserver.com "

myMail.Configuration.Fields.Item("http://schemas.microsoft.com/" & _ "cdo/configuration/smtpserverport") = 25

myMail.Configuration.Fie1ds.Update

myMail.Send

End Sub

That’s about as difficult as it gets. With the right reference and a little bit of code, our program is now capable of e-mailing batch processing information to an e-mail address. In order for this code to work correctly, the "To" property should be set to a legitimate e-mail address and the SMTPServer Field should be set to a legitimate SMTP server.

And how difficult is it to attach a file to this e-mail?

Sub TestEmail2 ()

Dim myMai1 As New CDO.Message

myMail.To = "batch@microstation1ogging.com "

myMai1.From = "batch@microstation1ogging.com"

myMai1.Subject = "MicroStation VBA Batch Process Log"

myMail.HTMLBody = "Fi1e name: fi1ea.dgn
 " & _ "Computer: " & ThisComputerName & "
" & _ "Date : 1/1/2005"

myMail.Configuration.Fields.ltem("http://schemas.microsoft.com/" & _ "cdo/configuration/sendusing") = 2

myMail.Configuration.Fields.Item("http://schemas.microsoft.com/" & _ "cdo/configuration/smtpserver ") = _ "yoursmtpserver.com"

myMail.Configuration.Fields.Item("http://schemas.microsoft.com/" & _ "cdo/configuration/smtpserverport ") = 25

myMail.Configuration.Fields.Update

myMail.AddAttachment "C:\test.dgn"

myMail.Send

End Sub

One line of code. AddAttachment. That’s it.

REVIEW

The task of Batch Processing is accomplished relatively easily. We need to know which files we want to process. This can be discovered by using an ASCII file, having the user select a folder to process, or selecting individual files within a folder. Next, we need to do the processing of the files. Along the way, we can Log our activities through a variety of methods.

Once our code is in place, it matters very little whether we need to process 5 files or 5,000 files. Our productivity and accuracy can increase exponentially compared to manually opening each file one by one.

[image: Image]

31The Standards Checker

The Standards Checker helps us to keep our files in line with established standards. Using this functionality as it is installed with MicroStation can do a fairly good job performing basic standards checking. Add the power and flexibility of VBA and nothing can hold us down.

Before we take any more time on the Standards Checker we should note that unhandled errors that occur in our Standards Checker routines can cause severe errors. Some may even shut down MicroStation completely. So, we need to take care when working with Standards Checker code. We should make sure we save our VBA Projects often and verify that any DGN files open in MicroStation are also saved.

In this Chapter:

[image: Image] Basics of implementing the Standards Checker

[image: Image] Standards Checker Settings

[image: Image] Checking for Standards

[image: Image] Standards Checker Reporting

[image: Image] Automatically Loading Custom Standards Checker Add-Ins

BASICS OF IMPLEMENTING THE STANDARDS CHECKER

The Standards Checker is implemented by using the IStandardsChecker Interface. As with other Interfaces we have implemented, a Class Module is used and our code is written within the bounds of Events.

'General Declarations

Implements IStandardsChecker

Private Sub IStandardsChecker_AddedCheckerToStandardsCheckerApps(_

ByVal ApplicationXMLNode As Object)

End Sub

Private Property Get IStandardsChecker_CallForEachModel() As Boolean

End Property

Private Sub IStandardsChecker_CreateSettings()

End Sub

Private Sub IStandardsChecker_DeleteSettings()

End Sub

Private Property Get IStandardsChecker_Description() As String

End Property

Private Property Get IStandardsChecker_DialogString() As String

End Property

Private Sub IStandardsChecker_EditSettings(ByVal_IsReadOnly As Boolean)

End Sub

Private Property Get IStandardsChecker_FoundSettings() As Boolean

End Property

Private Sub IStandardsChecker_GetFixDetail(Fixes() As String, _

ByVal SelectedFix As Long, FixPropertiesLabel As String, _

FixPropertiest) As String)

End Sub

Private Property Get IStandardsChecker_HasSettings() As Boolean

End Property

Private Property Get IStandardsChecker_IdentityString() As String

End Property

Private Sub IStandardsChecker_RunCheck(ByVal _

ModelToCheck As Model Reference, _

ByVal FirstModel As Boolean, ByVal Options As Long)

End Sub

Private Property Get IStandardsChecker_VersionString() As String

End Property

Six events and seven properties are implemented. As the user begins the Standards Checker by selecting Utilities > Standards Checker > Check, the properties in our Class Module are used in the Standards Checker user interface. Let’s implement a Standards Checker that does nothing other than implementing the most basic properties and uses Debug.Print statements so we can see the order in which the events take place.

Standards Check A

The following code is placed in a Class Module named clsStandCheckA.

Option Explicit

Implements IStandardsChecker

Private Sub IStandardsChecker_AddedCheckerToStandardsCheckerApps(_ ByVal ApplicationXMLNode As Object)

Debug.Print "AddedCheckerToStandardsCheckerApps"

End Sub

Private Property Get IStandardsChecker_CallForEachModel() As Boolean

Debug.Print "CallForEachModel"

IStandardsChecker_CallForEachModel = True

End Property

Private Sub IStandardsChecker_CreateSettings()

Debug.Print "CreateSettings"

End Sub

Private Sub IStandardsChecker_DeleteSettings()

Debug.Print "DeleteSettings"

End Sub

Private Property Get IStandardsChecker_Description() As String

Debug.Print "Description"

IStandardsChecker_Description = "VBA StandChk A Desc"

End Property

Private Property Get IStandardsChecker_DialogString() As String

Debug.Print "DialogString"

IStandardsChecker_DialogString = "VBA StandChk A Dial"

End Property

Private Sub IStandardsChecker_EditSettings(ByVal IsReadOnly As Boolean)

Debug.Print "EditSettings"

End Sub

Private Property Get IStandardsChecker_FoundSettings() As Boolean

Debug.Print "FoundSettings"

End Property

Private Sub IStandardsChecker_GetFixDetail(Fixes() As String,_

ByVal SelectedFix As Long, _

FixPropertiesLabel As String, _

FixProperties() As String)

Debug.Print "GetFixDetail"

End Sub

Private Property Get IStandardsChecker_HasSettings() As Boolean

Debug.Print "HasSettings"

IStandardsChecker_HasSettings = True

End Property

Private Property Get IStandardsChecker_IdentityString() As String

Debug.Print " IdentityString"

IStandardsChecker_IdentityString = "VBA_SC_A"

End Property

Private Sub IStandardsChecker_RunCheck(ByVal_

ModelToCheck As ModelReference,_

ByVal FirstModel As Boolean, _

ByVal Options As Long)

Debug.Print " IdentityString"

End Sub

Private Property Get IStandardsChecker_VersionString() As String

Debug.Print "VersionString"

IStandardsChecker_VersionString = "1.0.0.0"

End Property

Now we need to write some code that will add the above Class Module to the Standards Checker in MicroStation. This code is located in a Code Module.

Option Explicit

Private StandChk As clsStandCheckA

Sub AddChecker()

RemoveChecker

Set StandChk = New clsStandCheckA

StandardsCheckerController.AddStandardsChecker StandChk, 1000

End Sub

Sub RemoveChecker()

If Not StandChk Is Nothing Then

StandardsCheckerController.RemoveStandardsChecker StandChk

End If

Set StandChk = Nothing

End Sub

When we run AddChecker, the Class Module is instantiated and it is added to MicroStation’s Standard Checker dialog box.

[image: Image]

When we run the Standards Checker, we can see how the properties returned in the Class Module are used. In this view we can see "VBA StandChk A Dial" which comes from the DialogString property. Prior to creating the Class Module, the "VBA Check A" Setting in the Standards Checker Settings Configuration dialog box was created.

We can select the "VBA StandChk A Dial" CheckBox and can click the Settings button. When we do so, events are triggered and their associated Debug.Print statements are executed.

At this point we are able to get our own Standards Checker into the Standards Checker dialog. A good start. But nothing to write home about. Before we continue let’s talk about the entire Standards Checker process.

1 A Class Module is created that implements the IStandardsChecker Interface.

2 A Procedure declares a variable as the Class Module and then adds it using AddStandardsChecker.

3 When the user clicks Utilities > Standards Checker > Configure, the Events and Properties are triggered in the following sequence:

IdentityString

DialogString

HasSettings

CallForEachModel

FoundSettings

IdentityString

DialogString

The next dialog we see will vary based on the HasSettings property. If we return a value of True in this property, we see a Settings button.

4 After Settings are made, we can select our new custom Standards Checker Add-in.

[image: Image]

If, however, the HasSettings property returns a value of False, we do not get a Settings button and the Standards Checker we created is enabled and ready to be selected.

[image: Image]

5 If available, the user clicks the Settings button.

6 The EditSettings event is triggered with a "IsReadOnly" parameter value of False. When we are given a value of False we know that we should allow the user to change the settings for our Standards Checker. At this point we can display a dialog box that allows the user to select various settings for our Standards Checker.

7 After the EditSettings event exits execution, the Standards Checker we created is enabled and can be selected.

8 Each time the Standards Checker we created is selected or deselected, the IdentityString Property is retrieved.

9 When the user clicks the OK button, the Standards Checker we created is selected.

Let’s implement a Settings dialog box now. In order for a Settings dialog box to display, we need to have the following code in our StandardsChecker class module:

Private Property Get IStandardsChecker_HasSettings() As Boolean

Debug.Print "HasSettings"

IStandardsChecker_HasSettings = True

End Property

Private Sub IStandardsChecker_EditSettings(ByVal IsReadOnly As Boolean)

Debug.Print "EditSettings"

UserForm1.Show

End Sub

Of course, the Debug.Print statements are only here to help us see the order in which the events are triggered. The important things are to set the IStandardsChecker_HasSettings to True and to display a UserForm in the EditSettings event. At this point, we are ignoring the IsReadOnly parameter of the EditSettings event.

So, what settings are we going to allow the user to set? By default, MicroStation has settings for Levels, Text Styles, Dimension Styles, Element Templates, and Line Styles. What else is there to check?

STANDARDS CHECKER SETTINGS

Standards Checker Interfaces can make use of 'Settings'.

Private Property Get IStandardsChecker_HasSettings() As Boolean

IStandardsChecker_HasSettings = True

End Property

If the HasSettings property is True, the Settings button displays in the Standards Checker Settings dialog box (Utilities > Standards Checker > Configure). When the Settings button is clicked, the EditSettings event is triggered.

Private Sub IStandardsChecker_EditSettings(ByVal IsReadOnly As Boolean)

UserForm1.Show

End Sub

OK. Now when the Settings button is clicked we display a UserForm named "UserForm1". Let’s design a Graphical User Interface that resembles the one shown here:

[image: Image]

This example is going to allow for the entry and storing of settings relating to Room Labels in a design file. We need to allow the selection of the following properties:

[image: Image] Room Labels are Written in a File

[image: Image] The File Contains only Legitimate Room Labels

[image: Image] The Path of the File

[image: Image] Should the Standards Checker 'Fix' the Errors it encounters?

The interface is fairly simple and straight forward. Entering the data is the easy part. How will we 'store' the settings that are made? We have several options:

[image: Image] Save the settings in an ASCII text file.

[image: Image] Save the settings in the design file so settings are unique to each design file.

[image: Image] Save the settings in the Windows Registry.

[image: Image] Save the settings as XML in the Settings dgnlib file.

We will examine one way we can save Standards Checker settings. Our example here will deal with storing values in the Windows Registry. Another method of storing Standards Checker (storing settings in XML format in a .dgnlib file) settings can be found in the MicroStation VBA Help file.

In this example we will save our settings in the Windows Registry. Here is the code behind the GUI:

Private Sub UserForm_Initialize()

chkLabelsWritten.Value = _

GetSetting("VBA Standards Checker", "Settings", "Labels Written", _ False)

chkCleanFile.Value = _

GetSetting("VBA Standards Checker", "Settings", "Clean File", False)

chkFixErrors.Value = _

GetSetting("VBA Standards Checker", "Settings", "Fix Errors", False)

txtFilePath.Text = _

GetSetting("VBA Standards Checker", "Settings". "File Path", _ "C:\MicroStation VBA\Labels.txt")

End Sub

Private Sub btnOK_Click()

If txtFilePath.Text = " " Then

MsgBox "A file path must be entered."

Exit Sub

End If

SaveSetting "VBA Standards Checker", "Settings", _

"Labels Written", chkLabelsWritten.Value

SaveSetting "VBA Standards Checker", "Settings", _

"Clean File", chkCleanFile.Value

SaveSetting "VBA Standards Checker", "Settings", _

"Fix Errors", chkFixErrors.Value

SaveSetting "VBA Standards Checker", "Settings", _

"File Path", txtFilePath.Text

Unload Me

End Sub

Private Sub btnCancel_Click()

Unload Me

End Sub

When the Settings Form is initialized, we look at the Windows Registry by using the standard VBA call GetSetting and providing a default value. The default value is important because the first time this Settings Form displays, the Registry will not have the 'Settings' information we need.

When the user clicks the OK button, we save the properties of the CheckBoxes and the TextBox in the Registry using the SaveSetting call. After the values are saved in the Registry, we unload the Form.

If the Cancel button is clicked, we unload the Form without saving values to the Registry.

CHECKING FOR STANDARDS

Where we are at this point

At this point, we can add a custom Standards Checker that displays in the Standards Checker dialog boxes. We can also display and save settings made when the Settings button is clicked in the Standards Checker Settings dialog box.

So, how do we actually 'Check' our document when we are ready to do so? The first thing we need in place is a file to check. Let’s open the file BSI300AE101-Plan.dgn. It is installed with MicroStation.

Now we are ready to check this file.

We are going to look at a procedure that checks for, reports, and fixes (when set to do so) situations relating to the Room Label Tags in the file BSI300AE101-Plan.dgn. It is named "RoomLabelChecks" and it is divided into seven segments:

[image: Image] Declare Variables

[image: Image] Read All Room Label Tags in Drawing

[image: Image] Get Settings From Registry

[image: Image] Read Room Label File

[image: Image] Check for File’s Existence

[image: Image] Check for Tags in File

[image: Image] Check to make sure Labels in the File have Tags in the DGN file

Each 'segment' in this procedure is proceeded by a comment matching the bulleted items above. We 'check' our file by making use of the RunCheck event in the IStandardsChecker Interface.

Private Sub IStandardsChecker_RunCheck(ByVal_

ModelToCheck As ModelReference, _

ByVal FirstModel As Boolean, _

ByVal Options As Long)

RoomLabelChecks ModelToCheck

End Sub

And now for the procedure "RoomLabelChecks":

Sub RoomLabelChecks(ModelToScan As Model Reference)

'Declare Variables

Dim myElementEnum As ElementEnumerator

Dim myScanCriteria As New ElementScanCriteria

Dim myTags() As String

ReDim myTags(0) As String

Dim myTagsFilter() As String

Dim RoomTag As TagElement

Dim I As Long

Dim AutoFix As Boolean

Dim LabelsInFile As Boolean

Dim LegitimateLabels As Boolean

Dim myFileRooms() As String

ReDim myFileRooms(0) As String

Dim FFile As Long

Dim FileName As String

Dim LineIn As String

'Read All Room Label Tags in Drawing

myScanCriteria.ExcludeAllTypes

myScanCriteria.IncludeType msdElementTypeTag

Set my ElementEnum = ModelToScan.Scan(myScanCriteria)

While myElementEnum.MoveNext

Set RoomTag = myElementEnum.Current

Select Case UCase(RoomTag.TagDefinitionName)

Case "ROOM LABEL"

myTagsFilter = Filter(myTags , RoomTag.Value, True. _ vbBinaryCompare)

If UBound(myTagsFilter) = -1 Then

myTags(UBound(myTags)) = RoomTag.Value

ReDim Preserve myTags(UBound(myTags) + 1)

End If

End Select

Wend

' *********

If UBound(myTags) >= 1 Then

ReDim Preserve myTags(UBound(myTags) - 1)

End If

'Get Settings from Registry

FileName = GetSetting("VESA Standards Checker", "Settings", _ "File Path", _ "C:\MicroStation VBA\Labels.txt")

AutoFix = GetSetting("VBA Standards Checker", "Settings", _ "Fix Errors", _ "False")

LabelsInFile = GetSetting("VBA Standards Checker", _ "Settings",_ "Labels Written", "False")

LegitimateLabels = GetSetting("VBA Standards Checker", _ "Settings", _ "Clean File", "False")

'Read Room Label File

FFile = FreeFile

If Dir(FileName) <> "" Then

Open FileName For Input As #FFile

While EOF(FFile) = False

Line Input #FFile, myFileRooms(UBoundtmyFileRooms))

ReDim Preserve myFileRooms(UBoundtmyFileRooms) + 1)

Wend

If UBound(myFileRooms) >= 1 Then

ReDim Preserve myFileRooms(UBoundtmyFileRooms) - 1)

End If

Close #FFile

End If

'Check for File’s Existence

If Dir(FileName) = "" Then

Debug.Print "The File " & FileName & " does not exist."

If AutoFix = True Then

Open FileName For Output As #FFile

For I = LBound(myTags) To UBound(myTags)

Print #FFile, myTags(I)

Next I

Close #FFile

Debug.Print "The File " & FileName & _ " has been created ."

End If

End If

'Check for Tags in File

If LabelsInFile = True Then

For I = LBound(myTags) To UBound(myTags)

myTagsFilter = Filter(myFileRooms, myTags(I), True, _ vbBinaryCompare)

If UBound(myTagsFilter) = -1 Then

Debug.Print "Tag " & myTags(I) & _

" not found in file."

If AutoFix = True Then

Open FileName For Append As #FFile

Print #FFile, myTags(I)

Debug.Print "Label " & myTags(I) & _ " added to File."

Close #FFile

End If

End If

Next I

End If

'Check to make sure Labels in the File have

'Tags in the DGN file

If LegitimateLabels = True Then

If Dir(FileName) = "" Then

Debug.Print "File " & FileName & " does not exist."

Else

For I = LBound(myFileRooms) To UBound(myFileRooms)

myTagsFilter = Filter(myTags, myFileRooms(I), _ True, _

vbBinaryCompare)

If UBound(myTagsFilter) = -1 Then

Debug.Print "File Room " & _

myFileRooms(I) & _ " is not in the DGN File."

End If

Next I

End If

End If

End Sub

The Procedure is rather lengthy. Let’s discuss each segment now.

1 Declare Variables.

This section is fairly self-explanatory. We use a couple of dynamic arrays because before the code is executed, we do not know how many Room Labels we will find in the drawing or in the file.

2 Read All Room Label Tags in Drawing.

We create a ScanCriteria filtering on Tags. We then look to see which Tags in the drawing are "Room Labels". When we find one, we assign it to the last element in the dynamic array myTags and then increase the size of the array, preserving the existing values.

3 Get Settings From Registry.

Placing the Standards Checker Settings into variables means we only need to read them once and our code is easier to read than having multiple GetSetting calls for the same Registry entry.

4 Read Room Label File.

We specify a file name in the Settings dialog box. This file is to contain all Room Label values in our DGN file. If the file exists, we read the file, placing each line of the file into its own element in a dynamic array.

5 Check for File’s Existence.

If the file in which we are placing Room Label values does not exist, we create it and populate it if the "Automatically Fix Errors" setting is True.

6 Check for Tags in File.

We look at each Room Label Tag found in the drawing file and check for its presence in the file. If the Room Label Tag is not found in the file, we add it to the file (if AutoFix is True) and report the 'error' to the Debug (Immediate) Window.

7 Check to make sure Labels in the File have Tags in the DGN file.

It is possible that the ASCII File we are looking at has Room Label values in it that are not in the drawing. This could be due to data entry errors or may be the result of having deleted a Room Label from the drawing. In either case, if we find a Room Label in the ASCII file that does not have an associated Room Label value in the drawing, we 'report' the problem by printing to the Immediate Window.

STANDARDS CHECKER REPORTING

Let’s expand our Standards Checker now and use some of the built-in error reporting functionality. We are going to add a custom Enumeration in the General Declarations area of the Class Module and one Procedure to the body of the Class Module. All code changes are shown in bold.

We will use the enumeration "ErrorType" to help describe the nature of the Error we are reporting. As we see here, we have seven elements in the enumeration.

Private Enum ErrorType

NoError = 0

NotInFile = 1

NotInDGN = 2

FixedNotInFile = 11

FixedNotInDGN = 12

NotFixedNotInFile = 21

NotFixedNotInDGN = 22

End Enum

When we find something we want to 'report', we use the Procedure ReportError. We specify which type of error we encountered as well as the Room Number that was not found, corrected, or not corrected.

Private Sub ReportError(Error As ErrorType, RoomNumber As String)

Dim mySCC As StandardsCheckerController

Set mySCC = StandardsCheckerController

Select Case Error

Case ErrorType.NotInDGN

mySCC.TotalProblems = mySCC.TotalProblems + 1

Case ErrorType.NotInFile

mySCC.TotalProblems = mySCC.TotalProblems + 1

Case ErrorType.FixedNotInDGN

mySCC.FixedProblems = mySCC.FixedProblems + 1

Case ErrorType.FixedNotInFile

mySCC.FixedProblems = mySCC.FixedProblems + 1

Case ErrorType.NotFixedNotInDGN

mySCC.IgnoredProblems = mySCC.IgnoredProblems + 1

Case ErrorType.NotFixedNotInFile

mySCC.IgnoredProblems = mySCC.IgnoredProblems + 1

End Select

End Sub

The only thing we are doing differently in RoomLabelChecks is that we are using the ReportError procedure when we encounter an ‘error’ or when we ‘fix’ the ‘error’.

Sub RoomLabelChecks(ModelToScan As Model Reference)

'Declare Variables

Dim myElementEnum As ElementEnumerator

Dim myScanCriteria As New ElementScanCriteria

Dim myTags() As String

ReDim myTags(0) As String

Dim myTagsFilter() As String

Dim RoomTag As TagElement

Dim I As Long

Dim AutoFix As Boolean

Dim Label sInFile As Boolean

Dim LegitimateLabels As Boolean

Dim myFileRooms() As String

ReDim myFileRooms(0) As String

Dim FFile As Long

Dim FileName As String

Dim LineIn As String

'Read All Room Label Tags in Drawing

myScanCriteria.ExcludeAllTypes

myScanCriteria.IncludeType msdElementTypeTag

Set myElementEnum = ModelToScan.Scan(myScanCriteria)

While myElementEnum.MoveNext

Set RoomTag = myElementEnum.Current

Select Case UCase(RoomTag.TagDefinitionName)

Case "ROOM LABEL"

myTagsFilter = Filter(myTags, RoomTag.Value, True, _

vbBinaryCompare)

If UBound(myTagsFilter) = -1 Then

myTags(UBound(myTags)) = RoomTag.Value

ReDim Preserve myTags(UBound(myTags) + 1)

End If

End Select

Wend

If UBound(myTags) >= 1 Then

ReDim Preserve myTags(UBound(myTags) - 1)

End If

'Get Settings from Registry

FileName = GetSetting("VBA Standards Checker", "Settings", _ "File Path",_ "C:\MicroStation VBA\Labels.txt")

AutoFix = GetSetting("VBA Standards Checker", "Settings", _ "Fix Errors", "False")

LabelsInFile = GetSetting("VBA Standards Checker", _ "Settings", "Labels Written", "False")

LegitimateLabels = GetSetting("VBA Standards Checker", _ "Settings", "Clean File", "False")

'Read Room Label File

FFile = FreeFile

If Dir(FileName) <> "" Then

Open FileName For Input As #FFile

While EOF(FFile) = False

Line Input #FFile, myFileRooms(UBound(myFileRooms))

ReDim Preserve myFileRooms(UBound(myFileRooms) + 1)

Wend

If UBound(myFileRooms) >= 1 Then

ReDim Preserve myFileRooms(UBound(myFileRooms) - 1)

End If

Close #FFile

End If

'Check for File’s Existence

If Dir(FileName) = "" Then

Debug.Print "The File " & FileName & " does not exist."

If AutoFix = True Then

Open FileName For Output As #FFile

For I = LBound(myTags) To UBound(myTags)

Print #FFile, myTags(I)

Next I

Close #FFile

Debug.Print "The File " & FileName & _ " has been created."

End If

End If

'Check for Tags in File

If LabelsInFile = True Then

For I = LBound(myTags) To UBound(myTags)

myTagsFilter = Filter(myFileRooms, myTags(I), True, _ vbBinaryCompare)

If UBound(myTagsFilter) = -1 Then

ReportError NotInFile, myTags(I)

Debug.Print "Tag " & myTags(I) & " not found in file."

If AutoFix = True Then

ReportError FixedNotInFile, myTags(I)

Open FileName For Append As #FFile

Print #FFile, myTags(I)

Debug.Print "Label " & myTags(I) & _ " added to File."

Close #FFile

Else

ReportError NotFixedNotInFile, myTags(I)

End If

End If

Next I

End If

'Check to make sure Labels in the File have

'Tags in the DGN file

If LegitimateLabels = True Then

If Dir(FileName) = "" Then

Debug.Print "File " & FileName & " does not exist."

Else

For I = LBound(myFileRooms) To UBound(myFileRooms)

myTagsFilter = Filter(myTags , myFileRooms(I), True, _ vbBinaryCompare)

If UBound(myTagsFilter) = -1 Then

ReportError NotInDGN, myFileRooms(I)

ReportError NotFixedNotInDGN, myFileRooms(I)

Debug.Print "File Room " & myFileRooms(I) & _ " is not in the DGN File."

End If

Next I

End If

End If

End Sub

So, we have added a few lines of code. What does this get us?

After the Standards Checker is run, we are shown:

[image: Image]

At this point in the development of our Standards Checker "Add-In", we are not reporting anything to the Report File. If we click Yes in the Standards Check Complete dialog box, we will see a report.

[image: Image]

We have just touched the surface on reporting 'problems' found in our Standards Checker program. Let’s build on it now by adding some code to the ReportError Procedure.

Private Sub ReportError(Error As ErrorType, _ RoomNumber As String)

Dim mySCC As StandardsCheckerController

Dim myProb As StandardsCheckerProblem

Dim myRep As StandardsCheckerReport

Set mySCC = StandardsCheckerController

Set myRep = mySCC.Report

Select Case Error

Case ErrorType.NotInDGN

mySCC.TotalProblems = mySCC.TotalProblems + 1

Set myProb = myRep.AddProblem("Room " & RoomNumber & _ " is NOT in DGN.", "VBA CheckA", False)

Case ErrorType.NotInFile

mySCC.TotalProblems = mySCC.TotalProblems + 1

Set myProb = myRep.AddProblem("Room " & RoomNumber & _ " is NOT in file.", "VBA CheckA", False)

Case ErrorType.FixedNotInDGN

mySCC.FixedProblems = mySCC.FixedProblems + 1

Case ErrorType.FixedNotInFile

mySCC.FixedProblems = mySCC.FixedProblems + 1

Case ErrorType.NotFixedNotInDGN

mySCC.IgnoredProblems = mySCC.IgnoredProblems + 1

Case ErrorType.NotFixedNotInFile

mySCC.IgnoredProblems = mySCC.IgnoredProblems + 1

End Select

End Sub

Now, when we view the report generated after the Checker finishes, we see the number of Problems that were identified. And if we expand the listing below the File Name we will see the specific Problems we added above.

[image: Image]

Let’s add a little more to the Procedure ReportError.

Private Sub ReportError(Error As ErrorType, RoomNumber As String)

Dim mySCC As StandardsCheckerController

Dim myProb As StandardsCheckerProblem

Dim myRep As StandardsCheckerReport

Set mySCC = StandardsCheckerController

Set myRep = mySCC.Report

Select Case Error

Case ErrorType.NotInDGN

mySCC.TotalProblems = mySCC.TotalProblems + 1

Set myProb = my Rep.AddProblem("Room " & RoomNumber & _ " is NOT in DGN.", "VBA CheckA", False)

Case ErrorType.NotInFile

mySCC.TotalProblems = mySCC.TotalProblems + 1

Set myProb = myRep.AddProblem("Room " & RoomNumber & _ " is NOT in file.", "VBA CheckA", False)

Case ErrorType.FixedNotInDGN

mySCC.FixedProblems = mySCC.FixedProblems + 1

Set myProb = myRep.AddProblem("Room " & RoomNumber & " is NOT in DGN.", "VBA CheckA", True)

Case ErrorType.FixedNotInFile

mySCC.FixedProblems = mySCC.FixedProblems + 1

Set myProb = myRep.AddProblem("Room " & RoomNumber & _ " is NOT in file.", "VBA CheckA", True)

Case ErrorType.NotFixedNotInDGN

Set myProb = myRep.AddIgnoredProblem("Room " & _ RoomNumber & _ " is NOT in DGN.", "VBA CheckA", UserName, Now)

mySCC.IgnoredProblems = mySCC.IgnoredProblems + 1

Case ErrorType.NotFixedNotInFile

Set myProb = myRep.AddIgnoredProblem("Room " & _

RoomNumber & _

" is NOT in file.", "VBA CheckA", UserName, Now)

mySCC.IgnoredProblems = mySCC.IgnoredProblems + 1

End Select

End Sub

Now, in addition to adding a "Problem" to the report stating that the problem was not fixed (the False parameter in AddProblem), we are also adding Fixed Problems and Ignored Problems.

Here is the report now:

[image: Image]

Now, in addition to seeing Problems that have not been fixed, we can see problems that have been fixed and those that have been ignored.

AUTOMATICALLY LOADING CUSTOM STANDARDS CHECKER ADD-INS

Standards Checker functionality can be automatically loaded through two mechanisms. Both of these mechanisms make use of the OnProjectLoad Procedure that can be placed in a MicroStation VBA Project. The OnProjectLoad Procedure is executed whenever a VBA Project (.mvba file) is opened. The code in this Procedure is the same for both 'autoload' mechanisms:

Sub OnProjectLoad()

AddChecker

End Sub

So, the OnProjectLoad Procedure is the same for both 'autoload' mechanisms. What are the two mechanisms?

1 The first is selecting "Auto-Load" in the VBA Project Manager:

[image: Image]

When a VBA project is set up to "Auto-Load", the project is loaded when MicroStation is started. When the project is loaded, OnProjectLoad is executed and the Standards Checker Add-in we created is loaded as well.

2 The other method deals with a configuration variable named MS_STANDARDCHECKERAPPS. If we add the VBA Project file (.mvba file) to this variable, the VBA project will be loaded when the Standards Checker is initialized. This is preferable to the method described above because Standards Checker code is not loaded and added unless we specifically decide to do something with the Standards Checker.

REVIEW

The Standards Checker Interface provides us the ability to create our own custom "Standards Checking" programming. The MicroStation VBA documentation includes additional examples of how to further implement the IStandardsChecker Interface.

[image: Image]

32Using the Windows API

We added References to things such as the "Microsoft Scripting Runtime" "Microsoft ActiveX Data Objects", "Microsoft CDO for Windows 2000" and so forth. When we did this, we had instant access to functionality not natively exposed to VBA.

Although working with the Windows API is not as simple and straight forward as adding a Reference, the process is fairly painless and the results can be powerful.

In this Chapter:

[image: Image] Declaring API Calls

[image: Image] Declaring Types

[image: Image] Utilizing API Calls

DECLARING API CALLS

Windows API calls can be declared in the General Declarations area of a Code Module. Once declared, the API calls are used just as we would use any other Function or Procedure.

Here is an example:

Public Declare Function Beep Lib "kernel32" (ByVal dwFreq As Long, _ ByVal dwDuration As Long) As Long

The Function name in the above declaration is "Beep". It is an amazing API call that beeps. It beeps as long and as high (or as low) as we ask it to beep. API Functions and Procedures are found inside DLL (Dynamic Link Library) files. This one is inside the kernel32.dll file. Let’s try it out, shall we?

After declaring the Beep function in the General Declarations area of a Code Module, we can use it as follows:

Sub TestBeep()

Beep 4000, 250

Beep 2000, 250

Beep 1000, 250

Beep 500, 250

End Sub

Four beeps are heard, each lasting 1/4 of a second (250 milliseconds) and each at a different frequency. The higher the frequency the higher the beep. Each beep is half the frequency of the previous frequency. This results in four 'notes', each note is one octave lower than the previous.

The Beep API Function is not the most useful API function known to man but for the moment, we are focusing on how to declare the functions. We will see plenty of examples utilizing more powerful and more useful API functions later.

Many Windows API calls are declared as Functions. This means they return a value. Often times, the value they return tells us whether the API call worked or if an error was encountered.

In addition to specifying the Functions Name, Location (which DLL file it appears in), and the parameters, Windows API calls often have an 'Alias'. The Alias is important when declaring an API function but we do not use it in our code — we use the Function or Procedure name.

DECLARING TYPES

Some Windows API calls make use of "Types". A 'Type' is similar to an Object in that it has specific 'properties' or 'members'. Often times we declare a variable as one of these "Types" and then set some of its properties. After the properties are set we may use it as a Parameter in an API call.

API Types are declared in the General Declarations area just as API Functions.

Public Declare Sub GetSystemInfo Lib "kernel32" (lpSystemInfo _ As SYSTEM_INFO)

Public Type SYSTEM_INFO

dwOemID As Long

dwPageSize As Long

lpMinimumApplicationAddress As Long

lpMaximumApplicationAddress As Long

dwActiveProcessorMask As Long

dwNumberOfProcessors As Long

dwProcessorType As Long

dwAllocationGranularity As Long

dwReserved As Long

End Type

The GetSystemInfo API call makes use of a "SYSTEM_INFO" type. Once declared we can use the Procedure and Type in a macro:

Sub TestSystemInfo()

Dim mySystemInfo As SYSTEM_INFO

GetSystemInfo mySystemInfo

MsgBox mySystemInfo.dwNumberOfProcessors & " Processors."

End Sub

We will see examples of more Types declared as we look at more API examples.

UTILIZING API CALLS

There are hundreds of API calls available for our use. Those presented here are not in any particular order and they are not necessarily related to one another in any way. One call may deal with the Logical Drives on the computer where the other may deal with the screen resolution. In any case, those listed here should prove helpful to many readers.

GetLogicalDrives

Public Declare Function GetLogicalDriveStrings Lib "kernel32" _

Alias "GetLogicalDriveStringsA" _

(ByVal nBufferLength As Long, _

ByVal lpBuffer As String) As Long

Sub TestGetLogicalDriveStrings()

Dim DriveLetters As String

Dim xSplit As Variant

Dim I As Long

DriveLetters = Space(255)

GetLogicalDriveStrings Len(DriveLetters), DriveLetters

xSplit = Split(DriveLetters, Chr(0))

For I = LBound(xSplit) To UBound(xSplit) - 2

MsgBox "Drive " & xSplit(I) & " Found."

Next I

End Sub

Often times, when we are using Windows API calls and provide a String to a Function, and the Function is going to give the String a value, we must first 'buffer' the string with Spaces. The DriveLetters variable is an example of this. When the variable DriveLetters enters the Function GetLogicalDriveStrings, it goes in with 255 space characters in it. When it comes out, we are given a series of drive letter characters separated by a Null Character (Chr(0)). We subtract two (2) from the upper-bound index of the xSplit array and this gives us the drive letters found on our system.

When TestGetLogicalDriveStrings is run, we see MessageBoxes with the drive letters of each Drive on the system. All drives are returned, those physically attached as well as mapped network drives.

GetDriveType

We can use GetLogicalDriveStrings to get the drive letters on our system. But how do we know what type of drives they are? Hard Drive? CD-ROM Drive? Floppy Drive? We can use GetDriveType. This example also uses GetLogicalDriveStrings.

Public Declare Function GetDriveType Lib "kernel32" Alias _

"GetDriveTypeA" (ByVal nDrive As String) As Long

Public Const DRIVE_CDROM = 5

Public Const DRIVE_FIXED = 3

Public Const DRIVE_RAMDISK = 6

Public Const DRIVE_REMOTE = 4

Public Const DRIVE_REMOVABLE = 2

Sub TestDriveType()

Dim DriveLetters As String

Dim xSplit As Variant

Dim I As Long

DriveLetters = Space(255)

GetLogicalDriveStrings Len(DriveLetters), DriveLetters

xSplit = Split(DriveLetters, Chr(0))

For I = LBound(xSplit) To UBound(xSplit) - 2

Debug.Print "Drive " & xSplit(I) & " is a " & _

ReturnDriveType(CStr(xSplit(I)))

Next I

End Sub

Function ReturnDriveType(DriveLetter As String) As String

Dim lngDriveType As Long

lngDriveType = GetDriveType(DriveLetter)

Select Case lngDriveType

Case DRIVE_CDROM

ReturnDriveType = "CD/DVD Drive"

Case DRIVE_FIXED

ReturnDriveType = "Hard Drive"

Case DRIVE_RAMDISK

ReturnDriveType = "RAM Disk"

Case DRIVE_REMOTE

ReturnDriveType = "Mapped Drive"

Case DRIVE_REMOVABLE

ReturnDriveType = "Removable Drive"

Case Else

ReturnDriveType = lngDriveType

End Select

End Function

[image: Image]

This computer has a Hard Drive (C), a CD/DVD Drive (D), a Removable Drive (E) which happens to be a Flash Drive, and a Mapped Drive (Z).

GetComputerName

Public Declare Function GetComputerName Lib "kernel32" _

Alias "GetComputerNameA" (ByVal lpBuffer As String, _

nSize As Long) As Long

Sub TestGetComputerName()

Dim CompName As String

CompName = Space(255)

GetComputerName CompName, Len(CompName)

CompName = Left(CompName, InStr(1, CompName, Chr(0)) - 1)

MsgBox CompName

End Sub

Knowing the name of the computer on which our code is running is a useful piece of information. Once again, we use a Buffered String. We look for the Null Character Chr(0) and get everything to the left of it.

GetVersionEx

What Operating System is the computer running? We need only ask GetVersionEx to find out.

Public Declare Function GetVersionEx Lib "kerne132" Alias _

"GetVersionExA" (lpVersionInformation As OSVERSIONINFO) _

As Long

Public Type OSVERSIONINFO

dwOSVersionInfoSize As Long

dwMajorVersion As Long

dwMinorVersion As Long

dwBuildNumber As Long

dwPlatformId As Long

szCSDVersion As String * 128

End Type

Public Const VER_PLATFORM_WIN32_WINDOWS = 1

Public Const VER_PLATFORM_WIN32_NT = 2

Sub TestOSVersion()

Dim myVerInfo As OSVERSIONINFO

Dim strServicePack As String

myVerInfo.dwOSVersionInfoSize = 148

GetVersionEx myVerInfo

Select Case myVerInfo.dwPlatformId

Case VER_PLATFORM_WIN32_WINDOWS

Select Case myVerInfo.dwMinorVersion

Case 0

MsgBox "Windows 95"

Case 10

MsgBox "Windows 98"

Case 90

MsgBox "Windows ME"

End Select

Case VER_PLATFORM_WIN32_NT

Select Case myVerInfo.dwMajorVersion

Case Is <= 4

MsgBox "Windows NT Build " & _ myVerInfo.dwBuildNumber

Case 5

Select Case myVerInfo.dwMinorVersion

Case 1

strServicePack = myVerInfo.szCSOVersion

strServicePack = Left(strServicePack, _

InStr(1, strServicePack, Chr(0)) - 1)

MsgBox "Windows XP Build " & _

myVerInfo.dwBuildNumber & vbCr & _ strServicePack

Case 2

MsgBox "Windows .NET Server Build " & _ myVerInfo.dwBuildNumber

Case Else

MsgBox "Windows 2000 Build " & _ myVerInfo.dwBuildNumber

End Select

End Select

End Select

End Sub

[image: Image]

A MessageBox displays the Operating System and in some cases the Build Number and Service Pack.

Sleep

At times we need to temporarily pause program execution. The Sleep function allows us to specify how many milliseconds to 'sleep'.

Public Declare Sub Sleep Lib "kernel32" (ByVal _

dwMilliseconds As Long)

Sub TestSleep()

Dim StartTime As Date

Dim EndTime As Date

StartTime = Now

Sleep 1000

EndTime = Now

MsgBox "Start Time: " & FormatDateTime(StartTime, vbLongTime) _

& vbCr & "End Time: " & FormatDateTime(EndTime, vbLongTime)

End Sub

[image: Image]

In this example, we get the current time into a variable named "StartTime", Sleep for 1 second (1,000 milliseconds), and then get the current time into a variable named "EndTime". The last thing we do is display the StartTime and EndTime in a MessageBox.

FindExecutable

The same .pdf file may be opened with Adobe Acrobat Reader 7 on one computer and Adobe Acrobat 6 on another computer. Which program is registered to open a .pdf file? Which program is registered to open a .jpg file? FindExecutable tells us the path to the program that is registered to open a particular file type.

Public Declare Function FindExecutable Lib "shell32.dll" _

Alias "FindExecutableA" _

(ByVal lpFile As String, ByVal lpDirectory As String, _

ByVal lpResult As String) As Long

Sub TestFindExecutable()

Dim strFileName As String

Dim strDirName As String

Dim strExeFile As String

strFileName = "eula.pdf"

strDirName = "C:\Program Files\Bentley\MicroStation"

strExeFile = Space(255)

FindExecutable strFileName, strDirName, strExeFile

strExeFile = Left (strExeFile, InStr(1, strExeFile, Chr(0)) - 1)

MsgBox strExeFile

End Sub

[image: Image]

GetDiskFreeSpace

GetDiskFreeSpace gives us information about the provided disk name.

Public Declare Function GetDiskFreeSpace Lib "kernel32" Alias _

"GetDiskFreeSpaceA"

(ByVal lpRootPathName As String, lpSectorsPerCluster As Long, _

lpBytesPerSector As Long, lpNumberOfFreeClusters As Long, _

lpTotalNumberOfClusters As Long) As Long

Sub TestFreeDiskSpace()

Dim mySpace As Long

Dim lngSectorsPerCluster As Long

Dim lngBytesPerSector As Long

Dim lngFreeClusters As Long

Dim lngTotalClusters As Long

Dim FreeBytes As Double

Dim TotalBytes As Double

Dim PercentFree As Double

GetDiskFreeSpace "C:\", lngSectorsPerCluster, _

lngBytesPerSector, lngFreeClusters, lngTotalClusters

FreeBytes = FormatNumber(lngFreeClusters / 1000 * _

lngBytesPerSector * lngSectorsPerCluster , 2)

TotalBytes = FormatNumber(lngTotalClusters / 1000 * _

lngBytesPerSector * lngSectorsPerCluster , 2)

PercentFree = Round((FreeBytes / TotalBytes) * 100, 2)

MsgBox "Free Bytes: " & FormatNumber(FreeBytes, 2, False, False, True) _ & " kB" & vbCr & _

"Total Bytes: " & FormatNumber(TotalBytes, 2, False, False, True) & _ " KB" & vbCr &

"Percent Free: %" & PercentFree

End Sub

[image: Image]

GetSystemMetrics

Knowing information about the computer on which our code is running is very helpful. We can use GetSystemMetrics to return a wealth of information.

Public Declare Function GetSystemMetrics Lib "user32"

(ByVal nIndex As Long) As Long

Public Const SM_CMETRICS = 44

Public Const SM_CMOUSEBUTTONS = 43

Public Const SM_CXBORDER = 5

Public Const SM_CXCURSOR = 13

Public Const SM_CXDLGFRAME = 7

Public Const SM_CXDOUBLECLK = 36

Public Const SM_CXFIXEDFRAME = SM_CXDLGFRAME

Public Const SM_CXFRAME = 32

Public Const SM_CXFULLSCREEN = 16

Public Const SM_CXHSCROLL = 21

Public Const SM_CXHTHUMB = 10

Public Const SM_CXICON = 11

Public Const SM_CXICONSPACING = 38

Public Const SM_CXMIN = 28

Public Const SM_CXMINTRACK = 34

Public Const SM_CXSCREEN = 0

Public Const SM_CXSIZE = 30

Public Const SM_CXSIZEFRAME = SM_CXFRAME

Public Const SM_CXVSCROLL = 2

Public Const SM_CYBORDER = 6

Public Const SM_CYCAPTION = 4

Public Const SM_CYCURSOR = 14

Public Const SM_CYDLGFRAME = 8

Public Const SM_CYDOUBLECLK = 37

Public Const SM_CYFIXEDFRAME = SM_CYDLGFRAME

Public Const SM_CYFRAME = 33

Public Const SM_CYFULLSCREEN = 17

Public Const SM_CYHSCROLL = 3

Public Const SM_CYICON = 12

Public Const SM_CYICONSPACING = 39

Public Const SM_CYMENU = 15

Public Const SM_CYKANJIWINDOW = 18

Public Const SM_CYMINTRACK = 35

Public Const SM_CYMIN = 29

Public Const SM_CYSCREEN = 1

Public Const SM_CYSIZE = 31

Public Const SM_CYSIZEFRAME = SM_CYFRAME

Public Const SM_CYVSCROLL = 20

Public Const SM_CYVTHUMB = 9

Public Const SM_DBCSENABLED = 42

Public Const SM_DEBUG = 22

Public Const SM_MENUDROPALIGNMENT = 40

Public Const SM_MOUSEPRESENT = 19

Public Const SM_SWAPBUTTON = 23

Sub TestSystemMetrics()

MsgBox "Screen Resolution: " & vbCr & _

GetSystemMetrics(SM_CXSCREEN) & " X " & _ GetSystemMetrics(SM_CYSCREEN)

MsgBox "Mouse Buttons: " & _

GetSystemMetrics(SM_CMOUSEBUTTONS)

End Sub

The Procedure TestSystemMetrics tells us the screen resolution and how many buttons are on the mouse connected to the computer.

GetTickCount

How long has it been since the computer was started? GetTickCount answers this question in milliseconds.

[image: Image]

Public Declare Function GetTickCount Lib "kernel32" Alias _

"GetTickCount" () As Long

Sub TestTickCount()

Dim StartTicks As Long

Dim EndTicks As Long

StantTicks = GetTickCount

Sleep 2000

EndTicks = GetTickCount

MsgBox StartTicks & vbCr & EndTicks

End Sub

GetUserName

Who is logged onto the computer?

Public Declare Function GetUserName Lib "advapi32.dll" Alias _

"GetUserNameA" (ByVal lpBuffer As String, nSize As Long) As Long

Sub TestUserName()

Dim UserName As String

Dim xSplit As Variant

UserName = Space(255)

GetUserName UserName, Len(UserName)

xSplit = Split(UserName, Chr(0))

UserName = xSplit(0)

MsgBox UserName

End Sub

GetUserName is useful for logging who is performing what function. If we get the ComputerName as well, we will know Who, Where, What, and we can know When by using the Now Function. As for the question "Why", Microsoft is still working on that API call.

[image: Image] NOTE: The MicroStation Application Object has its own UserName property so we don’t need this API call if we are using MicroStation VBA.

GetWindowsDirectory

Where is Windows Installed? C:\Winnt? C:\Windows?

GetWindowsDirectory tells us.

Public Declare Function GetWindowsDirectory Lib _

"kernel32" Alias _

"GetWindowsDirectoryA" (ByVal lpBuffer As String, _

ByVal nSize As Long) As Long

Sub TestWindowsDir()

Dim WindowsDir As String

Dim xSplit As Variant

WindowsDir = Space(255)

GetWindowsDirectory WindowsDir, Len(WindowsDir)

xSplit = Split(WindowsDir, Chr(0))

WindowsDir = xSplit(0)

MsgBox WindowsDir

End Sub

Knowing where Windows is installed can be helpful if we are looking for a particular file (such as in the System32 directory) or if we want to add our own files or folders under the Windows directory.

LogonUser

Security is on everyone’s mind. How do I know that changes being made on someone’s machine are being made by the person that is logged on? How do I know someone else didn’t slide into Fred’s cubicle while Fred is at lunch only to goof up a file?

We know how to get the current user. Let’s take a look at how we can ask the user for a password and with the Windows API validate that the password entered matches that of the password on the system.

Private Declare Function LogonUser Lib "Advapi32" Alias "LogonUserA" _

(ByVal lpszUsername As String, ByVal lpszDomain As String, _

ByVal lpszPassword As String, ByVal dwLogonType As Long, _

ByVal dwLogonProvider As Long, phToken As Long) As Long

Function CurrentUserName() As String

Dim UserName As String

Dim xSplit As Variant

UserName = Space(255)

GetUserName UserName, Len(UserName)

xSplit = Split(UserName, Chr(0))

UserName = xSplit(0)

CurrentUserName = UserName

End Function

Sub TestLogonUser()

Dim Successful As Long

Dim PasswordEntry As String

PasswordEntry = InputBox("Re-Enter Password:", "Logon Validation")

Successful = LogonUser(CurrentUserName, "", PasswordEntry, 2. 0, 0)

Select Case Successful

Case 1

MsgBox "You have been validated.", vbInformation

Case Else

MsgBox "Invalid Username/Password Combination.", vbCritical

End Select

End Sub

This example makes use of an InputBox for entering the password. Although this is not necessarily the best way to ask for a password (because it is visible to anyone looking over one’s shoulder), the code still demonstrates the use of the API call. We have a Function named CurrentUserName that returns the current user name. Notice that we leave the Domain an empty string. If we were on a domain, we would want to specify it in the provided parameter.

LogonUser. Very powerful.

MessageBeep

Feedback is good. Right? In addition to visual feedback we can provide audible feedback through a variety of methods. The MessageBeep function plays the .wav file currently applied in the "Sounds and Audio Devices" section of the Control Panel. These are the sounds we hear when different MessageBoxes display, only we get the sound without the MessageBox.

Public Declare Function MessageBeep Lib "user32" _

(ByVal wType As Long) As Long

Public Const MB_OK = &HO&

Public Const MB_ICONSTOP = &H10&

Public Const MB_ICONQUESTION = &H20&

Public Const MB_ICONEXCLAMATION = &H30&

Public Const MB_ICONASTERISK = &H40&

Sub TestMessageBeep()

MessageBeep MB_OK

Sleep 500

MessageBeep MB_ICONSTOP

Sleep 500

MessageBeep MB_ICONQUESTION

Sleep 500

MessageBeep MB_ICONEXCLAMATION

Sleep 500

MessageBeep MB_ICONASTERISK

End Sub

PlaySound

Here is another API call that deals with audible feedback. PlaySound allows us to specify which .wav file is to be played and how it is to be played.

Public Declare Function PlaySound lib "winmm.dll" Alias "PlaySoundA" _

(ByVal lpszName As String, ByVal hModule As Long, _

ByVal dwFlags As Long) As Long

Public Const SND_SYNC = &H0

Public Const SND_ASYNC = &H1

Public Const SND_LOOP = &H8

Sub TestPlaySoundA()

PlaySound "C:\Windows\Media\chimes.wav", 0, SND_SYNC

PlaySound "C:\Windows\Media\chord.wav", 0, SND_SYNC

End Sub

This first example uses the "SND_SYNC" flag. This means the chimes.wav file plays until it is finished and then the chord.wav file plays.

Sub TestPlaySoundB()

PlaySound "C:\Windows\Media\chimes.wav", 0, SND_ASYNC

Sleep 150

PlaySound "C:\Windows\Media\chimes.wav", 0, SND_ASYNC

Sleep 200

PlaySound "C:\Windows\Media\chimes.wav", 0, SND_ASYNC

Sleep 250

PlaySound "C:\Windows\Media\chimes.wav", 0, SND_ASYNC

Sleep 300

PlaySound "C:\Windows\Media\chimes.wav", 0, SND_ASYNC

End Sub

When we use the "SND_ASYNC" flag, the specified file begins playing and the code continues executing without waiting for the file to finish playing. By placing "Sleep" calls between each line of code, we hear 150 milliseconds of chimes.wav and then we hear 200 milliseconds, then 250 milliseconds, and so forth. PlaySound can play only one .wav file at a time, so each time it is called, any file already being played is stopped and the new file is played.

The next example we will look at would be extremely annoying if we didn’t know how to turn it off. We use the "SND_LOOP" flag in conjunction with the "SND_ASYNC" flag to play the sound over and over. The sound continues to play even after the procedure has finished executing. Even if the VBA Project is unloaded, the sound continues to play over and over and over. Not until MicroStation is closed down or TestPlaySoundD is executed does the sound stop.

Sub TestPlaySoundC()

PlaySound "C:\Windows\Media\chord.wav", 0, _

SND_LOOP + SND_ASYNC

End Sub

Sub TestPlaySoundD()

PlaySound vbNullString, 0, 0

End Sub

ShellExecute

In a previous example, we were able to discover which application was registered to open a specific file. ShellExecute actually opens the file using the application registered to handle the file.

Public Declare Function ShellExecute Lib "shell32.dll" Alias _

"ShellExecuteA" (ByVal hwnd As Long, _

ByVal lpOperation As String, ByVal lpFile As String, _

ByVal lpParameters As String, ByVal lpDirectory As String, _

ByVal nShowCmd As Long) As Long

Sub TestShellExecuteA()

ShellExecute 0, "OPEN", _

"Greenstone.bmp", "", "C:\Windows", vbMinimizedNoFocus

End Sub

Sub TestShellExecuteB()

ShellExecute 0, "OPEN",

"Greenstone.bmp", "", "C:\Windows", vbMaximizedFocus

End Sub

We show two examples here. One executes the program and opens the file 'minimized' and the other executes the program and opens the file 'maximized'.

In a previous chapter we worked through an example that created an .html file. We could use ShellExecute to display the file immediately after it is created. This is much better than creating the file and then asking the user to find the file and double-click on it.

SHGetFileInfo

SHGetFileInfo can be used for a variety of things. One thing it can do is tell us what kind of a file we are looking at.

Public Type SHFILEINFO

hIcon As Long

iIcon As Long

dwAttributes As Long

szDisplayName As String * 255

szTypeName As String * 80

End Type

Public Const SHGFI_ATTRIBUTES = &H800

Public Const SHGFI_EXETYPE = &H2000

Public Const SHGFI_DISPLAYNAME = &H200

Public Const SHGFI_ICON = &H100

Public Const SHGFI_ICONLOCATION = &H1000

Public Const SHGFI_LARGEICON = &H0

Public Const SHGFI_LINKOVERLAY = &H8000

Public Const SHGFI_OPENICON = &H2

Public Const SHGFI_PIDL = &H8

Public Const SHGFI_SELECTED = &H10000

Public Const SHGFI_SHELLICONSIZE = &H4

Public Const SHGFI_SMALLICON = &H1

Public Const SHGFI_SYSICONINDEX = &H4000

Public Const SHGFI_TYPENAME = &H400

Public Const SHGFI_USEFILEATTRIBUTES = &H10

Sub TestGetFileInfo()

Dim myFI As SHFILEINFO

SHGetFileInfo "C:\test.dgn", SHGFI_ATTRIBUTES, myFI, Len(myFI), _

SHGFI_DISPLAYNAME + SHGFI_ICON + SHGFI_TYPENAME

Debug.Print Replace(myFI.szDisplayName, Chr(0), "")

Debug.Print Replace(myFI.szTypeName, Chr(0), "")

End Sub

The file name and the file type display.

[image: Image]

REVIEW

We have touched on a handful of Windows API calls here. There are hundreds more. Some API calls deal with the display; they allow us to 'draw' to specific windows. Other API calls deal with reading and writing files. Yet others deal with System Memory matters.

Entire books and websites have been dedicated to the topic of Windows API calls. Windows API calls are one of the reasons why we can say "Yes, you can do that with VBA".

[image: Image]

33 Using Third Party ActiveX Controls and DLLs

We all know there is no reason to keep reinventing the wheel. Making use of existing resources speeds the development process and can result in a more "bug-free" application.

In this Chapter:

[image: Image] Using ActiveX Controls

[image: Image] Using DLLs

USING ACTIVEX CONTROLS

ActiveX Controls are used in our Graphical User Interface development. We have already used TextBoxes, ComboBoxes, CommandButtons, Labels, and other controls.

When we insert a UserForm in our VBA Project, the Toolbox dialog box normally displays. Right-clicking on the Toolbox allows us to add Additional Controls.

[image: Image]

[image: Image]

As we scroll through the list of items, we can see a great variety of Controls. The list on each computer will be different because Controls are added when software is installed. Some of the controls shown in the image above are installed when Visual Basic 6.0 is installed.

The fact that a Control is shown in the list does not mean we can make use of it. Some Controls require a License to use. Let’s take a look at a few Controls that are available for us to use.

[image: Image]

For demonstration purposes, we will use the "Calendar Control 11.0" Control in our example. This control is installed with Microsoft Office. Select it from the list of Available Controls and click the OK button.

Once it shows up in the Toolbox we can place it on our Form along with other controls we may want to use.

Clicking on the button displays the selected date.

Private Sub btnDisplaySelection_Click()

MsgBox Calendar1.Value

End Sub

If an application is being written that makes use of a non-standard ActiveX Control, we need to make sure that we can successfully deploy the application to other computers.

In this example, we would need to distribute the .mvba file (the MicroStation VBA Project file) as well as the Calender Control (the .ocx file). But giving someone an .ocx file is not enough. The Control needs to be registered on the user’s computer.

Registering an ActiveX control is quite simple. From the Start button in Windows, click Run and they type "cmd" in the window and then click the OK button.

A Command Window should open. When it does, we simply need to type:

regsvr32 "c:\program files\Microsoft Office\Officell\mscal.ocx"

and press the <Enter> key. If the path where the .ocx file is different, it should be reflected in the command.

[image: Image]

[image: Image]

As has already been mentioned, the ActiveX Control should be tested on machines where it was not previously installed to make sure the application developed can be successfully deployed to others.

There are many places on the Internet one can go to find ActiveX Controls. And many sites allow free evaluations of the Controls prior to purchase.

In addition to purchasing ActiveX Controls, we can create our own ActiveX Controls using Visual Basic 6.

USING EXISTING DLLS

There are two fundamental ways to use DLLs in our programming. Each method of using DLLs have been used in this book already.

Method 1: Declaring DLL Functions such as was done in the Windows API chapter.

Method 2: Adding a Reference to the DLL and using it.

Since we have already devoted a chapter to using the Windows API, we will turn our attention to adding References.

We have added References to a number of different DLLs but have done so in the interest of discussing specific topics. Now, we are going to look at a number of References in greater detail.

The first Reference we are going to look at is the "Microsoft Shell Controls and Automation" Reference.

So, we have just added a new Reference to our VBA Project. Perhaps we haven’t used it before. Perhaps we have used it a little bit. How can we find out about what this Reference will do for us? The first thing we should do is take a peek at the Object Browser and filter on the Reference we just added.

[image: Image]

Clicking on an Object displays the Members of the Object. This is one of the best ways to discover what a particular Reference can do for us. Let’s take a look at some code now.

Sub TestShellA()

Dim myShell As New Shell32.Shell

Dim myFolder As Shell32.Folder3

Dim myFolder2 As Shell32.Folder3

Dim myItem As Shell32.FolderItem

Set myFolder = myShell.BrowseForFolder(0, "Browse", 0)

MsgBox myFolder.Self.Path

For Each myItem In myFolder.Items

Debug.Print myItem.Name & vbTab & myItem.Type

Next

End Sub

First, we are asked to select a folder.

[image: Image]

After displaying the path of the selected folder in a MessageBox, we display each item in the Folder in the Immediate Window.

[image: Image]

And we see not only the name of the object but its Type as well.

One of the great things about the Shell32 BrowseForFolder method is that we can specify a Root Folder.

Sub TestShellB()

Dim myShell As New Shell32.Shell

Dim myFolder As Shell32.Folder3

Dim myFolder2 As Shell32.Folder3

Dim myItem As Shell32.FolderItem

Set myFolder = myShell.BrowseForFolder(0 , "Browse", 0, _

"C:\Program Files\Bentley")

For Each myItem In myFolder.Items

Select Case myItem.Type

Case "File Folder"

Debug.Print "Folder: " & myItem.Name

End Select

Next

End Sub

Now, when this is run, the user must select either the RootFolder or a folder in the Root Folder’s path.

[image: Image]

This is especially helpful when we ask the user to select something from a Project folder. It is faster for the user because we begin in the correct folder. It is good for us because we know the user will be selecting something from the root folder path.

Here are a few more examples. They are all harmless, even the ShutdownWindows call. When we use ShutdownWindows, we should be prompted as to what we want to do. Simply click Cancel and everything will be OK. It would be a good idea to save open documents before using this call just to be safe.

Sub TestShellC()

Dim myShell As New Shell32.Shell

myShell.FindComputer

End Sub

Sub TestShellD()

Dim myShell As New Shell32.Shell

myShell.ShutdownWindows

End Sub

Sub TestShellE()

Dim myShell As New Shell32.Shell

myShell.Open "C:\Program Files\Bentley"

End Sub

[image: Image]

"Open" displays the contents of the provided path in an Explorer window.

Microsoft Scripting Runtime

We have already made use of the Microsoft Scripting Runtime. Let’s explore it in greater detail. The primary Object we will be working with is the File System Object.

Our first example will be to look for all "Bentley MicroStation Design File" files in a specific folder:

Sub TestFSOA()

Dim myFSO As New Scripting.FileSystemObject

Dim myFolder As Scripting.Folder

Dim myFile As Scripting.File

Set myFolder = myFSO.GetFolder("C:\Program Files\Bentley\MicroStation")

For Each myFile In myFolder.Files

Select Case myFile.Type

Case "Bentley MicroStation Design File"

Debug.Print myFile.Name

End Select

Next

End Sub

The Immediate Window displays the names of the files matching the specified criteria.

In addition to looking at files in a folder, we can get the subfolders in a given folder and all of its subfolders as well. Our next example provides a comprehensive listing of all folders under a 'root folder'. This utilizes a technique called 'recursive execution'. (See also Chapter 30.)

Sub TestFSOB()

Dim myFSO As New Scripting.FileSystemObject

Dim myFolder As Scripting.Folder

Dim mySubFolder As Scripting.Folder

Set myFolder = myFSO.GetFolder("C:\Program Files\Bentley")

For Each myFolder In myFolder.SubFolders

TraverseFolders myFolder

Next

End Sub

Sub TraverseFolders(FolderIn As Scripting. Folder)

Dim NextSubFolder As Scripting.Folder

Debug.Print FolderIn.Path

For Each NextSubFolder In FolderIn.SubFolders

TraverseFolders NextSubFolder

Next

End Sub

[image: Image]

This technique is useful when performing batch operations.

The File System Object can be used to get Drive information as well as file and folder information.

Sub TestFSOC()

Dim myFSO As New Scripting.FileSystemObject

Dim myDrive As Scripting.Drive

Dim I As Long

For I = Asc("A") To Asc("Z")

If myFSO.DriveExists(Chr(I)) Then

Set myDrive = myFSO.GetDrive(Chr(I) & ":\")

If myDrive.DriveType = Remote Then

Debug.Print "Drive: " & myDrive.DriveLetter

Debug.Print "Share Name: " & myDrive.ShareName

Debug.Print "Volume: " & myDrive.VolumeName

Debug.Print "Total Space: " & _

FormatNumber(myDrive.Total Size, _

0, False, False, True) & " Bytes"

Debug.Print ""

End If

End If

Next I

End Sub

[image: Image]

This example gets all "Network Drives" and displays information about each drive.

For our next example, we will read an ASCII File using the File System Object.

Sub TestFSOD()

Dim myFSO As New Scripting.FileSystemObject

Dim myFile As Scripting.File

Dim myTS As Scripting.TextStream

Dim strWholeFile As String

Dim xSplit As Variant

Set myFile = myFSO.GetFile(_

"C:\Program Files\Bentley\MicroStation\config\msconfig.cfg")

Set myTS = myFile.OpenAsTextStream

StrWholeFile = myTS.ReadAll

xSplit = Split(strWholeFile, vbCr)

myTS.Close

End Sub

TestFSOD opens the msconfig.cfg file. We use the "ReadAll" method of the TextStream Object. We then split the file into lines by looking for Carriage Return characters in the file. Last, but not least, we close the file.

[image: Image]

If we add a Watch to the variable xSplit we will see that the file has been successfully read and split into the variable xSplit. We can now look at each line in the file one by one.

Now we are going to use the File System Object to 'write' a file. We will create a small HTML file.

Sub TestFSOE()

Dim myFSO As New Scripting.FileSystemObject

Dim myFile As Scripting.File

Dim myTS As Scripting.TextStream

Set myTS = myFSO.CreateTextFile("C:\test.htm", True)

myTS.WriteLine "<html>"

myTS.WriteLine vbTab & "<table width=200 border=1>"

myTS.WriteLine vbTab & "<tr><td>Number</td><td>Name</td></tr>"

myTS.WriteLine vbTab & "<tr><td align=center>1</td>" & _

"<td>Jerry</td></tr>"

myTS.WriteLine vbTab & "<tr><td align=center>2</td>" & _

"<td>Candice</td></tr>"

myTS.WriteLine vbTab & "</table>"

myTS.WriteLine vbTab & "</html>"

myTS.Close

End Sub

[image: Image]

Nothing fancy, just a simple HTML file. We have written ASCII Text files before but we have used standard VBA calls such as "Open" and "Print".

The last File System Object object we will look at is the Dictionary Object. This object allows us to add item pairs (Key and Item) to a ready-made ‘collection’.

Sub TestFSOF()

Dim myFSO As New FileSystemObject

Dim myDir As Scripting.Folder

Dim myDictionary As New Dictionary

Dim I As Long

Set myDir = myFSO.GetFolder("C:\Program Files\Bentley")

RecursiveFolder myDir, myDictionary

For I = 1 To myDictionary.Count

Debug.Print myDictionary.Keys(I - 1) & vbTab & _

myDictionary.Items(I - 1)

Next I

End Sub

Sub RecursiveFolder(FolderIn As Scripting.Folder, _

DictionaryIn As Scripting.Dictionary)

Dim myFile As Scripting.File

Dim mySubDir As Scripting.Folder

For Each myFile In FolderIn.Files

If UCase(Right(myFile.Name, 4)) = ".CHM" Then

DictionaryIn.Add myFile.Name, myFile.Path

End If

Next

For Each mySubDir In FolderIn.SubFolders

RecursiveFolder mySubDir, DictionaryIn

Next

End Sub

TestFSOF begins in the folder C:\Program Files\Bentley and looks for all .chm (help) files. When one is found it is added to a Dictionary Object. After all files are found, each Key and Item in the Dictionary is printed to the Debug window (Immediate Window).

[image: Image]

The FileSystemObject is extremely useful. It can be used to get file, folder, and drive information. It can be used to read and write ASCII Text Files. It can also be used to 'catalog' files by using the Dictionary Object.

Microsoft Speech Object Library

The Microsoft Speech Object Library is another example of powerful functionality at our fingertips with only adding a Reference.

Sub TestSpeechA()

Dim myVoice As New SpeechLib.SpVoice

myVoice.Speak "MicroSteyshen V, B, A, Is Great!"

End Sub

How difficult would it be to add voice / speaking capabilities to our software without this Reference? Granted, we can’t always spell things as we normally do, we need to spell words phonetically (or is that funeticly?).

We have already used a Windows API call to play a .wav file. When we use the Speech Object, we can 'play' volumes of instructions without needing to install volumes of .wav files. We can even have our Speech Object 'speak' dynamically, giving instructions and feedback. as our application runs.

Microsoft CDO for Windows 2000 Library

Even if Windows XP is installed, the "CDO for Windows 2000 Library" Reference should be available. If it is not displayed in the References list, browsing for C:\Windows\System32\cdosys.dll will allow us to add it.

Sub TestCDOA()

Dim myMsg As New CDO.Message

Dim FieldBase As String

FieldBase = "http://schemas.microsoft.com/cdo/configuration/"

myMsg.To = "youraddress@yourserver.com"

myMsg.From = "myaddress@myserver.com"

myMsg.Subject = "Testing CDO Email"

myMsg.HTMLBody = "VBA
For MicroStation "

myMsg.Configuration.Fields.Item(FieldBase & "sendusing") = 2

myMsg.Configuration.Fields.Item(FieldBase & "smtpserver") = _

"smtp.yourserver.com"

myMsg.Configuration.Fields.Item(FieldBase & "smtpserverport") = 25

myMsg.Configuration.Fields.Update

myMsg.Send

End Sub

Sending e-mail using VBA isn’t difficult. It does take a few lines of code, but this is because there are a few settings that need to be made. Once the settings are in place, the e-mail is sent.

[image: Image]

Here is the e-mail that is sent using CDO. And how difficult is it to add an attachment to the e-mail?

Sub TestCDOB()

Dim myMsg As New CDO.Message

Dim FieldBase As String

FieldBase = "http://schemas.microsoft.com/cdo/configuration/"

myMsg.To = "youraddress@yourserver.com"

myMsg.From = "myaddress@myserver.com"

myMsg.Subject = "Testing CDO Email"

myMsg.HTMLBody = "VBA
For MicroStation"

myMsg.Configuration.Fields.Item(FieldBase & "sendusing") = 2

myMsg.Configuration.Fields.Item(FieldBase & "smtpserver") = _

"smtp.yourserver.com"

myMsg.Configuration.Fields.Item(FieldBase & "smtpserverport") = 25

myMsg.Configuration.Fields.Update

myMsg.AddAttachment "C:\test.htm"

myMsg.Send

End Sub

[image: Image]

There are thousands of reasons why we would like to send an e-mail using VBA. It’s fortunate that sending an e-mail is so easy.

The To, From, and SMTPServer properties will need to modified to match individual settings and servers.

DSO OLE Document Properties Reader 2.0

All of the References we have discussed so far are installed with Windows XP. Not so with DSO. Following the link:

http://support.microsoft.com/kb/224351/

reveals another link to "Download the DsoFileSetup". This is what we want. Why?

MicroStation design files are OLE Documents. Another term used to describe this type of file is "Structured Storage" Documents. What does this mean?

In MicroStation, go to the File > Properties menu item. When the File Properties dialog box opens, click on the Summary tab.

[image: Image]

These properties may look familiar. They are found in Microsoft Word and Excel files, among others. We can read and write these properties in .dgn files using VBA when a design file is open. The DSOFile Reference allows us to 'open' any Structured Storage File to read file properties or write/create them even if the application that created the file is not installed. Let’s take a look.

[image: Image]

Sub TestDSOA()

Dim myDSO As New DSOFile.OleDocumentProperties

myDSO.Open "C:\test.dgn", True

MsgBox myDSO.SummaryProperties.Author

myDSO.Close

End Sub

The 'Author' of the file C:\test.dgn is "Bentley Systems, Inc.". It should be stated here that if we attempt to read or write properties of a file that is open in an application we may be prohibited from doing so.

Our next example 'writes' properties to the test.dgn file.

Sub TestDSOB()

Dim myDSO As New DSOFile.OleDocumentProperties

myDSO.Open "C:\test.dgn", False

myDSO.SummaryProperties.Author = "Jerry Winters"

myDSO.SummaryProperties.Category = "MicroStation VBA"

myDSO.SummaryProperties.Keywords = "VBA"

myDSO.Save

myDSO.Close

End Sub

If we 'write' properties to a file, we must save it before we close it.

Here are the results in Windows' Explorer Properties dialog box:

[image: Image]

There are many 'SummaryProperties'; many more than are displayed in this window. Not all apply to MicroStation .dgn files and some are not supported by MicroStation. The next macro displays the values of each 'SummaryProperty'.

Sub TestDSOC()

Dim myDSO As New DSOFile.OleDocumentProperties

myDSO.Open "C:\test.dgn", True

Debug.Print myDSO.SummaryProperties.ApplicationName

Debug.Print myDSO.SummaryProperties.Author

Debug.Print myDSO.SummaryProperties.ByteCount

Debug.Print myDSO.SummaryProperties.Category

Debug.Print myDSO.SummaryProperties.CharacterCount

Debug.Print myDSO.SummaryProperties.CharacterCountWithSpaces

Debug.Print myDSO.SummaryProperties.Comments

Debug.Print myDSO.SummaryProperties.Company

Debug.Print myDSO.SummaryProperties.DateCreated

Debug.Print myDSO.SummaryProperties.DateLastPrinted

Debug.Print myDSO.SummaryProperties.DateLastSaved

Debug.Print myDSO.SummaryProperties.HiddenSlideCount

Debug.Print myDSO.SummaryProperties.Keywords

Debug.Print myDSO.SummaryProperties.LastSavedBy

Debug.Print myDSO.SummaryProperties.LineCount

Debug.Print myDSO.SummaryProperties.Manager

Debug.Print myDSO.SummaryProperties.MultimediaClipCount

Debug.Print myDSO.SummaryProperties.NoteCount

Debug.Print myDSO.SummaryProperties.PageCount

Debug.Print myDSO.SummaryProperties.ParagraphCount

Debug.Print myDSO.SummaryProperties.PresentationFormat

Debug.Print myDSO.SummaryProperties.RevisionNumber

Debug.Print myDSO.SummaryProperties.SharedDocument

Debug.Print myDSO.SummaryProperties.SlideCount

Debug.Print myDSO.SummaryProperties.Subject

Debug.Print myDSO.SummaryProperties.Tempiate

Debug.Print myDSO.SummaryProperties.Thumbnail

Debug.Print myDSO.SummaryProperties.Title

Debug.Print myDSO.SummaryProperties.TotalEditTime

Debug.Print myDSO.SummaryProperties.Version

Debug.Print myDSO.SummaryProperties.WordCount

End Sub

Some of the Summary Properties shown here are read-only. For example, we cannot modify the 'DateCreated' property.

Not all files are 'Structured Storage' files, for example, a .txt file created in Notepad. Even though it is not a Structured Storage file, when it resides on an NTFS hard drive, some 'Summary Properties' are available to us. We should be careful with non-Structured Storage files, though. It may look as though we are entering file properties. But if we e-mail the file or place it on a non-NTFS drive, the file properties do not follow the file. This is because the properties are not stored in the file, they are stored with (actually along side) the file.

Sub TestDSOD()

Dim myDSO As New DSOFile.OleDocumentProperties

myDSO.Open "C:\test.txt", True

MsgBox myDSO.SummaryProperties.Author

myDSO.Close

End Sub

TestDSOD looks very much like TestDSOA, only we are opening a different file. Test.txt is a standard ASCII file. While in Windows Explorer, right-click on the file and select Properties to display a few tabs.

[image: Image]

If we compare this dialog box with the one a couple of pages ago we will discover that this dialog does not have a Custom tab. This indicates to us that the file is not a Structured Storage File and that the properties shown are due to NTFS functionality. So, we can visually discern the difference between NTFS properties and Structured Storage Properties. And the macro TestDSOD runs even though the file is not "Structured Storage". But how do we know whether a file is OLE (Structured Storage) or not?

Sub TestDSOE()

Dim myDSO As New DSOFile.OleDocumentProperties

'First we try a txt file

myDSO.Open "C:\test.txt", True

If myDSO.IsOleFile = False Then

MsgBox "The file is not Structured Storage."

Else

MsgBox "Structured Storage File Found."

End If

myDSO.Close

'Now for the DGN File

myDSO.Open "C:\test.dgn", True

If myDSO.IsOleFile = False Then

MsgBox "The file is not Structured Storage."

Else

MsgBox "Structured Storage File Found."

End If

myDSO.Close

End Sub

The "IsOleFile" property lets us know whether the file is an OLE Document (Structured Storage) or a non-OLE Document. This is important to know because non-OLE Documents are limited in their use of properties.

In addition to SummaryProperties (standard properties), we can create, read, and write Custom Properties.

Sub TestDSOF()

Dim myDSO As New DSOFile.OleDocumentProperties

myDSO.Open "C:\test.dgn", False

If myDSO.IsOleFile = True Then

myDSO.CustomProperties.Add "For Book", _ "Learning MicroStation VBA"

myDSO.Save

End If

myDSO.Close

End Sub

In this example, we are adding a Custom Property to the specified file IF the file is an OLE File (Structured Storage). After the Custom Property is added, it shows up in the Windows Explorer Properties dialog box under the Custom Tab.

[image: Image]

The ability to add Custom File Properties is powerful. We may want to store information regarding the number of Cells in a design file in a custom property. If we do, VBA programming (from within MicroStation or any other VBA environment) can read and write the property. This is true even if MicroStation is not installed.

A link was provided to the DSOFile.exe download page earlier. The file is also located on the CD that accompanies this book.

For additional information regarding the reading and writing of File Properties, Microsoft’s website has documentation and code examples on it. Searching for "Dsofile" on the Internet provides a large number of results as well.

REVIEW

One of the powers of VBA is that we are not limited to the calls directly exposed by VBA. We can make use of other programming components developed by others to speed development and augment functionality. We have discussed a few References that, when added, can add significant power to the software we develop.

Opening the References dialog box in VBA, adding a Reference, and opening the Object Browser is a great way to familiarize ourselves with the functionality exposed by any Reference on our computers.

[image: Image]

34 Working With Excel

	
Microsoft Excel is used for a great variety of things. A large number of us use it, even though we may use it differently. Many of us use it for calculations. Others use it for generating charts and graphs. Others use it to balance their checkbook.

In the examples in this chapter we will be writing our code in MicroStation’s VBA environment. In a later chapter we will write code in Excel’s VBA environment.

In this Chapter

[image: Image] Connecting to Excel

[image: Image] Workbooks, Worksheets, Ranges, and Cells

[image: Image] Tag Extraction into Excel

CONNECTING TO EXCEL

There are three ways to 'connect' to Excel. We will begin by using "GetObject".

GetObject

Sub TestExcelA()

Dim myExcel As Object

Set myExcel = GetObject(, "Excel.Application")

End Sub

GetObject 'gets' an existing instance of Microsoft Excel.

If Excel is not running, we see an error when we attempt to 'get' Excel.

[image: Image]

When we see this error, we know we just attempted to "Get" Excel and Excel was not running. If Excel is running, the macro TestExcelA runs without any problems. But what does TestExcelA do?

We declare a variable, myExcel as an Object. Then we Set the variable to the return value of GetObject. After the variable myExcel is set, it is the Microsoft Excel Application. Everything we do to the variable myExcel impacts Excel.

When we declare a variable as an 'Object', we are performing "Late Binding". This means that before the Object is Set, the Object doesn’t know who or what it is. When we declare a variable as a specific type of object, we are performing "Early Binding".

Adding a Reference to the Microsoft Excel Object Library does wonders for our programming efforts.

[image: Image]

Once a Reference is made, we can declare variables as specific types of Objects.

Sub TestExcelB()

Dim myExcel As Excel.Application

Set myExcel = GetObject(, "Excel.Application")

End Sub

The code looks very similar to TestExcelA but the difference is enormous. In TestExcelB we are performing "Early Binding". The variable myExcel knows it is an Excel.Application because it is declared as an Excel.Application. In addition to knowing what it is, the variable myExcel knows what it can do. For example, when we type 'myexcel' and then press the period key, a list pops up telling us what the object 'myexcel' can do. From this variable we can get the ActiveSheet, the ActiveWindow, the ActiveWorkbook, and a host of other things.

[image: Image]

Early Binding not only improves the speed of software development because of Intellisense, but it improves performance as well.

CreateObject

If Microsoft Excel is not running or if we want to create a new instance of the Excel.Application, we can use CreateObject.

Sub TestExcelD()

Dim myExcel As Excel.Application

Set myExcel = CreateObject("Excel.Application ")

myExcel.Visible = True

myExcel.Workbooks.Add

End Sub

TestExcelD creates a new instance of Excel. It does not matter whether or not Excel had been running, a new instance of Excel is created.

CreateObject can be useful if multiple instances of Excel are running. When we use GetObject, we do not know beforehand which instance of Excel we will 'get'. When we use CreateObject, we know exactly which "Excel.Application" we are using because it is a new instance created.

New

When a Reference to the "Excel Library" has been added to our VBA project, VBA understands what an Excel.Application Object is. If a Reference has been added, we can use the New keyword to 'create' an Object.

Sub TestExcelD2()

Dim myExcel As New Excel.Application

myExcel.Visible = True

myExcel.Workbooks.Add

End Sub

Using New instead of CreateObject can be useful because we do not need to supply the Class "Excel.Application" as we do with CreateObject. And why is this useful? Because it is possible to have multiple versions of an application that has been exposed to VBA and using the New keyword will 'create' the version that is referenced.

GetObject, CreateObject, and New are the methods we use to 'connect' to Microsoft Excel. When we add a Reference to the Microsoft Excel Object Library, we can declare variables as specific types of objects (Early Binding). VBA helps us as we work with these variables by performing syntax checking and also helps us know what properties, methods, and events we can utilize.

WORKBOOKS, WORKSHEETS, RANGES, AND CELLS

When we use GetObject, CreateObject, or New, we are getting the Excel.Application Object. Directly under this object is the Workbooks Collection (among other things). Workbooks are composed of Worksheets and Worksheets are composed of Ranges and Cells.

[image: Image]

This Workbook has three Worksheets. They are named "SimpleGrid", "ComplexGrid" and "Sheet3". We are currently looking at "SimpleGrid".

The ActiveSheet of this Excel.Application is "SimpleGrid". The ActiveCell of this Excel.Application has the Address "A1". Its Row and Column is (1, 1) respectively.

Let’s take a look at the Worksheets collection and Worksheet Objects.

Sub TestExcelE()

Dim myExcel As Excel.Application

Dim mySheetA As Worksheet

Dim mySheetB As Worksheet

Dim mySheetC As Worksheet

Dim mySheetD As Worksheet

Set myExcel = GetObject(, "Excel.Application")

Set mySheetA = myExcel.ActiveSheet

Set mySheetB = myExcel.ActiveWorkbook.Worksheets("SimpleGrid")

Set mySheetC = myExcel.ActiveWorkbook.Worksheets("ComplexGrid")

Set mySheetD = myExcel.ActiveWorkbook.Worksheets("Sheet3")

Debug.Print mySheetA.Name

Debug.Print mySheetB.Name

Debug.Print mySheetC.Name

Debug.Print mySheetD.Name

Set mySheetB = myExcel.ActiveWorkbook.Worksheets(1)

Set mySheetC = myExcel.ActiveWorkbook.Worksheets(2)

Set mySheetD = myExcel.ActiveWorkbook.Worksheets(3)

Debug.Print mySheetB.Name

Debug.Print mySheetC.Name

Debug.Print mySheetD.Name

End Sub

We can address Worksheets by getting the ActiveSheet or through the Worksheets Collection by Name or by Index.

Now that we can get the Worksheets, let’s see what we can do about getting individual Cells.

Sub TestExcelF()

Dim myExcel As Excel.Application

Dim mySheetA As Worksheet

Set myExcel = GetObject(, "Excel.Application")

Set mySheetA = myExcel.ActiveWorkbook.Worksheets("SimpleGrid")

MsgBox mySheetA.Range("B1").Text

End Sub

[image: Image]

One of the ways we can address individual Cells is by getting to them through the Range Object. When we use the Range object, we get the cell by its address. "A1", "C6", "F9", etc. Using an Address such as "A4" is helpful because we can directly relate that to what we see in Excel.

The other way we work with Cells in Excel is through the use of the Cells Collection.

When we work with the Cells Collection we specify the RowIndex and then the ColumnIndex. Row 1 in Excel has a RowIndex of 1 and Column "A" in Excel has a ColumnIndex of 1. We need to make sure we specify the Row before the Column when working with the Cells collection.

[image: Image]

Sub TestExcelG()

Dim myExcel As Excel.Application

Dim mySheetA As Worksheet

Set myExcel = GetObject(, " Excel.Application")

Set mySheetA = myExcel.ActiveWorkbook.Worksheets("SimpleGrid")

MsgBox mySheetA.Cells(4, 6).Text

End Sub

A MessageBox displays the text found in the cell on the 4th row and 6th column.

Getting a Cell based on its Row and Column does not seem as easy as getting it based on its Address. So, why would we go through the trouble of Rows and Columns?

Sub TestExcelH()

Dim myExcel As Excel.Application

Dim mySheetA As Worksheet

Dim CurRow As Long

Dim CurCol As Long

Set myExcel = GetObject(, "Excel.Application")

Set mySheetA = myExcel.ActiveWorkbook.Worksheets("SimpleGrid")

For CurRow = 1 To 7

For CurCol = Asc("A") To Asc("F")

Debug.Print mySheetA.Range(Chr(CurCol) & CurRow)

Next CurCol

Next CurRow

End Sub

Sub TestExcelJ()

Dim myExcel As Excel.Application

Dim mySheetA As Worksheet

Dim CurRow As Long

Dim CurCol As Long

Set myExcel = GetObject(, "Excel.Application")

Set mySheetA = myExcel.ActiveWorkbook.Worksheets("SimpleGrid")

For CurRow = 1 To 7

For CurCol = 1 To 6

Debug.Print mySheetA.Cells(CurRow, CurCol)

Next CurCol

Next CurRow

End Sub

Both TestExcel H and TestExcel J print the values of a grid of cells to the Immediate Window. TestExcel H can do this easily because we are dealing with columns A to F. The same code would work with columns A to Z. But what happens when we get to column "AA"? When we work with Range objects, we specify the column with its letter designation of anything from "A" to "IV". Writing code that flows from "Z" to "AA" is not difficult but cumbersome. When we use the Cells collection, we simply specify column 27 after we finish with column 26 without worrying about whether we are going from Column Z to AA, AB, and so forth.

So, which is best? The Cells Collection or the Range Collection?

As we have discussed, each has its strengths and weaknesses. Providing a Row and Column numerically is easy to do but difficult to 'translate' the Cell Column to a lettered Column in Excel. What is the lettered Column Name associated with column 211?

Ranges are great especially when dealing with a relatively small set of data (Columns A through Z particularly) but become more difficult to work with when we get to Columns AA through IV. Ranges, however, can also consist of multiple cells (from Al through D4 for example). So, that is a definite strength.

If we work with Cells (providing numbers for the columns as well as the rows), we can help ourselves a little by changing a setting in Microsoft Excel.

Tools > Options in Excel displays the Options dialog box. Clicking on the General tab allows us to turn on "R1C1 reference style". When "R1C1 reference style" is turned on, Columns in Excel appear as Numbers instead of letters. The formulas in Cells are modified to use the R1C1 style so they will look odd but as far as programming for Microsoft Excel, seeing the Column Number is a lot easier than counting out "AA", "AB", "AC" to find out what the Column Index is of Column "DC".

[image: Image]

After selecting "R1C1", Columns appear as numbers instead of letters:

[image: Image]

Cell and Range Addresses

Each Cell in Excel has a large number of properties. We will concern ourselves with only a few of them in this book. The first one we will look at is the Address.

Sub TestExcelL()

Dim myExcel As Excel.Application

Dim mySheetA As Worksheet

Dim CurRow As Long

Dim CurCol As Long

Dim myCell As Excel.Range

Set myExcel = GetObject(, "Excel.Application")

Set mySheetA = myExcel.ActiveWorkbook.Worksheets("SimpleGrid")

For CurRow = 1 To 7

For CurCol = 1 To 6

Set myCell = mySheetA.Cells(CurRow, CurCol)

Debug.Print myCell.Address(True, True, xlA1) & vbTab & _

myCell.Address(True, True, xlR1C1)

Next CurCol

Next CurRow

End Sub

We can get the Address of a Cell (declared as a Range object) in the "xlA1" format or the "xlR1C1" format. As we have just been discussing, the "xlA1" format gives us the column as a letter and the row as a number. The "xlR1C1" format gives us both the column and row as numbers as shown in the Immediate Window after running TestExcelL.

[image: Image]

As we see here, Addresses are returned in one of two ways. "D2" and "R2C2" are referring to the same cell in Excel.

Addresses are important to understand because we may need to know which cells the user has selected. For example, how do we know if the user has selected the Range "B2" to "B7" or "D2" to "D5"?

Sub TestExcelM()

Dim myExcel As Excel.Application

Dim mySelection As Excel.Range

Set myExcel = GetObject(, "Excel.Application")

Set mySelection = myExcel.Selection

Debug.Print mySelection.Address(True, True, xlR1C1)

End Sub

[image: Image]

In this example, the selection was "B2" through "B7" (2,2 to 7,2).

The colon (:) tells us "B2" through "B7" have been selected. There are other ways to select cells in Excel.

[image: Image]

When we usually select cells in Excel we select a range of adjacent cells. For example, we may select "D4" through "G12". It is possible, however, to hold down the <CTRL> key and select cells that are not adjacent to one another. As we can see below, four different cells have been selected now, B2, C4, E5, and F6. The commas indicate that individual cell addresses are being given.

[image: Image]

Here we see what we get when the range of "B2" through "B5" are selected AND "D2" AND "D5".

In the previous examples, we knew exactly from which cells we wanted to get values. Our next example is going to display the values of the selected cells. We will begin by assuming that a range of cells is selected instead of individual cells.

Sub TestExcelN()

Dim myExcel As Excel.Application

Dim mySelection As Excel.Range

Dim mySheet As Excel.Worksheet

Dim StartRow As Long: Dim StartCol As Long

Dim EndRow As Long: Dim EndCol As Long

Dim X As Long: Dim Y As Long

Dim XSplitA As Variant: Dim XSplitB As Variant: Dim XSplitC As Variant

Set myExcel = GetObject(, " Excel.Application")

Set mySelection = myExcel.Selection

Set mySheet = myExcel.ActiveSheet

XSplitA = Split(mySelection.Address(True, True, xlR1C1), ":")

XSplitB = Split(XSplitA(0), "C")

XSplitC = Split(XSplitA(1), "C")

StartRow = Replace(XSplitB(0), "R", "")

StartCol = XSplitB(1)

EndRow = Replace(XSplitC(0), "R", "")

EndCol = XSplitC(1)

For Y = StartRow To EndRow

For X = StartCol To EndCol

Debug.Print mySheet.Cells(Y, X).Text

Next X

Next Y

End Sub

In this example, we discover the beginning Row and Column as well as the ending Row and Column. Then we look at each cell in the range and print the Text property of the cell to the Immediate Window.

Sub TestExcelP()

Dim myExcel As Excel.Application

Dim mySelection As Excel.Range

Set myExcel = GetObject(, "Excel.Application")

Set mySelection = myExcel.Selection

Dim myCell As Range

For Each myCell In mySelection

Debug.Print myCell.Address & vbTab & myCell.Text

Next

End Sub

[image: Image]

TestExcelN and TestExcelP are very much alike. They accomplish the same thing. In TestExcelP, we are 'extracting' the address as well. So, if each of these is doing the same thing, which one is the best one? Fewer lines of code is good. Knowing how to break out the Address is good too. Each has its benefits. One is not necessarily better than the other, they are just different.

Here is another macro to consider. Instead of extracting the Address as "A1" style, we will extract it in (Row, Col) style.

Sub TestExcelQ()

Dim myExcel As Excel.Application

Dim mySelection As Excel.Range

Dim myCell As Range

Dim strAdd As String

Set myExcel = GetObject(, "Excel.Application")

Set mySelection = myExcel.Selection

For Each myCell In mySelection

strAdd = myCell.Address(True, True, xlR1C1)

strAdd = Replace(strAdd, "R", "")

strAdd = Replace(strAdd, "C", ",")

Debug.Print "(" & strAdd & ")" & vbTab & myCell.Text

Next

End Sub

[image: Image]

We need to remember that when we are dealing with Excel, we are looking at (Row, Col). The Row comes first. When we are accustomed to dealing with (X, Y) this can take a little getting used to because Excel thinks in terms of (Y, X).

So far we have done a lot of 'pulling' from Excel. Let’s try doing a little 'pushing' now. We are going to change a cell’s value, a cell’s formula, and then perform a Copy and Paste operation.

Sub TestExcelR()

Dim myExcel As Excel.Application

Dim mySheet As Worksheet

Set myExcel = GetObject(, " Excel.Application")

Set mySheet = myExcel.ActiveSheet

'Give B1 a new Value

mySheet.Range("B1").Value = 70

'Give B2 a new Formula

mySheet.Range("B2").Formula = "=B$1*$A2*52"

'Copy B2 to the Windows Clipboard

mySheet.Range("B2").Copy

'Select B2 through F7

mySheet.Range("B2", "F7").Select

'Paste copied formula to selected cells

mySheet.Paste

'Select B2

mySheet.Range("B2").Select

'Reset Cut/Copy Mode

myExcel.CutCopyMode = False

End Sub

The code is very straightforward and simple. Comments proceed each line where we make modifications to the Excel file.

TestExcelR is making changes to the "ActiveSheet".

Working with Worksheets

As we know, multiple Worksheets can be found in a single Workbook. Let’s take a look at working with multiple Worksheets.

Sub TestExcelS()

Dim myExcel As Excel.Application

Dim myWB As Excel.Workbook

Dim myWSA As Excel.Worksheet

Dim myWSB As Excel.Worksheet

Dim myWSC As Excel.Worksheet

Dim RadValue As Double

Dim InchValue As Double

Dim FeetValue As Double

Dim CurRow As Long

Set myExcel = GetObject(, "Excel.Application")

Set myWB = myExcel.ActiveWorkbook

Set myWSA = myWB.Worksheets("Sheet1")

Set myWSB = myWB.Worksheets("Sheet2")

Set myWSC = myWB.Worksheets("Sheet3")

'Merge Header Rows

myWSA.Range("A1", "D1").Merge True

myWSB.Range("A1", "D1").Merge True

myWSC.Range("A1", "D1").Merge True

'Add Titles

myWSA.Range("A1").Value = "Degrees"

myWSA.Range("A1").HorizontalAlignment = xlCenter

myWSB.Range("A1").Value = "Inches"

myWSB.Range("A1").HorizontalAlignment = xlCenter

myWSC.Range("A1").Value = "Feet"

myWSC.Range("A1").HorizontalAlignment = xlCenter

'Add Values

myWSA.Range("A2").Value = "Degrees"

myWSA.Range("B2").Value = "Radians"

CurRow = 3

For RadValue = 0 To 360 Step 5

myWSA.Range("A" & CurRow) = RadValue

myWSA.Range("B" & CurRow).Value = RadValue * Atn(1) * 4 / 180

CurRow = CurRow + 1

Next RadValue

CurRow = 3

myWSB.Range("A2") = "Inch"

myWSB.Range("B2") = "Centimeter"

For InchValue = 1 To 36

myWSB.Range("A" & CurRow) = InchValue

myWSB.Range("B" & CurRow).Formula = "=A" & CurRow & " * 2.54"

CurRow = CurRow + 1

Next InchValue

CurRow = 3

myWSC.Range("A2") = "Feet"

myWSC.Range("B2") = "Miles"

For FeetValue = 0 To 20000 Step 1000

myWSC.Range("A" & CurRow) = FeetValue

myWSC.Range("B" & CurRow).Formula = "=A" & CurRow & " / 5280"

CurRow = CurRow + 1

Next FeetValue

End Sub

TestExcelS is making use of three different Worksheets in the same Workbook. We do not need to switch to the actual Worksheet before we can use it, we simply address it by its name (Sheet1, Sheet2, Sheet3).

Excel is used to house a great deal of information. One thing it can be used for is holding X, Y, and Z coordinates for points. Let’s take a look at our first example.

We use the Excel Function RAND to help us generate a random number. This helps us generate points that fall within a specific area.

Here are the formulas:

[image: Image]

The X and Y values are set to be randomly generated between -50 and 50 whereas the Z value will be calculated to be between -25 and 25.

The RAND function re-calculates the values whenever the Worksheet is recalculated. The values don’t 'stick', so one persons values will differ from another person’s values.

Now that we have seen the formulas, let’s take a look at the values generated.

[image: Image]

For this example, the number of rows is not fixed. We can have anywhere from 1 data row to 65,536 rows. The code we will work with begins by looking on Row 2 and continues executing until it finds a row where Column A is empty.

Sub TestExcelT()

Dim myExcel As Excel.Application

Dim myWSA As Excel.Worksheet

Dim CurRow As Long

CurRow = 2

Set myExcel = GetObject(, "Excel.Application")

Set myWSA = myExcel.ActiveWorkbook.Worksheets("Sheet1")

While myWSA.Cells(CurRow, 1) <> ""

Debug.Print myWSA.Cells(CurRow, 1) & ", " & _

myWSA.Cells(CurRow, 2) & ", " & _

myWSA.Cells(CurRow, 3)

CurRow = CurRow + 1

Wend

myWSA.Calculate

End Sub

If we have a specific number of rows we want to extract, we could use a For I … Next structure. But since the number of rows may vary, we use a While … Wend structure.

The last line of code forces the Worksheet to recalculate, which generates new random numbers for us.

Let’s build upon TestExcelT by drawing inside MicroStation.

Sub TestExcelU()

Dim myExcel As Excel.Application

Dim myWSA As Excel.Worksheet

Dim CurRow As Long

Dim myPoint As Point3d

Dim myTextNode As TextNodeElement

Dim myRotMatrix As Matrix3d

CurRow = 2

Set myExcel = GetObject(, "Excel.Application")

Set myWSA = myExcel.ActiveWorkbook.Worksheets("Sheet1")

While myWSA.Cells(CurRow, 1) <> ""

myPoint.X = myWSA.Cells(CurRow, 1)

myPoint.Y = myWSA.Cells(CurRow, 2)

myPoint.Z = myWSA.Cells(CurRow, 3)

Set myTextNode = CreateTextNodeElement1(Nothing, myPoint, myRotMatrix)

myTextNode.AddTextLine CurRow - 2

ActiveModelReference.AddElement myTextNode

CurRow = CurRow + 1

Wend

myWSA.Calculate

End Sub

Our Worksheet has a column for "Level". In the above example we are not making use of it. Let’s build upon TestExcelU now and place the TextNode on a specific Level.

If we attempt to place an Element on a Level that does not exist, we will get an error. Let’s create a new Function named CheckLevel that creates a Level if it does not exist. We will use this Function inside TestExcel V.

Function CheckLevel(LevelName As String) As Level

On Error Resume Next

Set CheckLevel = ActiveDesignFile.Levels(Level Name)

If Err.Number <> 0 Then

Set CheckLevel = ActiveDesignFile.AddNewLevel(Level Name)

End If

Err. Clear

End Function

Sub TestExcelV()

Dim myExcel As Excel.Application

Dim myWSA As Excel.Worksheet

Dim CurRow As Long

Dim myPoint As Point3d

Dim myTextNode As TextNodeElement

Dim myRotMatrix As Matrix3d

CurRow = 2

Set myExcel = GetObject(, "Excel.Application")

Set myWSA = myExcel.ActiveWorkbook.Worksheets("Sheet1")

While myWSA.Cells(CurRow, 1) <> ""

myPoint.X = myWSA.Cells(CurRow, 1)

myPoint.Y = myWSA.Cells(CurRow, 2)

myPoint.Z = myWSA.Cells(CurRow , 3)

Set myTextNode = CreateTextNodeElement1(Nothing, _ myPoint, myRotMatrix)

myTextNode.AddTextLine CurRow - 2

CheckLevel CStr(myWSA.Cells(CurRow, 4))

myTextNode.Level = CheckLevel(myWSA.Cells(CurRow, 4))

ActiveModelReference.AddElement myTextNode

CurRow = CurRow + 1

Wend

myWSA.Calculate

End Sub

Notice how the Function CheckLevel returns a Level Object. We use this Level Object after we create the TextNode so the TextNode appears on the correct Level.

TAG EXTRACTION

When we discussed Tags in a previous chapter we stated that we would see an example of extracting Tag information into Microsoft Excel. We will begin by modifying the macro ExportFolderTagsToHTML In this macro, we had created an HTML document that displays the Tag information of files in a specific folder.

Sub TestExcelW()

Dim myDGN As DesignFile

Dim myFSO As New Scripting.FileSystemObject

Dim myFolder As Scripting.Folder

Dim myFile As Scripting.File

Dim myTagSet As TagSet

Dim myTagDef As TagDefinition

Dim TargetTagset As String

Dim myTag As TagElement

Dim myElemEnum As ElementEnumerator

Dim myFilter As New ElementScanCriteria

'New Declarations

Dim myExcel As Excel.Application

Dim myWS As Excel.Worksheet

Dim CurRow As Long

'New Code

Set myExcel = New Excel.Application

myExcel.Visible = True

myExcel.Workbooks.Add

Set myWS = myExcel.ActiveSheet

CurRow = 2

TargetTagset = "TitleBlock"

Set myFolder = myFSO.GetFolder("C:\Documents and Settings\" & _

"All Users\Application Data\" & _

"Bentley\WorkSpace\Projects\" & _

"Examples\Building\Dgn")

For Each myFile In myFolder.Files

Select Case myFile.Type

Case "Bentley MicroStation Design File"

'File Name and Merge Cells myWS.Cells(CurRow, 1) = myFile.Path

myWS.Range("A" & CurRow & ":F" & CurRow).MergeCells = True

myWS.Range("A" & CurRow, "F" & CurRow).BorderAround _ , xlThick

'Header

CurRow = CurRow + 1

myWS.Range("B" & CurRow) = "Tag Set Name"

myWS.Range("B" & CurRow).Font.Bold = True

myWS.Range("C" & CurRow) = "Tag Name"

myWS.Range("C" & CurRow).Font.Bold = True

myWS.Range("D" & CurRow) = "Tag Value"

myWS.Range("D" & CurRow).Font.Bold = True

myWS.Range("E" & CurRow) = "ID High"

myWS.Range("E" & CurRow).Font.Bold = True

myWS.Range("F" & CurRow) = "ID Low"

myWS. Range("F" & CurRow).Font.Bold = True

CurRow = CurRow + 1

'Open the File

Set myDGN = Application.OpenDesignFileForProgram(_ myFile.Path, True)

For Each myTagSet In myDGN.TagSets

Select Case UCase(myTagSet.Name)

Case UCase(TargetTagset)

myFilter.ExcludeAllTypes

myFilter.IncludeType msdElementTypeTag

Set myElemEnum = _

myDGN.Models(1).Scan(myFilter)

While myElemEnum.MoveNext

Set myTag = myElemEnum.Current

'Write to Excel

myWS.Cells(CurRow, 2) = TargetTagset

myWS.Cells(CurRow, 3) = _

myTag.TagDefinitionName

myWS.Cells(CurRow, 4) = myTag.Value

myWS.Cells(CurRow, 5) = myTag.ID.High

myWS.Cells(CurRow. 6) = myTag.ID.Low

CurRow = CurRow + 1

Wend

End Select

Next

myDGN.Close

End Select

Next

End Sub

The code here is very similar to that in Chapter 28. We open each file "ForProgram", and extract Title Block Information from the Tags in the files. We are doing a little bit of formatting as well. We merge a few cells where the file name is, and draw a border around it. We also change the font.Bold property of the 'headers' to True.

[image: Image]

Getting the Tag Name and Value are helpful in a variety of areas. But getting the ID values (both High and Low) are helpful as well. Now that the Tag information is inside Excel, we can make changes to the Tags in Excel and then run a Macro to update the .dgn files.

[image: Image]

If, for example, the Job Number is changed from "BSI300" to "BSI300A", we could make the change in Excel and run the macro TestExcelX to update the BSI300AE301-Elevations.dgn file.

Sub TestExcelX()

Dim myDGN As DesignFile

Dim myTag As TagElement

Dim myExcel As Excel.Application

Dim myWS As Excel.Worksheet

Dim CurRow As Long

Dim FileRow As Long

Set myExcel = GetObject(, "Excel.Application")

Set myWS = myExcel.ActiveSheet

CurRow = myExcel.ActiveCell.Row

FileRow = CurRow

While myWS.Cells(FileRow, 1).MergeCells = False

FileRow = FileRow - 1

Wend

Set myDGN = Application.OpenDesignFileForProgram(_

myWS.Cells(FileRow, 1), False)

Dim my ID As DLong

myID.High = myWS.Cells(CurRow, 5)

myID.Low = myWS.Cells(CurRow, 6)

Set myTag = myDGN.GetElementByID(myID)

myTag.Value = myWS.Cells(CurRow, 4)

myTag.Rewrite

myDGN.Save

myDGN.Close

End Sub

Once we extract Tags from MicroStation, we want to allow the user to change the values in Excel. The currently selected Cell in Excel is very important in this macro because it tells us which Tag to modify.

The Row of the currently selected Cell in Excel is retrieved. We look upward until we find a row where column A (Column 1) is merged. When we find a merged Column we know that we have found the row where the file name is stored. This is the file in which the selected Tag (actually the selected Cell in Excel) is located. We open the file, get the Tag Element by using the ID.High and ID.Low values, change the Tag’s value to reflect what is in Excel, Rewrite the Tag Element to the DGN file, and then save and close the .DGN file. This is all done in a very short period of time and the user does not see the DGN file open because we are using OpenDesignFileForProgram.

If we open the file, we can see that the Tag Element has been modified to reflect the value in Excel.

These macros are very powerful because they allow us to extract data from MicroStation files, and 'modify' them at any time without using MicroStation, and then 'upload' the modifications back into the MicroStation file.

We could build on this macro to update all Tags in the Excel file. But we will allow the reader to do this.

[image: Image]

REVIEW

Any area we have already discussed relating to Element Creation, Data Extraction, etc., can be used in conjunction with Microsoft Excel. We have used Excel to extract data from MicroStation, to create data inside MicroStation, and to modify data inside MicroStation. Those who use Microsoft Excel in conjunction with MicroStation will find that many manual, time-consuming, tedious, error-prone tasks can be accomplished with the marriage of these two great technologies.

[image: Image]

35 Working With Databases (ActiveX Data Objects)

Access, Oracle, DB2, SQL Server. When there’s data to be stored, there is no shortage of Database platforms to store it. Rather than spending time on each Database, we will devote our time to learning about ActiveX Data Objects because with ActiveX Data Objects, we can 'talk' to each of these database products.

In this Chapter:

[image: Image] Primer on ActiveX Data Objects

[image: Image] UDL File Basics

[image: Image] Connections and Recordsets

[image: Image] Structured Query Language Essentials

[image: Image] Extending ActiveX Data Objects

[image: Image] Examining Database Schema

[image: Image] Excel Files as Databases

PRIMER ON ACTIVEX DATA OBJECTS

ActiveX Data Objects is a technology created by Microsoft that allows for simple yet powerful communication with Databases. Which Databases? Virtually any Database that is 'open'. And what does 'open' mean? Microsoft Access is 'open'. SQL Server is open. Oracle is 'open'. Mainstream databases are 'open'. We can work with them through standard VBA / ADO (ActiveX Data Objects) calls. Some databases, however, are proprietary and as such, are not designed to allow software developers to work with them. So, in general, most databases available to us can be accessed through the use of ActiveX Data Objects.

ActiveX Data Objects allow us to work with databases through the use of several key Objects. Before using "ActiveX Data Objects", we must add a Reference to it. Let’s do so right now.

[image: Image]

When we look in the References dialog box in VBA, we may see a number of different "ActiveX Data Objects" libraries. In general, it is best to select the highest Library version available. In this example, Version 2.8 is the highest one.

After adding a Reference to the "Microsoft ActiveX Data Objects 2.8 Library", new Objects and Constants are exposed and available for our use. We can see them by looking at the Object Browser and filtering on the "ADODB" Library.

Selecting the "Connection" Object displays the Methods, Properties, and Events.

[image: Image]

When we select the "Open" method, we can see the Open declaration.

A few Objects worth examining for a moment are "Connection", "Recordset", and "Field". We will be working with these Objects and their Methods and Properties. Look for Methods such as Open, Update, Execute, and AddNew.

In a nutshell, ActiveX Data Objects allow us to open a Database, query its records, modify its records, add new records, etc. Before doing much with ActiveX Data Objects, however, we need to have a database to work with.

The USGS (United States Geographic Survey) maintains a system named the "Geographic Names Information System" (GNIS). The Geographic Names from several states have been imported into a Microsoft Access Database named PlacePoints.mdb. This file is located on the CD accompanying this book. This will be the first database we work with in this chapter.

Here is a screen capture of some of the data in this database. Notice the Fields (Columns) and each Record (Rows).

[image: Image]

UDL FILE BASICS

ActiveX Data Objects gives us a framework to interact with databases. We can use Connection Strings to specify the location of the database we want to work with and which driver should be used to connect to the database. Connection Strings are often times hard-coded. This means that the Connection String appears in our code and we must change the code if any portion of the Connection String changes. Connection Strings can also be read from configuration files or from the Windows Registry. Another way to specify the driver and database location is through the use of a UDL file.

The steps to creating a UDL file are very simple. They are described in Windows' Help File and can be found by typing 'udl' in the search box.

[image: Image]

1 Open Windows Explorer.

2 Go to Tools > Folder Options.

[image: Image]

3 In the View tab, uncheck the "Hide extensions for known file types"

4 Right-click in the folder where the UDL file is to be created and select New > Text Document.

[image: Image]

5 A file such as New Text Document.txt is displayed and is ready to be renamed.

[image: Image]

6 Type the name of the UDL file followed by the extension ".udl" and press <Enter>.

[image: Image]

7 When asked if you are sure the file extension should be changed, click the Yes button.

 The new UDL file is created. Now we need to open the UDL file and tell it which driver we want to use (based on the database we are connecting to) and where the database is located.

8 Open the UDL file by double-clicking it in Windows Explorer.

[image: Image]

9 In the Provider tab, select "Microsoft Jet X.X OLE DB Provider".

10 In the Connection tab, browse to the PlacePoints.mdb file.

11 Click the OK button.

Congratulations. Once the basics of UDL file creation are understood, UDL files can be created very quickly.

When we are in the Provider tab, the list of available 'Providers' may vary from computer to computer. A review of the Providers list shows which databases we can work with. In the screen capture previously shown, we can see a driver for Oracle, SQL Server, Visual Fox Pro, Jet, and ODBC among others. Any provider with 'Jet' in its name is referring to the driver used to open a Microsoft Access database.

CONNECTIONS, RECORDSETS, AND MORE

Now that we have a Database (PlacePoints.mdb) and a UDL file (PlacePoints.udl) we can begin working with Connections and Recordsets in our code.

The Connection Object is 'connected' to the database. It is the first step to working with the data in the database. Let’s look at our first example:

Sub TestConnectionA()

Dim myDB As New ADODB.Connection

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myDB.Close

End Sub

In our first example, we open a Connection by using the UDL file we just created and then we immediately close the database connection. Notice how the variable myDB is declared. It is declared as a "New ADODB.Connection".

In addition to declaring a Connection as a "New ADODB.Connection", we can declare it as an "ADODB.Connection" and then set the variable to a "New ADODB.Connection" as we see in TestConnectionB.

Sub TestConnectionB()

Dim myDB As ADODB.Connection

Set myDB = New ADODB.Connection

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl "

myDB.Close

End Sub

Instead of Declaring the Connection as New, we set it to a New ADODB.Connection on the following line. Aside from the fact that the second example uses an additional line of code, the difference between the two methods is negligible.

Opening and immediately Closing a Connection does not help us at all. Let’s do something with the Connection before we close it now.

Sub TestConnectionC()

Dim myDB As ADODB.Connection

Set myDB = New ADODB.Connection

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myDB.Execute "Create Table PlaceNotes " & _

"(UniqueID Counter, PlaceID Long)"

myDB.Close

End Sub

The Execute Method allows us to execute SQL statements on the Connection Object. In the above example, we create a new Table named "PlaceNotes" with two fields. Here are a few additional examples of using the Execute Method.

TestConnectionD adds two more fields to the PlaceNotes table.

Sub TestConnectionD()

Dim myDB As ADODB.Connection

Set myDB = New ADODB.Connection

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myDB.Execute "Alter Table PlaceNotes " & _

"Add NoteBy Char(50), NoteDate Date"

myDB.Close

End Sub

TestConnectionE adds a record to the PlaceNotes table.

Sub TestConnectionE()

Dim myDB As ADODB.Connection

Set myDB = New ADODB.Connection

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myDB.Execute "Insert Into PlaceNotes " & _

"(PlaceID, NoteBy, NoteDate) VALUES " & _

"(1, 'JKW, '" & Now & "')"

myDB.Close

End Sub

TestConnectionF creates an additional field in PlaceNotes.

Sub TestConnectionF()

Dim myDB As ADODB.Connection

Set myDB = New ADODB.Connection

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myDB.Execute "Alter Table PlaceNotes Add TheNote Memo"

myDB.Close

End Sub

TestConnectionG updates all records in PlaceNotes where the NoteBy field is 'JKW' by setting the "TheNote" field value to 'Reviewed'.

Sub TestConnectionG()

Dim myDB As ADODB.Connection

Set myDB = New ADODB.Connection

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myDB.Execute "Update PlaceNotes Set TheNote = 'Reviewed' " &

" Where NoteBy= 'JKW"

myDB.Close

End Sub

This chapter is not meant to be a comprehensive tutorial on SQL (Structured Query Language). It is good, however, to introduce some of the functionality available to us by using standard SQL statements in an Execute statement with the Connection Object.

Opening a Connection is time-consuming. Of course, it doesn’t take weeks, days, hours, or minutes. But it can take a second or two. If we open and close a Connection to a database every time we want to work with it, we will experience a performance hit. In some instances, we may want to open a Connection once and keep it open until the application is terminated. We can look at the Connections State property to determine whether it is open or closed.

Sub TestConnectionH()

Dim myDB As ADODB.Connection

Set myDB = New ADODB.Connection

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

Select Case myDB.State

Case adStateClosed

MsgBox "Connection is Closed."

Case adStateConnecting

MsgBox "Connection is Connecting."

Case adStateExecuting

MsgBox "Connection is Executing."

Case adStateFetching

MsgBox "Connection is Fetching."

Case adStateOpen

MsgBox "Connection is Open."

End Select

myDB.Close

End Sub

TestConnectionH opens a Connection and then looks at each of the possible States by using a Select Case statement.

In TestConnectionJ, we are looking at a real-world example of how we would use the State property. We first look at the variable myDB (which should have been declared in the General Declarations area of the Code Module or User Form) to see if it is closed. If it is closed, we open it by using a UDL file.

Sub TestConnectionJ()

If myDB.State = adStateClosed Then

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

End If

MsgBox "Use the Connection Object Here"

End Sub

It should be noted here that in TestConnectionJ we are not declaring the variable myDB or setting it to a New ADODB.Connection. We are simply checking to see if it is closed. If so, we open it. In order for this procedure to work correctly, the variable myDB must be declared in such a way that it is available to this procedure (Public in a Code Module or in the General Declarations area of the module in which this procedure is located) and instantiated (set to as a New ADODB.Connection). For example,

'General Declarations

Dim myDB as New ADODB.Connection

Now that we can 'connect' to a database by using a UDL file, let’s take a look at the Connections ConnectionString property.

Sub TestConnectionK()

Dim myDB As ADODB.Connection

Set myDB = New ADODB.Connection

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

MsgBox Replace(myDB.ConnectionString, ";", vbCr)

myDB.Close

End Sub

The Connection String is rather lengthy and is delimited with semicolon characters. In the above example, we replace the semicolon (;) with a Carriage Return so we can more clearly see the ConnectionString.

[image: Image]

When we use a UDL file, the Connection String reflects the settings of the UDL file. Although we have been depending on the UDL file, it is possible to open a database and work with it without the use of a UDL file by providing the ConnectionString when we Open the Connection.

Sub TestConnectionL()

Dim myDB As ADODB.Connection

Dim ConnectionStringVals(0 To 2) As String

Set myDB = New ADODB.Connection

ConnectionStringVals(0) = "Provider=Microsoft.Jet.OLEDB.4.0"

ConnectionStringVals(1) = "User ID=Admin"

ConnectionStringVals(2) = "Data Source=" & _

"C:\Microstation VBA\PlacePoints.mdb"

myDB.Open Join(ConnectionStringVals, ";")

MsgBox myDB.State

myDB.Close

End Sub

In TestConnectionL we are opening the same database as we were by using the UDL file PlacePoints.udl but we do so by opening the Connection with a ConnectionString instead of using the UDL file.

Recordsets

The Connection Object is used to 'connect' with the database. The Recordset is used to 'connect' with the Records in the database.

Sub TestRecordsetA()

Dim myDB As ADODB.Connection

Dim myRS As New Recordset

Set myDB = New ADODB.Connection

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myRS.Open "Select * from Points Where County = 'Ventura'", _

myDB, adOpenDynamic , adLockOptimistic

While myRS.EOF = False

Debug.Print myRS("Description")

myRS.MoveNext

Wend

myRS.Close

myDB.Close

End Sub

[image: Image]

In our first example, we use the Recordset Object to return all fields in all records where the field 'County' has a value of 'Ventura'. Even though we are getting all fields (by using the asterisk (*) in the SQL Select statement), we only display the Description of each record in the Immediate Window.

We will cover SQL statements later in this chapter. For now, we are going to keep our attention on the Recordset Object.

In the procedure TestRecordsetA we can see that we use a While … Wend statement and we look at the EOF (End of File) property. As long as the EOF property is False, we continue to print the Description of the current record and then move to the next record. MoveNext is the method that moves the Recordset to the next record.

The Open Method is used to specify which data we want returned, which Connection Object to get it from, what type of cursor we want to use, and what type of record locking we want as we retrieve the data.

Which data do we want? We specify which data we want by using a SQL statement. The Connection Object in the Open method of the Recordset Object points to an active Connection. When we get to the Cursor Type and Locking Method, we should understand what each does and when we may want to use them. The descriptions shown here are taken directly from Microsoft’s website.

Cursor Type Constants:

[image: Image] adOpenDynamic = 2: Uses a dynamic cursor. Additions, changes, and deletions by other users are visible, and all types of movement through the Recordset are allowed, except for bookmarks, if the provider doesn’t support them.

[image: Image] adOpenForwardOnly = 0: Default. Uses a forward-only cursor. Identical to a static cursor, except that you can only scroll forward through records. This improves performance when you need to make only one pass through a Recordset.

[image: Image] adOpenKeyset = 1: Uses a keyset cursor. Like a dynamic cursor, except that you can’t see records that other users add, although records that other users delete are inaccessible from your Recordset. Data changes by other users are still visible.

[image: Image] adOpenStatic = 3: Uses a static cursor, which is a static copy of a set of records that you can use to find data or generate reports. Additions, changes, or deletions by other users are not visible.

Lock Type Constants:

[image: Image] adLockBatchOptimistic = 4: Indicates optimistic batch updates. Required for batch update mode.

[image: Image] adLockOptimistic = 3: Indicates optimistic locking, record by record. The provider uses optimistic locking, locking records only when you call the Update method.

[image: Image] adLockPessimistic = 2: Indicates pessimistic locking, record by record. The provider does what is necessary to ensure successful editing of the records, usually by locking records at the data source immediately after editing.

[image: Image] adLockReadOnly = 1: Indicates read-only records. You cannot alter the data.

The Cursor Type has bearing on a couple of Recordset Properties.

Sub TestRecordsetB()

Dim myDB As ADODB.Connection

Dim myRS As New Recordset

Set myDB = New ADODB.Connection

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myRS.Open "Select * from Points Where County = 'Ventura'", _

myDB, adOpenForwardOnly, adLockReadOnly

MsgBox myRS.RecordCount

myRS.Close

myDB.Close

End Sub

The RecordCount can be a very useful property. When used with 'adOpenDynamic' and 'adOpenForwardOnly', it always returns a value of -1, however. When we use 'adOpenKeyset' and 'adOpenStatic', the Recordset Property gives us the number of records retrieved in the Recordset. For example, when we run TestRecordsetB, we see a RecordCount of -1 no matter how many records we have retrieved due to the Cursor Type specified in the Open statement of the Recordset.

Sub TestRecordsetC()

Dim myDB As ADODB.Connection

Dim myRS As New Recordset

Set myDB = New ADODB.Connection

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myRS.Open "Select * from Points Where County = 'Ventura'", _

myDB, adOpenStatic, adLockReadOnly

MsgBox myRS.RecordCount

myRS.Close

myDB.Close

End Sub

TestRecordsetC displays a RecordCount of 2253.

Sub TestRecordsetD()

Dim myDB As ADODB.Connection

Dim myRS As New Recordset

Set myDB = New ADODB.Connection

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myRS.Open "Select * from Points Where County = 'Ventura'", _

myDB, adOpenDynamic, adLockOptimistic

While myRS.EOF = False

Debug.Print myRS("Description")

myRS.MoveNext

Wend

myRS.MoveFirst

While myRS.EOF = False

Debug.Print myRS("Cell Name")

myRS.MoveNext

Wend

myRS.Close

myDB.Close

End Sub

TestRecordsetD uses the MoveFirst method of the Recordset Object. This allows us to begin at the top of the Recordset and look through the records again, possibly looking for different information.

The Find Method

Now we are going to move on to the Find method of the Recordset Object. It moves the cursor of the current Recordset to the first record below the current record that matches the criteria. It allows us to search inside of the Recordset that has already been populated using a Select Statement. Since it is possible that the Recordset’s Cursor is somewhere in the middle of the Recordset, it is a good idea to use the MoveFirst method of the Recordset so we always begin 'finding' from the top of the Recordset. To make this work well, we are also Ordering the Recordset by the CellName Field. This places all records with the same CellName together in the Recordset.

Sub TestRecordsetE()

Dim myDB As ADODB.Connection

Dim myRS As New Recordset

Set myDB = New ADODB.Connection

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myRS.Open "Select * from Points Where County = 'Ventura' " & _

"Order by CellName", myDB, adOpenDynamic, adLockOptimistic

myRS.Find "CellName = 'Lion Canyon'"

While myRS("Cell Name") = "Lion Canyon"

Debug.Print "Lion Canyon: " & myRS("Description")

myRS.MoveNext

Wend

myRS.MoveFirst

myRS.Find "CellName = 'Oxnard'"

While myRS("CelIName") = "Oxnard"

Debug.Print "Oxnard: " & myRS("Description")

myRS.MoveNext

Wend

myRS.MoveFirst

myRS.Find "CellName = 'Fillmore'"

While myRS("CellName") = "Fillmore"

Debug.Print "Fillmore: " & myRS("Description")

myRS.MoveNext

Wend

myRS.Close

myDB.Close

End Sub

In this example, we are only looking for records where the County = 'Ventura. We use "Order by CellName" so the Recordset is 'sorted' by the CellName field. Then we use the Find method to find the first record where the CellName is 'Lion Canyon'. After looking at each 'Lion Canyon Cell, we move on to looking for the first 'Oxnard' cell. And then we do the same with 'Fillmore'.

The GetString Method

Our next example demonstrates the use of the GetString method of the Recordset Object.

Sub TestRecordsetF()

Dim myDB As ADODB.Connection

Dim myRS As New Recordset

Set myDB = New ADODB.Connection

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myRS.Open "Select Description, CellName from Points " & _

"Where State = 'CA' and PointType = 'school'", _

myDB, adOpenDynamic, adLockOptimistic

Debug.Print myRS.GetString(adClipString, -1, "|", vbCr)

myRS.Close

myDB.Close

End Sub

GetString gets all of the fields of all of the records retrieved in a Recordset and places them into one large String. We specify the delimiters that should appear between Fields as well as the delimiter that is to be used between Rows (records). In this example, we have chosen to retrieve all records by using -1 as the value for the number of records to retrieve. If we used a number such as 5, only the top five records would be returned by GetString. As for the delimiters, we are separating each field with the Pipe symbol (|) and each row with a Carriage Return.

[image: Image]

AddNew and Update

The AddNew and Update methods of the Recordset Object are used to create new records and update the values given to fields. Here are two short examples. We will see additional uses of AddNew and Update as we continue in this chapter.

Sub TestRecordsetH()

Dim myDB As ADODB.Connection

Dim myRS As New Recordset

Set myDB = New ADODB.Connection

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myRS.Open "PlaceNotes", myDB, adOpenDynamic, adLockOptimistic

myRS.AddNew

myRS("PlaceID") = 4

myRS("NoteBy") = "JKW"

myRS("NoteDate") = Now

myRS("TheNote") = "New Note"

myRS.Update

myRS.Close

myDB.Close

End Sub

Sub TestRecordsetJ()

Dim myDB As ADODB.Connection

Dim myRS As New Recordset

Set myDB = New ADODB.Connection

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myRS.Open "Select * from PlaceNotes Where PI ace ID = 1",

myDB, adOpenDynamic, adLockOptimistic

While myRS.EOF = False

myRS("PlaceID") = 14

myRS.Update

myRS.MoveNext

Wend

myRS.Close

myDB.Close

End Sub

In TestRecordsetH, we add a new record to the table. In TestRecordseJ, we query the database and change the PlaceID value in each record retrieved by the SQL statement. In both examples, we use the Update method to apply the field values to the database.

SQL ESSENTIALS

Now that we have discussed attaching to databases by using the Connection Object and the data inside the database by using the Recordset Object, let’s begin looking into the SQL statements that can be used with the Connection and Recordset Objects. We will do this by creating several UserForms.

[image: Image]

The first Form we create is shown above. When the Form loads, we need to query the database for all distinct State values. These values will be added to the State ComboBox.

Select Statement

The Select statement is the basis for many of SQL statements we will use. It allows us to specify which fields we want to retrieve, which tables the fields come from, how to order the records, how to group the fields, etc.

To get the distinct States in the Points table, we use:

Select Distinct State from Points

The Recordset will be populated with a record for each distinct value found in the State field. In our example here, we will place each State field’s value in the ComboBox named cmbState.

Private Sub UserForm_Initialize()

Dim myDB As New ADODB.Connection

Dim myRS As New ADODB.Recordset

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myRS.Open "Select Distinct State from Points", myDB

While myRS.EOF = False

cmbState.AddItem myRS("State")

myRS.MoveNext

Wend

myRS.Close

myDB.Close

End Sub

When the Form is shown, each unique State is added to the combo box. The data for this example is being taken from a database created from information on the USGS website: http://geonames.usgs.gov/stategaz/index.html. Although all 50 United States were available, only two were used. One, California, is a fairly large dataset, and the other, Utah, is| a much smaller dataset. So, in our example here, only two states will be displayed: CA and UT.

When the user selects a State from the cmbState ComboBox, we want to populate the cmbCounty ComboBox with all of the Counties in the selected State. But before adding anything to the cmbCounty ComboBox, we use the Clear method on it as well as on the cmbPointType and lstDescription controls. If we didn’t Clear the ComboBoxes, County names would continue to be added to cmbCounty each time a State was selected so that the cmbCounty ComboBox would no longer display only the Counties from the selected State.

Where

When we use the 'Where' statement, we begin providing the criteria specifying which records we want to retrieve. In this example, we want only records Where the State field is equal to the selected State in the cmbState ComboBox. Since the State field is a String (Text), we use the Apostrophe (') to begin and end the value.

Order By

The Order By statement allows us to specify how we want to sort the Recordset’s records. Multiple fields can be specified. We use "ASC" for Ascending and "DESC" for a Descending sort.

Private Sub cmbState_Click()

Dim myDB As New ADODB.Connection

Dim myRS As New ADODB.Recordset

cmbCounty.Clear

cmbPointType.Clear

lstDescription.Clear

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myRS.Open "Select Distinct County from Points Where State = " & _

" ' " & cmbState.Text & "' Order by County ASC", myDB

While myRS.EOF = False

cmbCounty.AddItem myRS("County")

myRS.MoveNext

Wend

myRS.Close

myDB.Close

End Sub

OK, now when the user clicks a State, the Counties in the database show up in the frmCounty ComboBox. When the user clicks on a County, what should happen? Let’s populate the cmbPointType ComboBox with only those Point Types that appear in records with the selected State and the selected County.

Private Sub cmbCounty_Click()

Dim myDB As New ADODB.Connection

Dim myRS As New ADODB.Recordset

cmbPointType.Clear

lstDescription.Clear

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myRS.Open "Select Distinct, PointType from Points Where State = " & _

" ' " & cmbState.Text & " ' and " & _

"County = '" & cmbCounty.Text & " ' " & _

"Order by PointType ASC", myDB

While myRS.EOF = False

cmbPointType.AddItem myRS("PointType")

myRS.MoveNext

Wend

myRS.Close

myDB.Close

End Sub

When the user clicks on the PointType ComboBox, we see all the Descriptions that match all of the selected criteria in the ComboBoxes. We place the UniqueID in the second column of the Listbox (but hide the column so it is not visible to the end user).

Private Sub cmbPointType_Click()

Dim myDB As New ADODB.Connection

Dim myRS As New ADODB.Recordset

lstDescription.Clear

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myRS.Open "Select Description, UniqueID from Points Where State = " & _

" ' " & cmbState.Text & "' and " & _

"County = ' " & cmbCounty.Text & " ' " & _

"and PointType = '" & cmbPointType.Text & " ' " & _

"Order by Description ASC", myDB

While myRS.EOF = False

lstDescription.AddItem myRS("Description")

lstDescription.List(lstDescription.ListCount - 1, 1) =

myRS("UniqueID")

myRS.MoveNext

Wend

myRS.Close

myDB.Close

End Sub

All of the above code forms the framework for allowing the user to select Places from the database.

At this point, the Form looks like this:

[image: Image]

Selecting a State of "CA", a County of "Los Angeles", and a Point Type of "tower" displays all Points meeting this criteria.

Let’s move onto the buttons now. We will begin with the Report button. When this button is clicked and a 'Place' is selected, we create an ASCII Text file with all of the selected places field values from the Database.

First we will look at the resulting file, then we will look at the code.

[image: Image]

We have already seen how we can get specific field values by addressing them by name. We could do this to create the report. However, the goal is to export all field names and values. To accomplish this, we use the Fields Collection of the Recordset Object.

Private Sub cmdReport_Click()

If lstDescription.Text = "" Then Exit Sub

Dim myDB As New ADODB.Connection

Dim myRS As New ADODB.Recordset

Dim myField As Field

Dim FFile As Long

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myRS.Open "Select * from Points Where UniqueID = " & _

lstDescription.List(lstDescription.ListIndex, 1), myDB

If myRS.EOF = False Then

FFile = FreeFile

Open "C:\PlaceReport.txt" For Output As #FFile

For Each myField In myRS.Fields

Print #FFile, myField.Name & vbTab & myField.Value

Next

Close #FFile

End If

myRS.Close

myDB.Close

End Sub

When we add the Description of each 'place' matching the selected criteria to the Listbox, we also add the UniqueID to the second (hidden) column in the Listbox. We use this value in our query. If we find a record that matches (and we should always find a matching record), we open an ASCII Text file for Output and write each Field Name and Value to the file, and then close the file.

Also worthy of note is the query "Select *" in our Select statement. When we use the Asterisk character, we are stating that we want to retrieve all fields in the table.

The Report button seems to work fairly well. Now it’s time to turn our attention to the Add Note button. When the Add Note button is clicked, we need to display a new UserForm that allows the user to enter the Note information. The Add Note button tells the Add Note Form which record is selected by setting the Tag property of the Add Note Form and then shows the Form.

Private Sub cmdAddNote_Click()

If lstDescription.Text = " " Then Exit Sub

frmAddNote.Tag = lstDescription.List(lstDescription._ ListIndex, 1)

frmAddNote.Show

End Sub

Here is the Form frmAddNote

[image: Image]

When the user clicks the OK button, the following code is executed:

Private Sub btnOK_Click()

If frmAddNote.Tag = "" Then

MsgBox "AddNote not executed correctly."

Unload Me

End If

If txtNoteBy.Text = "" Then

MsgBox "Please enter Note By."

Exit Sub

End If

If txtNote.Text = "" Then

MsgBox "Please enter Note."

Exit Sub

End If

Dim myDB As New ADODB.Connection

Dim myRS As New ADODB.Recordset

Dim my Field As Field

Dim FFile As Long

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

myRS.Open "Select * from PlaceNotes Where UniqueID = 0",

myDB, adOpenDynamic, adLockOptimistic

myRS.AddNew

myRS("NoteBy") = txtNoteBy.Text

myRS("TheNote") = txtNote.Text

myRS("PlaceID") = frmAddNote.Tag

myRS("NoteDate") = Now

myRS.Update

MsgBox "Note added."

Unload Me

End Sub

When we want to add a new record to a table, we have a few options. We can use an "Insert Into" SQL statement with the Connection.Execute method. In this example, however, we open the PlaceNotes table and use the AddNew method of the Recordset Object. This gives us a little more flexibility than we have by using an "Insert Into" statement. When we open the Table, we use a Select statement and look for a UniqueID of 0. Why would we do this? If we want to open the entire Table, we would use something like this:

myRS.Open "PlaceNotes", myDB, adOpenDynamic, adLockOptimistic

but we would take a huge performance hit because we are opening every record in the Table. By intentionally opening a Recordset without any records in it, the Recordset is opened almost immediately because it does not need to retrieve any data.

The last button we are going to discuss is the Draw In MicroStation button. The Database we are using has Latitude and Longitude values in it, which give us Y and X values of the 'places' in the database. We will use these values to place a Circle and Text Element at the location of the selected 'Places' from the database.

First we will look at the code behind the button and then we will look at the results.

Private Sub btnDraw_Click()

If lstDescription.ListCount = 0 Then Exit Sub

Dim myDB As New AOODB.Connection

Dim myRS As New ADODB.Recordset

Dim myPoint As Point3d

Dim myCircle As ArcElement

Dim myText As TextElement

Dim RotMatrix As Matrix3d

Dim I As Long

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

For I = 1 To lstDescription.ListCount

If lstDescription.Selected(I - 1) = True Then

myRS.Open "Select * from Points Where UniqueID = " & _

lstDescription.List(I - 1, 1), myDB

If myRS.EOF = False Then

myPoint.X = myRS("LonDec")

myPoint.Y = myRS("LatDec")

Set myCircle = CreateArcElement2(Nothing, myPoint, _

0.0025, 0.0025, RotMatrix, 0, 360)

ActiveModelReference.AddElement myCircle

Set myText = CreateTextElementKNothing, _

myRS("Description"), myPoint, RotMatrix)

myText.TextStyle.Height = 0.01

myText.TextStyle.Width = 0.01

ActiveModelReference.AddElement myText

End If

myRS.Close

End If

Next I

myDB.Close

End Sub

We use the LonDec and LatDec fields for the X and Y elements of each Circle Center Point and Text Origin. We display the Description field’s value as a TextElement in MicroStation.

In the previous buttons we used, our work was based on the ListIndex property of the Listbox. Since we are drawing in MicroStation, we want to allow the software to place multiple points with only one button click. This is why we are looking at the Selected Property of each item in the ListBox. If an item is Selected, we query the database using the UniqueID hidden in Column 2 of the ListBox.

Let’s slow down a little here. We are moving through a lot of code. After the code shown above becomes clear (or a little less cloudy), we are going to add one enhancement. We will place the Circle and Text on a Level with the same name as the Point Type.

Private Sub btnDraw_Click()

If lstDescription.ListCount = 0 Then Exit Sub

Dim myDB As New ADODB.Connection

Dim myRS As New ADODB.Recordset

Dim my Point As Point3d

Dim my Circle As Arc Element

Dim myText As TextElement

Dim RotMatrix As Matrix3d

Dim I As Long

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

For I = 1 To lstDescription.ListCount

If lstDescription.Selected(I - 1) = True Then

myRS.Open "Select * from Points Where UniqueID = " & _

lstDescription.List(I - 1, 1), myDB

If myRS.EOF = False Then

myPoint.X = myRS("LonDec")

myPoint.Y = myRS("LatDec")

Set myCircle = CreateArcElement2(Nothing, myPoint, _

0.0025, 0.0025, RotMatrix, 0, 360)

myCircle.Level = CheckLevel(cmbPointType.Text)

ActiveModelReference.AddElement myCircle

Set myText = CreateTextElement1(Nothing, _

myRS("Description"), myPoint, RotMatrix)

myText.TextStyle.Height = 0.01

myText.TextStyle.Width = 0.01

myText.Level = CheckLevel(cmbPointType.Text)

ActiveModelReference.AddElement myText

End If

myRS.Close

End If

Next I

myDB.Close

End Sub

Function CheckLevel(LevelName As String) As Level

On Error Resume Next

Set CheckLevel = ActiveDesignFile.AddNewLevel(Level Name)

If Err.Number <> 0 Then

Set CheckLevel = ActiveDesignFile.Levels(LevelName)

End If

End Function

We only add two lines of code to the Click Event of btnDraw and we add a Function named CheckLevel. Now, all Places selected are added to the ActiveModelReference on a specific Level. The Level matches the selected "Point Type".

As our program stands right now, we have some very good functionality in place. We can get a report based on the selected item in the listbox. We can add a note to the selected item in the listbox and we can draw items selected in the ListBox inside the ActiveModelReference in MicroStation.

EXTENDING ACTIVEX DATA OBJECTS

As the name implies, ActiveX Data Objects is about more than just Databases, it is all about Data. Data appears in a variety of forms. Databases hold data that can change from time to time, but it is not likely that a database will have entirely different data every 24 hours.

One of the things that makes the Internet so powerful is that it is so dynamic. It is changing every second of the day. And although the Internet could be considered one large database, it is probably better typified as a whole lot of Data rather than a large Database.

When we look at the Provider tab in a UDL file, we will see a reference to the "Microsoft OLE DB Simple Provider". What can this do for us? Can we use it to tap into the Data exposed on the Internet? Well, it can be used for some Data on the Internet.

Let’s take a look at the "Microsoft OLE DB Simple Provider". This Provider is used for creating in-memory databases and can also be used for working with XML files. We have dealt with XML files in a previous chapter. Let’s take a look at another way to work with them now.

Many web sites are making use of RSS technology. When a button is shown with the initials "RSS" or "XML", the button links to the site’s RSS feed. This feed normally contains headlines with links to full articles. In addition to major news networks and other high traffic web sites using this technology, it is likely that smaller web sites and corporate intranets will make use of this technology as well (if not now, in the very near future).

For our next example, we will create a new UDL file named RSS.udl. The Provider is "Microsoft OLE DB Simple Provider". The Data Source for this UDL file will be "MSXML2.DSOControl.2.6". We will use this UDL file and specify the URL of the RSS feed in the Recordset.Open method.

RSS files follow a specific document structure. The three primary levels are:

Channel

Item

Item Child

We will use a Recordset for the Channel and the Item and will print the Title, Link, and Description of each Item in the Immediate Window to get things started.

Sub ReadRSSA()

Dim MyDB As New ADODB.Connection

Dim MyRS As New ADODB.Recordset

Dim ChannelRS As New ADODB.Recordset

Dim ItemRS As New ADODB.Recordset

MyDB.Open "File name=c:\MicroStation VBA\rss.udl"

MyRS.Open "http://www.wired.com/rss/index.xml", MyDB

While MyRS.EOF = False

Set ChannelRS = MyRS("channel").Value

While ChannelRS.EOF = False

Set ItemRS = ChannelRS("itern").Value

While ItemRS.EOF = False

Debug.Print ItemRS("title")

Debug.Print vbTab & ItemRS("link")

Debug.Print vbTab & ItemRS("description")

ItemRS.MoveNext

Wend

ChannelRS.MoveNext

Wend

MyRS.MoveNext

Wend

End Sub

When ReadRSSA is executed, the RSS of the wired.com website displays in the Immediate Window. Since RSS files are usually updated fairly frequently, the results shown in the Immediate Window will be different from day to day and may even be different from hour to hour.

[image: Image]

The technology is great. It only takes 22 lines of code to retrieve the information. So, now that we know the technology is in place and how to access the data, how can we use what we know in a VBA project?

Let’s start a new VBA project. We will name it Chapter 35c.mvba. A reference to "Microsoft ActiveX Data Objects 2.X Library" needs to be added. Then we will insert a User Form.

Here is the Form:

[image: Image]

The only control on the Form is a ListBox. The ListBox’s name is IstRSS. It has two columns with widths of 250 points and 0 points respectively.

[image: Image]

In the first column we will place the Title of each RSS feed item. In the second column (which we hide by giving it a width of 0 points) we will place the URL associated with the Title in Column 1. When the user double-clicks on an item in the list, a new web browser opens and displays the story.

[image: Image]

When the selected item is double-clicked we use the ShellExecute API command to open the default browser on the system and the selected story appears.

Here is the code:

Private Declare Function ShellExecute Lib "shell32.dll" _

Alias "ShellExecuteA" _

(ByVal hwnd As Long, _

ByVal lpOperation As String, _

ByVal lpFile As String, _

ByVal lpParameters As String, _

ByVal lpDirectory As String, _

ByVal nShowCmd As Long) As Long

Private Sub lstRSS_DblClick(ByVal Cancel As MSForms.ReturnBoolean)

ShellExecute 0, "OPEN", lstRSS.List(lstRSS.ListIndex, 1), " ", " ", 0

End Sub

Private Sub UserForm_Initialize()

Dim MyDB As New ADODB.Connection

Dim MyRS As New ADODB.Recordset

Dim ChannelRS As New ADODB.Recordset

Dim ItemRS As New ADODB.Recordset

MyDB.Open "File name=c:\MicroStation VBA\rss.udl"

MyRS.Open "http://rss.news.yahoo.com/rss/tech", MyDB

While MyRS.EOF = False

Set ChannelRS = MyRS("channel").Value

While ChannelRS.EOF = False

Set ItemRS = ChannelRS("item").Value

While ItemRS.EOF = False

lstRSS.AddItem Replace(ItemRS("title"), vbLf, "")

lstRSS.List(lstRSS.ListCount - 1, 1) = ItemRS("link")

ItemRS.MoveNext

Wend

ChannelRS.MoveNext

Wend

MyRS.MoveNext

Wend

End Sub

Likely, RSS feeds will be used more frequently. As they do, this code will become more important and more useful. For example, a company could create their own RSS feed on their Intranet to display assignments for personnel. What project am I working on today? Open my RSS reader and it tells me.

EXAMINING DATABASE SCHEMA

At times, we are faced with the task of using data that we cannot open in a native application. For example, we may have a Visual FoxPro .dbf file but may not have Visual FoxPro. The same could be said of many databases. Access, DB2, etc.

ActiveX Data Objects gives us the ability to look at the Schema or in other words, Database Structure of a given database.

Sub TestSchemaA()

Dim myDB As New ADODB.Connection

Dim myRS As New ADODB.Recordset

myDB.Open "file name=C:\MicroStation VBA\PlacePoints.udl"

Set myRS = myDB.OpenSchema(adSchemaColumns)

While myRS.EOF = False

Debug.Print myRS("TABLE_NAME") & "|" & _

myRS("COLUMN_NAME") & "|" & _

myRS("IS_NULLABLE") & "|" & _

myRS("DATATYPE") & "|" & _

myRS("CHARACTER_MAXIMUM_LENGTH")

myRS.MoveNext

Wend

End Sub

We still use a Connection Object and a Recordset Object. We still open the database. But after it is open, we use the "OpenSchema" method of the Connection Object. When we get the "adSchemaColumns", each record returned has a number of different fields. Among them are TABLE_NAME, COLUMN_NAME, IS_NULLABLE, DATA_TYPE, and CHARACTER_MAXIMUM_LENGTH. These fields are important so that we can understand the structure of each Field and Table contained in the specified Database (specified in the UDL file, that is).

The values of each of these fields are printed to the Immediate Window. The Immediate Window does not store an unlimited number of lines in it. So, at times it makes perfect sense to write the values to a Text File.

[image: Image]

The DATA_TYPE field returns a numeric value that corresponds with ADO Constants.

[image: Image] adArray = 8192 (A flag value, always combined with another data type constant, that indicates an array of that other data type.)

[image: Image] adBigInt = 20 (Indicates an eight-byte signed integer (DBTYPE_I8).)

[image: Image] adBinary = 128 (Indicates a binary value (DBTYPE_BYTES).)

[image: Image] adBoolean = 11 (Indicates a boolean value (DBTYPE_BOOL).)

[image: Image] adBSTR = 8 (Indicates a null-terminated character string (Unicode) (DBTYPE_BSTR).)

[image: Image] adChapter =136 (Indicates a four-byte chapter value that identifies rows in a child rowset (DBTYPE_HCHAPTER).)

[image: Image] adChar = 129 (Indicates a string value (DBTYPE_STR).)

[image: Image] adCurrency = 6 (Indicates a currency value (DBTYPE_CY). Currency is a fixed-point number with four digits to the right of the decimal point. It is stored in an eight-byte signed integer scaled by 10,000.)

[image: Image] adDate = 7 (Indicates a date value (DBTYPE_DATE). A date is stored as a double, the whole part of which is the number of days since December 30, 1899, and the fractional part of which is the fraction of a day.)

[image: Image] adDBDate =133 (Indicates a date value (yyyymmdd) (DBTYPE_DBDATE).)

[image: Image] adDBTime =134 (Indicates a time value (hhmmss) (DBTYPE_DBTIME).)

[image: Image] adDBTimeStamp =135 (Indicates a date/time stamp (yyyymmddhhmmss plus a fraction in billionths) (DBTYPE_DBTIMESTAMP).)

[image: Image] adDecimal =14 (Indicates an exact numeric value with a fixed precision and scale (DBTYPE_DECIMAL).)

[image: Image] adDouble = 5 (Indicates a double-precision floating-point value (DBTYPE_R8).)

[image: Image] adEmpty = 0 (Specifies no value (DBTYPE_EMPTY).)

[image: Image] adError = 10 (Indicates a 32-bit error code (DBTYPE_ERROR).)

[image: Image] adFileTime = 64 (Indicates a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601 (DBTYPE_FILETIME).)

[image: Image] adGUID = 72 (Indicates a globally unique identifier (GUID) (DBTYPE_GUID).)

[image: Image] adInteger = 3 (Indicates a four-byte signed integer (DBTYPE_I4).)

[image: Image] adLongVarBinary = 205 (Indicates a long binary value.)

[image: Image] adLongVarChar = 201 (Indicates a long string value.)

[image: Image] adLongVarWChar = 203 (Indicates a long null-terminated Unicode string value.)

[image: Image] adNumeric = 131 (Indicates an exact numeric value with a fixed precision and scale (DBTYPE_NUMERIC).)

[image: Image] adPropVariant =138 (Indicates an Automation PROPVARIANT(DBTYPE_PROP_VARIANT).)

[image: Image] adSingle = 4 (Indicates a single-precision floating-point value (DBTYPE_R4).)

[image: Image] adSmallInt = 2 (Indicates a two-byte signed integer (DBTYPE_I2).)

[image: Image] adTinyInt = 16 (Indicates a one-byte signed integer (DBTYPE_I1).)

[image: Image] adUnsignedBigInt = 21 (Indicates an eight-byte unsigned integer (DBTYPE_UI8).)

[image: Image] adUnsignedInt = 19 (Indicates a four-byte unsigned integer (DBTYPE_UI4).)

[image: Image] adUnsignedSmallInt =18 (Indicates a two-byte unsigned integer (DBTYPE_UI2).)

[image: Image] adUnsignedTinyInt = 17 (Indicates a one-byte unsigned integer (DBTYPE_UI1).)

[image: Image] adUserDefined =132 (Indicates a user-defined variable (DBTYPE_UDT).)

[image: Image] adVarBinary = 204 (Indicates a binary value.)

[image: Image] adVarChar = 200 (Indicates a string value.)

[image: Image] adVarNumeric = 139 (Indicates a numeric value.)

[image: Image] adVarWChar = 202 (Indicates a null-terminated Unicode character string.)

[image: Image] adWChar =130 (Indicates a null-terminated Unicode character string (DBTYPE_WSTR).)

The Database PlacePoints.mdb has a Table named "Points", and a Table named "PlaceNotes". When we look into the Schema we can see that Tables named "MSysAccessObjects" and "MSysAccessXML" also display. It is not uncommon for databases to create their own tables for functions such as the indexing of indexed fields. In most cases, it is clear which tables are 'system' tables and which tables are for our use.

EXCEL FILES AS DATABASES

Excel files are divided into Rows and Columns. Right? Well, then, it makes perfect sense that we should be allowed to open them by using ActiveX Data Objects. Let’s begin by identifying an Excel file (.xls) we want to work with. The towerdat.xls file is installed with MicroStation. A search for it on our computer reveals that it is installed somewhere under "Documents and Settings" in a rather lengthy path. Copying it and pasting it into a more simple path makes it easier to use.

Let’s create a UDL file named Excel.udl.

Here are the settings in the UDL file:

[image: Image]

Even though the Jet driver is typically used for connecting to Microsoft Access databases, we can use it to connect to Excel.

In the Connection tab, we need to browse for the Excel file. By default, the Browse button’s dialog box looks for Microsoft Access Databases (.mdb). We can select the "*.*" option in the "Files of type" combo box and then select the Excel (.xls) file.

[image: Image]

[image: Image]

When we are working with Microsoft Access files, we are finished entering information into the UDL file at this point. But when we are working with Microsoft Excel files, we need to make one more change.

[image: Image]

In the All tab, we need to give the "Extended Properties", a value of "Excel 8.0". When we do this, the Jet driver knows it is working with a Microsoft Excel file and so works with it accordingly. If we forget to add this important 'Extended Property', we will see errors pop up because without this value, the UDL file will treat the file as a Microsoft Access Database.

Now, we want Excel to look as much like a database as possible before we begin. So, let’s remove a few rows at the top of the file and the first column so we have a Header Row as shown here:

[image: Image]

Since working with Excel is new territory, how can we tell what we have to work with? Let’s modify our previous "OpenSchema" procedures to work with the Excel.udl file.

Sub TestSchemaC()

Dim myDB As New ADODB.Connection

Dim myRS As New ADODB.Recordset

Dim FFile As Long

myDB.Open "file name=C:\MicroStation VBA\Exce1.udl"

Set myRS = myDB.OpenSchema(adSchemaColumns)

FFile = FreeFile

Open "C:\DbSchema.txt" For Output As #FFile

While myRS.EOF = False

Print #FFile, myRS("TABLE_NAME") & "|" & _

myRS("COLUMN_NAME") & "|" & _

myRS("IS_NULLABLE") & "|" & _

myRS ("DATATYPE") & "|" & _

myRS("CHARACTER_MAXIMUM_LENGTH")

myRS.MoveNext

Wend

Close #FFile

End Sub

When we run this procedure, a new file is created that contains the Database Schema of the Excel file. Let’s open it and take a look at it. It is named DbSchema.txt.

[image: Image]

We can see a Table named "TOWERDAT$". That’s interesting. When we look at the Excel file, we find a Worksheet named "TOWERDAT". This looks promising. Let’s see what we can do with "TOWERDAT$".

Sub TestDBExcelA()

Dim myDB As New ADODB.Connection

Dim myRS As New ADODB.Recordset

Dim my Field As Field

myDB.Open "file name=C:\MicroStation VBA\Excel.udl "

myRS.Open " [TOWERDAT$]", myDB, _

adOpenDynamic, adLockOptimistic

While myRS.EOF = False

For Each myField In myRS.Fields

Debug.Print myField.Name & "|" & myField.Value

Next

Debug.Print vbCr

myRS.MoveNext

Wend

End Sub

[image: Image]

Now we are getting somewhere. We are able to get to the data in an Excel file without opening Microsoft Excel. For that matter, Excel doesn’t even need to be installed on the computer.

Let’s see what else we can do.

Sub TestDBExcelB()

Dim myDB As New ADODB.Connection

Dim myRS As New ADODB.Recordset

Dim CenPt As Point3d

Dim myCircle As ArcElement

Dim RotMatrix As Matrix3d

myDB.Open "file name=C:\MicroStation VBA\Excel.udl"

myRS.Open " [TOWERDAT$]", myDB, _

adOpenDynamic, adLockOptimistic

While myRS.EOF = False

CenPt.X = myRS("X")

CenPt.Y = myRS("Y")

CenPt.Z = myRS("Z")

Set myCircle = CreateArcElement2(Nothing, _

CenPt, 4, 4, RotMatrix, 0, 360)

ActiveModelReference.AddElement myCircle

myRS.MoveNext

Wend

End Sub

Now, we are drawing in MicroStation based on data in a Microsoft Excel file that we are accessing via ActiveX Data Objects.

REVIEW

ActiveX Data Objects gives us tools to work with Data. At times this Data is stored in Databases. This Data can be 'stored' on the Internet in RSS files. This data can even be stored in a Microsoft Excel file. Independent of where the data is, ActiveX Data Objects can be used to retrieve the data. The process of connecting to data sources is simplified greatly by the use of UDL files. Once connected, the Connection and Recordset Objects can be used to retrieve, manipulate, edit, and add data.

[image: Image]

36MicroStation Leveraging Mathcad via VBA

Any time a company opens its product for customization, the consumer wins. Mathcad is one such product. Mathcad worksheets can be used to perform calculations and then can 'hand off' the information to MicroStation through the use of VBA. Of course, Mathcad is not a Bentley product. And the inclusion of Mathcad in this book should not be considered an endorsement in any way. The same should be said of Microsoft Excel and any other third-party products discussed in this book. That having been said, Mathcad like Excel can be customized and channels of communication can be opened between Mathcad and MicroStation resulting in an integrated solution.

In this Chapter:

[image: Image] A Brief Introduction to Mathcad

[image: Image] Adding a Reference and using the Object Browser

[image: Image] Basic Macros that communicate with Mathcad

[image: Image] Region Objects - The Basis for All Calculations

[image: Image] The Mathcad Object Model

[image: Image] Driving MicroStation Geometry from Mathcad

A BRIEF INTRODUCTION TO MATHCAD

Mathcad includes functionality that allows us to perform calculations (simple and complex) in a sketchpad type of environment. Variables can be used in these calculations and standard mathematical nomenclature is used so our formulas in Mathcad look just like they do in reference materials we may use. Mathcad provides hundreds of operators and built-in functions for solving technical problems. Mathcad can be used to perform numeric calculations or to find symbolic solutions. It automatically tracks and converts units and operates on scalars, vectors, and matrices. Not only does Mathcad understand Units, but it takes care of all conversions from one unit to the next for us (inches to meters, gallons to liters, etc.). And should we need a unit that does not appear in Mathcad out of the box (such as Hands), we can add it to Mathcad.

Additional information about Mathcad can be found by visiting www.mathcad.com.

ADDING A REFERENCE AND USING THE OBJECT BROWSER

Before we attempt to communicate with Mathcad in any way, we need to add a Reference to it in VBA. This is done by using the VBA menu Tools > References.

[image: Image]

Once a Reference has been added, we can use the VBA Object Browser to 'browse' the Mathcad Object Model.

[image: Image]

When we filter the Classes by selecting "Mathcad" in the top ComboBox, we can see that we have an Application class in the Mathcad Object Model. This is the top-level class in Mathcad. We can also see that we have an ActiveWorksheet Object. These two objects should be good enough for us to get started.

Let's begin writing a macro in VBA and we will see what we can accomplish. Before we do this, we need to have Mathcad started and a Worksheet open. Let's begin by using the file "Sample 1.xmcd" which is located on the CD that accompanies this book.

Here is a portion of the Worksheet.

[image: Image]

We can see here that we have a variable named "RoughLength", one named "JambShim", one named "MaxLength", and one named "FinishLength", among others. Let's begin writing a macro in MicroStation's VBA environment that will give us the value of the RoughLength variable from Mathcad.

Sub TestMathcadA ()

Dim myMCA As Mathcad.Application

Dim myMCW As Mathcad.Worksheet

Set myMCA = GetObject(, "Mathcad.Application")

Set myMCW = myMCA.ActiveWorksheet

End Sub

We saw the Application and ActiveWorksheet objects in the Object Browser. If we run the macro TestMathcadA we will find that the code executes but we are not at the point where we are getting the value of the RoughLength variable in Mathcad.

Let's take another look at the Object Browser in VBA.

[image: Image]

We know we want to get the value of a variable in the Worksheet. So, we select "Worksheet" in the classes ListBox and begin looking for a Property or Method that gives us the value we are looking for. As we do so, we can see a method named GetValue. It uses one parameter, "bstrName as String". This method returns an Object. But what kind of object? Another look at the Object Browser reveals an Object (in the Classes ListBox) named "Value". Let's give the Value Object a try.

Sub TestMathcadA()

Dim myMCA As Mathcad.Application

Dim myMCW As Mathcad.Worksheet

Dim myMCV As Mathcad.Value

Set myMCA = GetObject(, "Mathcad.Application")

Set myMCW = myMCA.ActiveWorksheet

Set myMCV = myMCW.GetValue("RoughLength")

MsgBox myMCV.AsString & vbCr & myMCV.Type

End Sub

Now, in addition to connecting to the Mathcad Application and the Active Worksheet, we are getting a Value Object based on the parameter RoughLength and displaying its "AsString" and "Type" properties in a MessageBox.

[image: Image]

If we look at the RoughLength property in Mathcad we see a value of 18'-5". But when we ran the macro TesetMathcadA, we were shown a value of 5.6134. Why is this? It must be a units issue. Let's try dividing 5.6134 by 221 inches and see what we get.

When we see the magic number 0.0254 we know we are dealing with an inches to meters conversion issue.

[image: Image]

So, when we look at the Object Browser at the function GetValue, we see that it returns an Object. When we use a variable declared as a "Value" Object, we can get the "AsString" and "Type" properties of the "Value" object. Is there more we can do here?

When we add a watch to the variable myMCV, we can see the other properties belonging to the Value Object.

[image: Image]

The variable myMCV is declared as a "Value" but we can see here that we are actually being returned a "NumericValue" (look in the Type column) Object. Let's change our code a little by declaring the variable myMCV as a "NumericValue" Object and see what happens.

[image: Image]

Now, when we begin writing code to display properties in a MessageBox we can see that we have more properties to work with because the variable was declared as a "NumericValue" object.

[image: Image]

Sub TestMathcadB ()

Dim myMCA As Mathcad.Application

Dim myMCW As Mathcad.Worksheet

Dim myMCV As Mathcad.NumericValue

Set myMCA = GetObject(, "Mathcad.Application")

Set myMCW = myMCA.ActiveWorksheet

Set myMCV = myMCW.GetValue("RoughLength")

MsgBox myMCV.AsString & vbCr & _

myMCV.Imag & vbCr & _

myMCV.Integer & vbCr & _

myMCV.Real & vbCr & _

myMCV.Type

End Sub

Now we are getting somewhere. In this MessageBox, we can see the "AsString" and "Real" property values of 5.6134, an "Integer" property value of 6, and a "Type" property of "Numeric". Let's try making one additional change to our code.

Sub TestMathcadC ()

Dim myMCA As Mathcad.Application

Dim myMCW As Mathcad.Worksheet

Dim myMCV As Mathcad.StringValue

Set myMCA = GetObject(, "Mathcad.Application")

Set myMCW = myMCA.ActiveWorksheet

Set myMCV = myMCW.GetValue("Roughtength")

MsgBox myMCV.AsString & vbCr & _

myMCV.Imag & vbCr & _

myMCV.Integer & vbCr & _

myMCV.Real & vbCr & _

myMCV.Type

End Sub

Instead of declaring myMCV as a "NumericValue" we declare it as a "StringValue". What happens?

[image: Image]

Instead of getting the value of the Mathcad variable "RoughLength" we see a Type mismatch error dialog box. Why is this? Because we are dealing with a Numeric value, not a String value.

Lessons learned: When attempting to retrieve a variable value from Mathcad and there is a degree of uncertainty as to what type of value we will be getting, we should declare our Value variable as a "Value" object. We can then look at the "Type" property and use the appropriate Value-specific object. Here is an example of this:

Sub TestMathcadD ()

Dim myMCA As Mathcad.Application

Dim myMCW As Mathcad.Worksheet

Dim myMCV As Mathcad.Value

Dim myMCNV As Mathcad.NumericValue

Dim myMCSV As Mathcad.StringValue

Set myMCA = GetObject(, "Mathcad. Application")

Set myMCW = myMCA.ActiveWorksheet

Set myMCV = myMCW.GetValue("RoughLength")

Select Case myMCV.Type

Case "Numeric"

Set myMCNV = myMCV

MsgBox myMCNV.AsString & vbCr & _

myMCNV.Imag & vbCr & _

myMCNV.Integer & vbCr & _

myMCNV.Real & vbCr & _

myMCNV.Type

Case "String"

Set myMCSV = myMCV

MsgBox myMCSV.AsString & vbCr & _

myMCSV.Type & vbCr & _

myMCSV.Value

End Select

End Sub

We begin by using a generic "Value" object. Then we look at the Value.Type property. If it is "Numeric", we use a "Mathcad.NumericValue" object. If it is a "String" we use a "Mathcad.StringValue" object.

BASIC MACROS THAT COMMUNICATE WITH MATHCAD

The more familiar we get with Mathcad, the more we realize how well it can handle very complex calculations. But even though the calculations Mathcad handles can be complex, communicating with Mathcad is not complex at all.

Let's take a look at a few macros that communicate with Mathcad in a variety of different areas. These macros continue to make use of the "Sample 1" worksheet.

Sub TestMathcadE ()

Dim myMCA As Mathcad.Application

Dim myMCW As Mathcad.Worksheet

Dim myMCV As Mathcad.Value

Dim myMCNV As Mathcad.NumericValue

Set myMCA = GetObject(, "Mathcad.Application ")

Set myMCW = myMCA.ActiveWorksheet

Set myMCV = myMCW.GetValue("RoughLength")

Set myMCNV = myMCV

MsgBox "Rough Length: " & myMCNV.Real / 0.0254 & " Inches."

End Sub

TestMathcadE displays the RoughLength variable in a MessageBox after converting it to Inches.

[image: Image]

Our previous examples dealt with pulling information from Mathcad. Let's try changing a variables value, recalculating the Worksheet, and then pulling a value.

Sub TestMathcadF ()

Dim myMCA As Mathcad.Application

Dim myMCW As Mathcad.Worksheet

Dim myMCNV As Mathcad.NumericValue

Set myMCA = GetObject(, "Mathcad.Application")

Set myMCW = myMCA.ActiveWorksheet

myMCW.SetValue "JambShim", 0.375 * 0.0254

myMCW.Recalculate

Set myMCNV = myMCW.GetValue("FinishLength")

MsgBox "Finish Length: " & myMCNV.Real / 0.0254

End Sub

When this macro runs, we see a MessageBox with a value in it but the calculation seems to be off. When we look at the Mathcad Worksheet we can see that the JambShim variable has a problem with the value we attempted to give it.

[image: Image]

Why is this happening? Values assigned to Variables through ActiveX Automation are calculated prior to those defined in the Mathcad Worksheet. So, when we attempted to Set a Value for JambShim, in addition to the value shown in the Worksheet, Mathcad attempted to use a value from the SetValue call and this caused a problem.

So, we know why the error is occurring. How do we fix it? One solution is to remove the "1/2 in" value assigned to the JambShim variable so the duplicate value assignment is no longer taking place. And instead of assigning JambShim a value of "0.375 * 0.0254", we are going to give it a value of "3/8". Next, we are going to change the formula for the FinishLength variable to 'convert' the JambShim value to Feet and Inches. To best illustrate this change, we will look at the code and then at the Worksheet.

Sub TestMathcadF2 ()

Dim myMCA As Mathcad.Application

Dim myMCW As Mathcad.IMathcadWorksheet2

Dim myMCNV As Mathcad.NumericValue

Set myMCA = GetObject(, "Mathcad.Application")

Set myMCW = myMCA.ActiveWorksheet

myMCW.SetValue "JambShim", "3/8"

myMCW.Recalculate

Set myMCNV = myMCW.GetValue("FinishLength")

MsgBox "Finish Length: " & myMCNV.Real / 0.0254

End Sub

[image: Image]

The macro TestMathcadF2 now works correctly because we are allowing the value for JambShim to be set in our code and we are using the Mathcad function FIF to convert the provided value (which is 3/8) into Feet and Inches.

GetValue, SetValue, and Recalculate form the basis for taking existing Mathcad Worksheets and making changes and retrieving calculations from them. As long as we make sure Mathcad is being given variable values from only one source and that the correct unit conversion is being performed on the values we set, Mathcad formulas and our own VBA programming will give us consistent, correct results time after time.

Each Value, Variable, Formula, and Calculation are stored in Mathcad Worksheets as a "Region".

Sub TestMathcadG ()

Dim myMCA As Mathcad.Application

Dim myMCW As Mathcad.Worksheet

Dim myMCR As Mathcad.Region

Set myMCA = GetObject(, "Mathcad.Application")

Set myMCW = myMCA.ActiveWorksheet

MsgBox myMCW.Regions.Count

For Each myMCR In myMCW.Regions

MsgBox myMCR.Type

Next

End Sub

The Region.Type property is an Enumeration named "MCRegionType". Here are their values:

mcBitmapRegion = 2

mcMathRegion = 1

mcMetafileRegion = 3

mcOLERegion = 4

mcTextRegion = 0

In the "Sample 1" Worksheet, we see a lot of "mcMathRegion" Regions. An "mcMathRegion" is a Region that involves numeric calculations and variable assignments. So, even if a variable is holding a String value, it qualifies as a MathRegion.

REGION OBJECTS - THE BASIS FOR ALL CALCULATIONS

We just looked at the Region objects of a Worksheet. The Region object gives us some very basic information such as a Type, and the Regions location on the Worksheet through X and Y properties. But how are calculations stored in Mathcad? Considering some of the complex calculations that Mathcad can make, it is not difficult to imagine that it would take more than a simple property to store this potentially complex calculation information. And that is correct.

In addition to declaring a variable as a "Region", we can declare a variable as a "IMathcadRegion2". When we do, additional properties are available for our use.

[image: Image]

Here are the Properties for the IMathcadRegion2 Object. One of them is the "MathInterface" property. When we click on "MathInterface" in the Classes list, we see the following:

[image: Image]

The MathInterface Object has a property named "XML". That sounds interesting. Let's try running the following macro:

Sub TestMathcadH ()

Dim myMCA As Mathcad.Application

Dim myMCW As Mathcad.Worksheet

Dim myMCR As Mathcad.IMathcadRegion2

Dim myMCI As Mathcad.MathInterface

Set myMCA = GetObject(, "Mathcad.Application")

Set myMCW = myMCA.ActiveWorksheet

For Each myMCR In myMCW.Regions

Set myMCI = myMCR.MathInterface

Debug.Print myMCI.XML

Next

End Sub

When we run this macro, the XML property for each MathInterface of each IMathcadRegion2 Object is written to the Immediate Window. Here is an example of what is written when we run TestMathcadE:

<ml:define xmlns:ml="http://schemas.mathsoft.com/math20">

<ml:id xml:space="preserve">RoughLength</ml:id>

<ml:apply>

<ml:plus/>

<ml:apply>

<ml :mult style="auto-select"/>

<ml :real font="0">18>/ml:real>

<ml :id xml:space="preserve">ft>/ml:id>

</ml:apply>

<ml :apply>

<ml :mult style="auto-select"/>

<ml :real font="0">5>/ml:real>

<ml :id xml:space="preserve">in</ml:id>

</ml:apply>

</ml:apply>

</ml:define>

This is the data that is associated with the RoughLength variable in our Worksheet. Let's take a look at a few more:

<ml :define xmlns:ml="http://schemas.mathsoft.com/math20">

<ml :id xml:space="preserve">JambShim</ml:id>

<ml :placeholder/>

</ml:define>

<ml :define xmlns:ml="http://schemas.mathsoft.com/math20">

<ml :id xml:space="preserve">StrikeShim</ml:id>

<ml :apply>

<ml :mult style="auto-select"/>

<ml :apply>

<ml :div/>

<ml :real>1</ml:real>

<ml :real>2</ml:real>

</ml:apply>

<ml :id xml:space="preserve">in</ml:id>

</ml:apply>

</ml:define>

<ml :define xmlns:ml="http://schemas.mathsoft.com/math20">

<ml :id xml:space="preserve">MaxLength</ml:id>

<ml :apply>

<ml :mult style="auto-select"/>

<ml :real>300</ml:real>

<ml :id xml:space="preserve">cm</ml:id>

</ml:apply>

</ml:define>

<ml :define xmlns:ml="http://schemas.mathsoft.com/math20">

<ml :id xml:space=" preserve">FirnshLength</ml:id>

<ml :apply>

<ml :minus/>

<ml :apply>

<ml :minus/>

<ml :id xml:space="preserve">RoughLength</ml:id>

<ml :apply>

<ml :id xml:space="preserve">FIF</ml:id>

<ml :id xml:space="preserve">JambShim</ml:id>

</ml:apply>

</ml:apply>

<ml :id xml:space="preserve">StrikeShim</ml:id>

</ml:apply>

</ml:define>

We can see here that the calculation for the Finish Length variable in our Worksheet is the RoughLength minus the Feet and Inch value of the JambShim variable minus the StrikeShim.

THE MATHCAD OBJECT MODEL

Let's take a look at a couple of the Mathcad Objects we can work with in Mathcad. As with most ActiveX Automation Object Models, Mathcad's top object is the Application Object.

Application

	ActiveWindow
	Height
	Top

	ActiveWorksheet
	Left
	Version

	Application
	Name
	Visible

	CloseAll
	Parent
	Width

	DefaultFilePath
	Path
	Windows

	FullName
	Quit
	Worksheets

In addition to the Application Object, Mathcad has an IMathcadApplication2 Object. Creating additional Application-type Objects is usually done to preserve compatibility with the older parts of an Object Model while introducing new properties and methods. Of note here are the GetOption Method, the HWND property (often used in Windows API programming), and the SetOption Method.

IMathcadApplication2

	Active
	Height
	Top

	ActiveWindow
	HWND
	Version

	ActiveWorksheet
	Left
	Visible

	Application
	Name
	Width

	CloseAll
	Parent
	Windows

	DefaultFilePath
	Path
	Worksheets

	FullName
	Quit
	

	GetOption
	SetOption
	

For more detailed information regarding the Mathcad Object Model, the Object Browser in VBA gives us the names and members of Objects, Properties, Constants, and Enumerations.

DRIVING MICROSTATION GEOMETRY FROM MATHCAD

We have seen a few examples of getting and setting Mathcad variables using VBA. Now, let's look at an example of how Mathcad can be used to drive the creation of our MicroStation geometry.

[image: Image]

Our goal is to draw a 2D plate in MicroStation with a hole pattern. The holes in the X Plane must be equally spaced and the holes in the Y Plane must also be equally spaced (but the X Spacing and the Y Spacing can differ). We want to maintain a 'buffer' around the outside of the plate. We want to be able to specify the Width and Height of the plate, the Hole

Diameter, the Maximum spacing between the holes, and the 'buffer' area around the outside of the plate.

We could look at our goal and decide to perform all of the calculations inside our code. But there are several advantages to using Mathcad in a situation like this.

1 When using Mathcad, we can allow the parameters for our plate to be entered using a large variety of units. For example, the Hole Diameter can be entered in millimeters and the width and height can be entered in decimal feet. The 'buffer' can be entered in yards and the Maximum Spacing can be entered in cubits. The units used to enter the design parameters are almost irrelevant because Mathcad takes care of the unit conversions for us. Furthermore, when we retrieve the value of any variables in the Worksheet, we can specify in what units we want the value returned.

2 We can make changes to the calculations in Mathcad without making changes to our code. So, different design rules could be implemented in Mathcad and as long as we are 'outputting' the same parameters, our code will continue to operate flawlessly.

3 Mathcad is capable of performing calculations using standard mathematical notation that can be extremely challenging to perform in VBA.

As we look at our Mathcad Worksheet we can see two types of statements entered. One of them uses "X = 5" notation and the other uses "X := 5" notation (notice the colon). The difference between these types of notation are significant. When we see ":=" in Mathcad we know a formula with/for calculations is being entered. When we see "=" (without the colon) we know we are displaying the value of a variable or the result of a formula. Later on, we will see why the distinction between these two 'types' of statements are important.

Separating the 'logic' from the 'presentation' of the resulting information is a sensible thing to do in this instance. What we need now is code that retrieves the results from Mathcad and uses them to draw the plate with the hole pattern in MicroStation.

In a previous example in this chapter we used the GetValue method of the Mathcad Worksheet Object to get a Mathcad variable's value. We performed a conversion of the value in VBA from meters to inches. Since we already have Mathcad taking care of our unit conversions for us, it makes sense to use Mathcad's converted values instead of performing the unit conversions in our code.

By default, Mathcad stores all length type values in meters. GetValue retrieves values in this default unit of measure. Rather than retrieving values in Mathcad with GetValue, we can retrieve values in the units shown in our Mathcad Worksheets by looking at the IMathcadRegion2 Object of each Region.

When we look at Mathcad Region objects, we can see that there are several types of regions. The two we are primarily interested in at this point are the "define" and "eval" types. The information regarding these Regions is stored using XML formatting. Here are some samples of the two types of Regions we are interested in:

<ml :define xmlns:ml="http://schemas.mathsoft.com/math20">

<ml :id xml:space="preserve">HeightIn</ml:id>

<ml :id xml:space="preserve">Height</ml:id>

</ml:define>

<ml :eval xmlns:ml="http://schemas.mathsoft.com/math20">

<ml :id xml:space="preserve">WidthIn</ml:id>

<ml :unitOverride><ml :id xml:space="preserve">in</ml:id>

</ml:unitOverride>

<result xmlns="http://schemas.mathsoft.com/math20">

<unitedValue>

<ml :real>17</m1:real>

<unitMonomial xmlns="http://schemas.mathsoft.com/units10">

<unitReference unit="inch"> </unitReference)

</unitMonomial>

</unitedValue>

</result>

</ml:eval>

Here we can see a "define" Region and an "eval" Region. Notice how the "eval" Region has an "id" value of "WidthIn" and a "real" value of "17". These are the Region values of interest to us.

When we want to retrieve a Region from Mathcad, it is best to retrieve all Regions in the Worksheet at once in a separate function and then parse them to find the values we are looking for. We will begin with a Function named GetAllRegions.

Function GetAllRegions () As String

On Error GoTo errhnd

Dim myMCA As Mathcad.IMathcadApplication2

Dim myMCW As Mathcad.IMathcadWorksheet2

Dim myMCR As Mathcad.IMathcadRegion2

Dim myMCI As Mathcad.MathInterface

Dim DomStrings() As String

ReDim DomStrings(0)

Set myMCA = GetObject(, "Mathcad.Application")

Set myMCW = myMCA.ActiveWorksheet

Dim myRegs As Mathcad.Regions

Set myRegs = myMCW.Regions

For Each myMCR In myRegs

Set myMCI = myMCR.MathInterface

'Debug.Print myMCI.XML

'Debug.Print myMCI.UnitsXML

DomStrings(UBound(DomStrings)) = myMCI.XML

ReDim Preserve DomStrings(UBound(DomStrings) + 1)

DomStrings(UBound(DomStrings)) = myMCI.UnitsXML

ReDim Preserve DomStrings(UBound(DomStrings) + 1)

Next

GetAllRegions = Join(DomStrings, vbCr & vbCr & vbCr)

Exit Function

errhnd:

MsgBox Err.Number & vbCr & Err.Description

End Function

GetAllRegions returns a String comprised of Region XML data separated by three (3) Carriage Return characters. We use these characters to Split the return value back into Regions in the procedure GetEvals.

GetEvals takes the returned String from GetAllRegions and extracts the Eval Regions, returning only the Name and Value of each Eval Region separated by an Equal Sign (=).

Function GetEvals() As Variant

Dim myDOM As New DOMDocument60

Dim myDOM2 As New DOMDocument60

Dim myNode As IXMLDOMNode

Dim myNodeList As IXMLDOMNodeList

Dim EvalName As String

Dim EvalValue As Double

Dim All Regions As String

Dim xSplit() As String

Dim EvalArray() As String

ReDim EvalArray(0) As String

All Regions = GetAllRegions

xSplit = Split(AllRegions, vbCr & vbCr & vbCr)

For I = LBounc(xSplit) To UBound(xSplit)

If xSplit(I) <> "" Then

myDOM.loadXML xSplit(I)

If myDOM.firstChild.baseName = "eval" Then

EvalName = myDOM.getElementsByTagName("ml:id") (0).Text

EvalValue = myDOM.getElementsByTagName("ml:real")(0).Text

Debug.Print EvalName

Debug.Print EvalValue

EvalArray(UBound(EvalArray)) = EvalName & " = " & FvalValue

ReDim Preserve EvalArray(UBound(EvalArray) + 1)

End If

End If

Next I

If UBound(EvalArray) > 0 Then

ReDim Preserve EvalArray(UBound(EvalArray) - 1)

End If

Get Evals = EvalArray

End Function

Now that we have the Region Values we can begin the process of making use of the values and drawing the plate and its hole pattern in MicroStation.

Sub DrawFromMathcad()

Dim AllEvals() As String

Dim PartWidth As Double

Dim PartHeight As Double

Dim OutsideBuffer As Double

Dim HoleDia As Double

Dim SpacingX As Double

Dim SpacingY As Double

Dim QtyX As Double

Dim QtyY As Double

Dim FilterReturn() As String

AllEvals = GetEvals

FilterReturn = Filter(AllEvals, "WidthIn=")

PartWidth = CDbl(Replace(FilterReturn(0),_

"WidthIn=", ""))

FilterReturn = Filter(AllEvals, "HeightIn=")

PartHeight = CDbl(Replace(FilterReturn(0), _

"HeightIn=", ""))

FilterReturn = Filter(AllEvals, "OutsideBufferIn=")

OutsideBuffer = CDbl(Replace(FilterReturn(0), _

"OutsideBufferIn=", ""))

FilterReturn = Filter(AllEvals, "HoleDiaIn=")

HoleDia = CDbl(Replace(FilterReturn(0),_

"HoleDiaIn=", ""))

FilterReturn = Filter(AllEvals, "SpacingXIn=")

SpacingX = CDbl(Replace(FilterReturn(0) , _

"SpacingXIn=", ""))

FilterReturn = Filter(AllEvals, "SpacingYIn=")

SpacingY = CDbl(Replace(FilterReturn(0), _

"SpacingYIn=", ""))

FilterReturn = Filter(AllEvals, "QtyWidth=")

QtyX = CDbl(Replace(FilterReturn(0), _

"QtyWidth=", ""))

FilterReturn = Filter(AllEvals, "QtyHeight=")

OtyY = CDbl(Replace(FilterReturn(0), _

"QtyHeight=", ""))

DrawPart PartWidth, PartHeight, OutsideBuffer, _

HoleDia, SpacingX, SpacingY, _

QtyX, QtyY

End Sub

The Array AllEvals is 'Filtered' to get only the parameter we want. When we find it, we get the value associated with the parameter by replacing the parameter name and the equal sign with an empty string and then converting the remaining text (the numeric value) to a Double by using the standard VBA CDbl function. Each of these parameter values are placed into their own variable. These variables are then used to call a procedure named DrawPart.

Sub DrawPart(Width As Double, Height As Double, _

OutBuffer As Double, HoleDia As Double, _

SpacingX As Double, SpacingY As Double, _

QtyWidth As Double, QtyHeight As Double)

Dim my Line As Line Element

Dim myCircle As EllipseElement

Dim XPos As Double

Dim YPos As Double

Dim RotMatrix As Matrix3d

Set myLine = CreateLineElement2(Nothing, _ Point3dFromXY(0, 0) ,

_ Point3dFromXY(Width, 0))

ActiveModelReference.AddElement myLine

Set myLine = CreateLineElement2(Nothing , _

Point3dFromXY(Width, 0), _

Point3dFromXY(Width, Height))

ActiveModelReference.AddElement myLine

Set myLine = CreateLineElement2(Nothing, _

Point3dFromXY(Width, Height),

Point3dFromXY(0, Height))

ActiveModelReference.AddElement myLine

Set myLine = CreateLineElement2(Nothing, _

Point3dFromXY(0, Height), _

Point3dFromXY(0, 0))

ActiveModelReference.AddElement myLine

XPos = OutBuffer + HoleDia / 2

For X = 1 To QtyWidth

YPos = OutBuffer + HoleDia / 2

For Y = 1 To QtyHeight

'*** Draw the Circle ***

Set myCircle = CreateEllipseElement2(Nothing, _

Point3dFromXY(XPos, YPos), HoleDia / 2, _

HoleDia / 2, RotMatrix)

ActiveModelReference.AddElement myCircle

YPos = YPos + SpacingY

Next Y

XPos = XPos + SpacingX

Next X

End Sub

The code is in place. Our Mathcad Worksheet is open and the design criteria has been entered. The only thing to do now is run the procedure DrawFromMathcad and see how the calculations we entered into Mathcad look.

[image: Image]

When we run DrawFromMathcad and take a look at the results in MicroStation, we can see that something is not right. The horizontal spacing appears to be correct but the vertical spacing is not.

A careful review of our formulas in Mathcad reveals that ActualSpacing function is using the QtyWidth Mathcad variable we defined. Since the QtyWidth and the QtyHeight variables will likely have different values, we need to add one more parameter to the ActualSpacing function and provide the value when we calculate the SpacingXIn and SpacingYIn values.

[image: Image]

Now that we have added a "Qty" parameter in the ActualSpacing function, and provided the parameter in the SpacingXIn and SpacingYIn formulas, the values in the Mathcad Worksheet are updated automatically. We can erase the drawn elements in MicroStation and run the DrawFromMathcad procedure again.

[image: Image]

Now the spacing looks correct in MicroStation. Let's add a few dimensions to verify that we are meeting our design criteria as established in Mathcad.

[image: Image]

The Buffer area looks right. But the spacing between the holes isn't meeting our criteria. A review of the Formulas and Functions in Mathcad shows us that the CalculateQuantity Function has one more error in it. We need to calculate the quantity of items, not the number of spaces. So, we will add 1 to the formula so we are retrieving the number of items that fit in the space, instead of the number of spaces.

[image: Image]

We fix the formula in Mathcad and run the macro from within MicroStation's VBA environment and the plate is drawn again. Adding a few dimensions to it shows us the result.

Now, it looks like the spacing between the holes is meeting our criteria of "MaxSpacing = 50mm". Changing the Width, Height, Hole Diameter, and OutsideBuffer in Mathcad and running the macro again should yield similar results — a plate drawn in MicroStation with holes spaced evenly (in the respective X and Y planes) and spaced within the MaxSpacing rule.

[image: Image]

REVIEW

Someone once said, "Give me a lever and I will move the World." A study of the effects of various types of levers shows that with a lever we can move objects that would be impossible to move without the use of the lever. Mathcad and other applications that allow us to communicate with them through ActiveX Automation serve as levers. They allow us to accomplish tasks previously error prone and time consuming with little or no effort.

This chapter is by no means a comprehensive reference on the use of Mathcad or its API. An entire book could be devoted to that topic. The goal here is to introduce and demonstrate the ease with which we can take engineering data and calculations from Mathcad and use them in our design work within MicroStation.

[image: Image]

37Accessing Data from External Applications

We have controlled MicroStation from within MicroStation's VBA environment. We have also controlled Microsoft Excel from within MicroStation's VBA environment. It would stand to reason, then, that we can control MicroStation from Excel's VBA environment. And we can.

In this Chapter:

[image: Image] ActiveX / COM Basics

[image: Image] References, Early Binding, and Late Binding

[image: Image] GetObject, SetObject, and 'New'

[image: Image] What does 'WithEvents' do for us?

[image: Image] When to run macros from within Excel and when to run them from within MicroStation

[image: Image] Controlling MicroStation from within Excel

ACTIVEX / COM BASICS

What do "ActiveX Automation" and "COM" have in common? When viewed in a 'common' light, they have everything in common because they are often referred to as the same thing. In essence, when we talk about ActiveX Automation and/or COM, we are talking about a mechanism used to allow one application to 'talk' to another application. We are talking about one application 'driving' the other one or 'deriving' information from the other one.

For years, application vendors have attempted to come up with ways for their customers to customize their software. A large variety of methods have been devised to accomplish this. Dynamic Data Exchange (DDE) was a method whereby one application could send messages to the other. Other software developers have come up with clever ways to simulate the user's interaction with the software including mouse movement and clicking on the application's buttons as well as simulating keyboard entry in the other application. And yet others have invented scripting mechanisms that would read a file and follow instructions contained in the file.

ActiveX Automation gives us the means to programmatically control applications through the use of the Application's object model. We traverse the Object Model until we arrive at the Object that exposes the Properties, Methods, and Events with which we want to work.

Application Objects have Object Names and Class IDs. Which is easiest to work with? Let's take a look at the MicroStationDGN Application. Would we rather use "MicroStationDGN.Application" or "{121c4649-9bb6-11d4-81ce-0050049e89cb}"? We refer to Classes by their Names instead of by their IDs for the obvious reason.

"MicroStationDGN.Application", "Excel.Application", and "Word.Application" are some examples of Class Names we may know. These top-level Objects serve as a starting point and allow us to drill down to Documents, Worksheets, Paragraphs, and the like.

Some Applications have exposed COM Interfaces even though they have not implemented or licensed Microsoft's VBA environment. So, the fact that an Application does not have VBA embedded into it does not necessarily mean we have no way of communicating with it. The application may very well be open to customization through COM (ActiveX Automation). One example is Internet Explorer.

Sub RunInternetExplorer()

Dim myInet As Object

Set myInet = CreateObject("InternetExplorer.Application")

myInet.Visible = True

myInet. Navigate2 "http://www.bentley.com"

MsgBox "At Bentley's Website."

myInet.Navigate2 "http://www.microsoft.com"

MsgBox "At Microsoft's Website."

End Sub

In the above example, we are 'connecting' to Internet Explorer by creating a new instance of it, making it visible, and displaying two websites in it. Internet Explorer has a COM interface so we can control it using VBA code in MicroStation's VBA environment.

REFERENCES, EARLY BINDING, AND LATE BINDING

We have added many References in this book so far. And why do we do this? And what can we add a Reference to?

In VBA, go to the menu Tools > References.

[image: Image]

We have seen this before. Let's talk a little more about what we are actually seeing.

When we look at the References dialog box, we are looking at References that can be added to our project. These References are stored in files usually having one of three different file extensions: .olb, .tlb, and dll.

If we click the Browse button, we see the Add Reference dialog box.

[image: Image]

If we need to add a Reference and it doesn't show up in the References dialog box we can add it by browsing to it and adding it in the Add Reference dialog.

Type Libraries can do two things for us. First, they give us the Object Model — the structure of the Objects with their Properties, Methods, and Events. With this comes features such as Intellisense — the lists and tip text boxes that appear as we are writing code. The other thing they do is provide easy access to the Objects and make it possible to perform Early Binding.

Early Binding? Late Binding? Binding is the process of taking a variable and setting it to an Object. When we speak of "Early Binding", we mean we declare a variable as a specific type of Object. A variable bound early performs better, allows for intellisense on the variables, and performs type checking as we develop our code.

Let's review a snippet of code we wrote earlier:

Sub RunInternetExplorer()

Dim myInet As Object

Set myInet = CreateObject("InternetExplorer.Application")

myInet.Visible = True

myInet.Navigate2 "http://www.bentley.com"

MsgBox "At Bentley's Website."

myInet.Navigate2 "http://www.microsoft.com"

MsgBox "At Microsoft's Website."

End Sub

Are we doing early binding or late binding here? Late binding. Why? Because we declare the variable myInet as an Object. Declaring a variable as an Object provides for a generic Object that could be an Internet Explorer Application, a Line Element, or a Database Connection. The variable does not know what type of Object it is until it is Set with code such as:

Set myInet = CreateObject("InternetExplorer.Application")

After this line of code is run, the variable myInet knows what type of Object it is. When we use late binding, Intellisense is not active because the variable does not know what type of object it is.

[image: Image]

In the above graphic, when we type 'myInet.' (with a period after the variable name), Intellisense does not show up to help us. If, however, we declare myInet as an "InternetExplorer", we have Intellisense to help us if we have also added the correct Reference, which in this case is "Microsoft Internet Controls".

[image: Image]

Now, when we type "myInet." we get Intellisense helping us because we have declared the variable myInet as a specific type of Object and it is Referenced correctly.

Code written that uses Late Binding does work. But code written that uses Early Binding works better, is faster to develop, and easier to debug.

GETOBJECT, SETOBJECT, AND NEW

When we want to work with an application through ActiveX Automation, we must 'connect' to it before we do anything else. There are three ways we do this.

For the next few examples, we are going to develop our code in Microsoft Excel's VBA environment. We are also going to add a Reference to the "Bentley MicroStation DGN #.# Object Library".

Sub ConnectToMicroStationA()

Dim myMSAppCon As MicroStationDGN.ApplicationObjectConnector

Dim myMSApp As MicroStationDGN.Application

Set myMSAppCon = GetObject (, _

"MicroStationDGN.ApplicationObjectConnector")

Set myMSApp = myMSAppCon.Application

MsgBox myMSApp.Caption

Set myMSApp = Nothing

Set myMSAppCon = Nothing

End Sub

When this code is run,

we will either see something like this:

[image: Image]

or something like this:

[image: Image]

In the first MessageBox, we see MicroStation's Caption. In the second one, we are told "ActiveX component can't create object". If we see the first MessageBox, we know the code worked. If we see the second, we know it didn't work. Why? Because GetObject is used to Get an existing instance of an Object. In this example, MicroStation must be running before we can use GetObject.

Here is our next example. It makes use of CreateObject.

Sub ConnectToMicroStationB ()

Dim myMSAppCon As MicroStationDGN.ApplicationObjectConnector

Dim myMSApp As MicroStationDGN.Application

Set myMSAppCon = _

CreateObject("MicroStationDGN.ApplicationObjectConnector")

Set myMSApp = myMSAppCon.Application

myMSApp.Visible = True

MsgBox myMSApp.Caption

Set myMSApp = Nothing

Set myMSAppCon = Nothing

End Sub

Now, instead of getting an existing instance of MicroStation, we create a new instance by using CreateObject. If we run this macro multiple times, we will end up with multiple instances of MicroStation running.

[image: Image]

A look at the Taskbar shows that ConnectToMicroStationB has been run four times.

GetObject gets an existing instance of an application. CreateObject creates a new instance of an application. The New keyword can also be used to create a new instance of an application. And there are two ways to use it.

Sub ConnectToMicroStationC ()

Dim myMSAppCon As New _

MicroStationDGN.ApplicationObjectConnector

Dim myMSApp As MicroStationDGN.Application

Set myMSApp = myMSAppCon.Application

myMSApp.Visible = True

MsgBox myMSApp.Caption

Set myMSApp = Nothing

Set myMSAppCon = Nothing

End Sub

We can use the New keyword when we declare an Object-type variable. ConnectToNicroStationC causes a new MicroStation application to start. The keyword 'New' can also be used as follows:

Sub ConnectToMicroStationD ()

Dim myMSAppCon As MicroStationDGN.ApplicationObjectConnector

Dim myMSApp As MicroStationDGN.Application

Set myMSAppCon = New _

MicroStationDGN.ApplicationObjectConnector

Set myMSApp = myMSAppCon.Application

myMSApp.Visible = True

MsgBox myMSApp.Caption

Set myMSApp = Nothing

Set myMSAppCon = Nothing

End Sub

In this example, we declare the variable myMSAppCon and then we use the code to create a new instance of MicroStation.

Set myMSAppCon = New MicroStationDGN.ApplicationObjectConnector

We have worked with code that gets an existing instance of MicroStation as well as code that creates a new instance of MicroStation. The code works. Now let's discuss when we might want to use these mechanisms.

When to use GetObject, CreateObject, and New

Let's begin with CreateObject and New. There are three reasons we may want to create a new instance of MicroStation:

1 We need to work with MicroStation and would be happy to work with an existing instance if one existed, but MicroStation is not currently running. In this case, we probably used GetObject but received an error so we use either CreateObject or New (as used in ConnectToMicroStationD) so we can work with MicroStation.

2 An instance of MicroStation is running but we do not want to interrupt that session with our code so we create a new instance of MicroStation.

3 Multiple instances of MicroStation are or may be running. If we use GetObject, we cannot be certain which instance of MicroStation we will 'attach' to, so we use CreateObject or New and we are 'attached' to a new instance of MicroStation.

The second and third circumstances just described are self-explanatory. The first, however, should be demonstrated with some code:

Sub ConnectToMicroStationE ()

Dim myMSAppCon As MicroStationDGN.ApplicationObjectConnector

Dim myMSApp As MicroStationDGN.Application

'Attach to existing or create new if no existing MicroStation

On Error Resume Next

Set myMSAppCon = GetObject(, _

"MicroStationDGN.ApplicationObjectConnector")

If Err.Number = 429 Then

Set myMSAppCon = _

CreateObject("MicroStationDGN.ApplicationObjectConnector")

Err.Clear

End If

On Error GoTo 0

Set myMSApp = myMSAppCon.Application

myMSApp.Visible = True

MsgBox myMSApp.Caption

Set myMSApp = Nothing

Set myMSAppCon = Nothing

End Sub

In this example, we are fully aware that MicroStation may not be running. We use the statement "On Error Resume Next" so if we do encounter an error, the code will not stop executing. Immediately after attempting to GetObject, we take a look at the Err. Number to see if we encountered an error number of 429 (this is the error number we will get if we attempt to use GetObject and the Object we are trying to get does not exist). In the above example, if we do see Error 429, we use CreateObject and clear the Error. Then we use "On Error GoTo 0" to reset the error handler in VBA.

WHAT DOES 'WITHEVENTS' DO FOR US?

We use the keyword WithEvents when we want to communicate with another application and want to be notified when certain events take place.

Let's create a new User Form in Microsoft Excel's VBA environment. We will also add a Listbox to the Form. After this is done, we will enter the following code:

Dim myMSAppCon As MicroStationDGN.ApplicationObjectConnector

Dim WithEvents myMSApp As MicroStationDGN.Application

Private Sub UserForm_Initialize()

Set myMSAppCon = GetObject(, _

"MicroStationDGN.ApplicationObjectConnector")

Set myMSApp = myMSAppCon.Application

End Sub

Private Sub myMSApp_OnDesignFileClosed(ByVal _

DesignFileName As String)

ListBox1.AddItem "CLOSED " & DesignFileName

End Sub

Private Sub myMSApp_OnDesignFileOpened(ByVal _

DesignFileName As String)

ListBox1.AddItem "OPENED " & DesignFileName

End Sub

When we declare the variable myMSApp, we do so with the WithEvents keyword. This adds the variable myMSApp to the Object ComboBox in the Code area of the Form. When myMSApp is selected in the Object ComboBox in the code area of the Form, the events associated with the Object the variable represents display in the Procedure ComboBox.

When the form is run, it attaches to an existing instance of MicroStation and each time a file is closed or opened, the code in the appropriate event is executed.

[image: Image]

WithEvents allows us to capture events of external applications and respond to them. In this example, we are adding the names of the files opened and closed in MicroStation to a Listbox created in Excel's VBA environment. The possibilities are endless as to what we can do when we are notified of the events taking place in MicroStation.

It should be stated here that the same WithEvents keyword can be used with reference to the Microsoft Excel.Application Object. We can capture events taking place in Excel from within MicroStation's VBA environment.

RUN MACROS FROM EXCEL OR MICROSTATION?

When do we run the macros from within Excel and when do we run them from MicroStation?

If we can control MicroStation from Excel and can control Excel from within MicroStation, when do we write code in MicroStation and when do we write it in Excel? That is a good question. There are several things that we should consider. They are not listed in order of importance because the importance of any particular item probably depends on the situation in which we find ourselves at the moment. For the sake of discussion, we will use MicroStation and Microsoft Excel as the two applications in which we are developing.

[image: Image] Is MicroStation installed on this computer? If we develop in MicroStation's VBA environment, we know the code will be run on a computer with MicroStation installed on it. If we develop in Excel, the code is housed in Excel and it is possible that MicroStation is not even installed.

[image: Image] Communication over the COM pipeline takes time. Not a lot of time, necessarily, but it does take time. If we have a lot of data in Excel and we need to do a lot of work with that data in Excel, an application may take less time to run if it is run from within Excel. However, if a majority of the processing is done in MicroStation, the code should be developed inside MicroStation's VBA environment.

[image: Image] Are we using GetObject or CreateObject? Microsoft Excel is used by many developers and at times, instances of Excel are running in the background (even though the application is not visible). And we do not know if it is running in the background unless we look for "EXCEL.EXE" in the Processes tab of the Windows Task Manager. Often times, data will be stored in Excel and an Application will run from within MicroStation. The concept is, the user opens the file he/she wants to use in Excel and GetObject is used inside MicroStation's VBA environment to read the data. However, if an instance of Excel is running in the background, it (the instance running in the background) may be the instance of the Excel. Application object that GetObject returns and the program will either crash or it uses data other than what the user is expecting. By the way, when using CreateObject, we should always set the Visible property to True so we don't end up with applications running in the background.

Choosing the best tool for the job should always be near the top of the list of things to consider before developing an application. We have listed several things worthy of consideration and there are others that may pop up that are specific to a project or task.

CONTROLLING MICROSTATION FROM WITHIN EXCEL

We know that MicroStation VBA projects are stored in .mvba files. Excel, however, is a little different. When we write VBA code in Excel, the code is stored in a Microsoft Excel Workbook (.xls file). Excel VBA programming can also be stored in an Excel Add-In (.xla file). We will discuss Add-Ins later in this chapter.

Let's create a new Excel Workbook. We will then get into Excel's VBA environment by clicking Tools > Macro > Visual Basic Editor.

Next, let's insert a new Module.

[image: Image]

The VBA environment in Excel should look a lot like the VBA environment in MicroStation. One thing that is different, however, is the Project Window. "Microsoft Excel Objects" are available to us. What are they? These Excel Objects allow us to write code directly into events pertaining to specific Worksheets or the Workbook.

So, we have a Code Module inserted. And we want to write code that communicates with MicroStation. What is our next step? We should add a Reference to the "Bentley MicroStation DGN #.# Object Library".

With the Reference in place, it is time to write some simple code that communicates with MicroStation.

Sub XLMSA ()

Dim myMSAppCon As MicroStationDGN.ApplicationObjectConnector

Dim myMSApp As MicroStationDGN.Application

Dim myLevel As Level

Dim CurRow As Long

Set myMSAppCon = GetObject(, _

"MicroStationDGN.ApplicationObjectConnector")

Set myMSApp = myMSAppCon.Application

CurRow = 2

For Each myLevel In myMSApp.ActiveDesignFile.Levels

Sheet1.Cells(CurRow, 1) = myLevel.Number

Sheet1.CellstCurRow, 2) = myLevel.Name

CurRow = CurRow + 1

Next

End Sub

When we develop in Excel, some Objects are natively available to us without any effort on our part simply because we are in Excel. We don't have to declare them or instantiate them, we just use them. In the above example, "Sheet1" is one of these object variables. We declare a variable for the Level and for the Current Row but we don't need to declare a variable for "Sheet1".

Here are the results of running "XLMSA":

[image: Image]

The Level number and Name are placed into Excel's "Sheet1".

Now, instead of reading Levels from MicroStation's ActiveDesignFile we are going to create Levels based on what is in Excel. Let's create a new design file in MicroStation before we continue.

[image: Image]

When we run XLMSB with the above data in Excel, we get new Levels created in the new.dgn file. Here is the code:

Sub XLMSB()

Dim myMSAppCon As MicroStationDGN.ApplicationObjectConnector

Dim myMSApp As MicroStationDGN.Application

Dim myLevel As Level

Dim CurRow As Long

Set myMSAppCon = GetObject(, _

"MicroStationDGN.ApplicationObjectConnector")

Set myMSApp = myMSAppCon.Application

CurRow = 2

While Sheet1.Cells(CurRow, 1) <> " "

Set myLevel = myMSApp.ActiveDesignFile.AddNewLevel _

(Sheet1.Cells(CurRow, 2))

myLevel.Number = Sheet1.Cells(CurRow, 1)

myLevel.Description = Sheet1.Cells(CurRow, 3)

CurRow = CurRow + 1

Wend

End Sub

After the above code is run, we can see the results in the Level Manager:

[image: Image]

Running Excel Macros

After we develop code in Excel's VBA environment, we want to give users the ability to use our macros but not to modify our code. Excel's VBA environment (as with MicroStation's VBA environment) allows us to 'lock down' our projects by going to the Project Properties Protection tab and selecting "Lock project for viewing". But how do we execute macros in Excel when the project is 'locked down' or if we do not want our users entering the VBA environment to execute macros? Let's begin by creating a custom button in Excel.

1 In Excel, right-click on any Toolbar button and click Customize. The Customize dialog box opens.

[image: Image]

[image: Image]

2 Click the New button to begin the steps to create a new toolbar in Microsoft Excel.

3 Name it "MicroStation VBA" and click OK.

[image: Image]

[image: Image] And now for a warning: the new toolbar is very small because it does not have any buttons or menu items in it.

4 Next, change to the Commands tab and select "Macros" in the Categories Listbox. This brings up two 'Commands' - "Custom Menu Item" and "Custom Button".

5 Drag and drop "Custom Menu Item" into the new toolbar we just created.

[image: Image]

[image: Image] There is a temptation at this point to click the Close button because we have successfully dragged a new Menu Item to our new Toolbar. But key to proceeding now is to keep the Customize dialog box open.

6 Next, right-click on the new Menu Item and take a look at the context menu.

[image: Image]

7 The Name property specifies what the menu item will display. At this point it is set to "Custom Menu Item". Let's change it to "&Get DesignFile Levels".

[image: Image]

8 Another right-click on the menu item allows us to "Assign Macro"

[image: Image]

9 We can select a macro and click the OK button. This assigns the selected macro to the button. From this point on, any time the button is clicked, the macro XLMSA is run in Excel.

Now that we have renamed and assigned the Menu Item we can run it after we close the Customize dialog box.

10 The macro we are going to run populates cells in Sheet1. Before we proceed, let's delete the data in Sheet1. After we do this we can click the Get DesignFile Levels button just to make sure everything works correctly.

11 Now we are going to save the Excel file and close it. After the workbook is closed we will begin a new workbook. Then we will click the Get DesignFile Levels button again. What happens next depends on your Security settings in Excel.

We may see something like this:

[image: Image]

When we assigned a macro to the new menu item, it was assigned to a macro in a specific file. That link to the file carries over even after the workbook containing the macro is closed. If Book1.xls is closed and we go back to the Assign Macro dialog, we see the following:

[image: Image]

So, even if we close the Excel file in which the macro is written, when we click the button that links to the macro, Excel opens the workbook so it can run the macro. If we 'Enable Macros' (if we are prompted to do so), the macro is run and the Levels are entered. But where are they entered? They are entered into the Book1.xls file even though we may have had a different workbook open when we clicked the button. Let's take another look at the code that is running:

Sub XLMSA ()

Dim myMSAppCon As MicroStationDGN.ApplicationObjectConnector

Dim myMSApp As MicroStationDGN.Application

Dim myLevel As Level

Dim CurRow As Long

Set myMSAppCon = GetObject(, _

"MicroStationDGN.ApplicationObjectConnector")

Set myMSApp = myMSAppCon.Application

CurRow = 2

For Each myLevel In myMSApp.ActiveDesignFile.Levels

Sheet1.Cells(CurRow, 1) = my Level.Number

Sheet1.Cells(CurRow, 2) = myLevel.Name

CurRow = CurRow + 1

Next

End Sub

So, why are the Levels being written to Book1.xls instead of in the new Workbook? Because we are writing to "Sheet1" directly and this object is pre-defined as belonging to the workbook in which the code is written.

Let's copy and paste the macro XLMSA and rename it to XLMSC. Now we will make a couple of changes to it so the Levels are written to the workbook that is open when the menu item is selected:

Sub XLMSC ()

Dim myMSAppCon As MicroStationDGN.ApplicationObjectConnector

Dim myMSApp As MicroStationDGN.Application

Dim myLevel As Level

Dim CurRow As Long

Set myMSAppCon = GetObject(, _

"MicroStationDGN.ApplicationObjectConnector")

Set myMSApp = myMSAppCon.Application

CurRow = 2

For Each myLevel In myMSApp.ActiveDesignFile.Levels

ActiveSheet.Cells(CurRow, 1) = myLevel.Number

ActiveSheet.Cells(CurRow, 2) = myLevel.Name

CurRow = CurRow + 1

Next

End Sub

The changes are small but the significance of the changes are not. Let's now assign XLMSC as the macro to run when the menu item is selected.

After we do so, the workbook Book1.xls is still opened when the menu item is selected but the Levels are placed into the worksheet that was active when the menu item was clicked. So, the code is working better but to have our Workbook open inside Excel each time someone clicks the button in Excel can be improved.

It makes perfect sense that prior to running a macro, the file in which the macro resides should be opened. But when we click a menu item we expect code to run, not workbooks to open and dialog boxes to be shown asking us to enable macros. So, what is to be done?

1 Let's open Book1.xls in Excel. Then save the file Book1.xls as an Excel Add-in. Let's use the filename MicroStationVBA Add-In.xla.

[image: Image]

2 Saving a Workbook (.xls file) as an Add-In (.xla file) performs a sort of "SaveAs Copy" in that the original .xls file remains open. So, after we save the file as, we can close down the original Book1.xls file and begin a new workbook.

3 Next go to the Excel menu and select Tools > Add-Ins.

[image: Image]

4 Let's browse to the new .xla file we just created.

[image: Image]

5 After selecting the file, click OK and the file displays in the Add-Ins dialog and is selected. This loads the file into memory (we can work with the file in VBA but not in the Excel Worksheet interface) so when the menu item is clicked, the code is already loaded and ready to run.

6 To finish the Add-In process, click OK in the Add-Ins dialog box.

[image: Image]

7 Now, the Menu Item we added to our custom toolbar is still pointing to Book1.xls. We want it to run the macro in the Add-In file we just created. Let's go back to the Assign Macro dialog by right-clicking on the Menu Item, selecting Customize, right-clicking on the Menu Item again, and selecting Assign Macro.

8 We don't want to run the macro in Book1.xls. We want to run the macro in the Add-In. But macros in Add-Ins don't show up in the list of available macros, so just type the macro name into the Assign Macro dialog and click OK.

[image: Image]

9 After clicking OK in the Assign Macro dialog, click the Close button in the Customize dialog box and we can test the Menu Item.

When we click the Get DesignFile Levels button now, the macro is executed immediately because the Add-In is already loaded. If we change from "Sheet1" to "Sheet2" and click the menu item again, the Levels are displayed in "Sheet2". Remember, in our code, we are writing to the "ActiveSheet" now so the active sheet in Excel will receive the Level information.

When we created the Menu Item, we named it "&Get DesignFile Levels". The Ampersand (&) character specifies which character will be underlined in the Menu Item. The underlined character means we can hold down the <Alt> key and press the <G> key (the underlined character) on the keyboard and the menu item will be clicked'. This means that in addition to clicking the menu item in Excel, we can perform an <Alt+G> on the keyboard and the macro will run.

REVIEW

Nearly all of the code that has been written to this point in this book can be run from within Excel's or MicroStation's VBA environment. When we develop in Excel, we add a Reference to the "Bentley MICROSTATION DGN #.# Object Library". When we develop in MICROSTATION and wish to work with Excel, we add a Reference to "Microsoft Excel #.# Object Library". We use GetObject to get existing instances of the application we wish to attach to and CreateObject or New if we want to create a new instance of the application with which we want to work.

[image: Image]

38Writing VB6 Applications

We have written a lot of code in VBA. Now it's time to write some code in Visual Basic 6.

In this Chapter:

[image: Image] Differences between VBA and VB6

[image: Image] VB6 Project Basics

[image: Image] Controlling MicroStation with VB6

[image: Image] Compiling and Distributing Applications

DIFFERENCES BETWEEN VBA AND VB6

VBA and VB6 have a great deal in common. Of course, they both make use of the language, "Visual Basic". Projects are broken out into Code Modules, User Forms, and Class Modules. Each environment allows References to be added to the project. There are also some differences.

[image: Image] In VBA, Code Modules, Classes, and User Forms are all contained in a single .mvba file. In VB6, Code Modules, Classes, and User Forms each have their own file (.bas, .cls, and .frm files) and a single Project file (.vbp) which brings them all together.

[image: Image] MicroStation VBA projects must be run from within MicroStation's VBA environment. Excel's VBA projects must be run from within the Excel VBA environment. VB6 projects are compiled into executable programs (.exe) and can be run independent of any other application. VB6 projects can also be compiled into DLL files and ActiveX Controls (.ocx files).

[image: Image] Since VBA Projects are self-contained, changes made to Code Modules, Classes, and User Forms in a VBA project remain in the project. Multiple VB6 projects can utilize the same Code Module, Class Module, or User Form file. So changes made to VB6 resources may be reflected in multiple VB6 projects. This is a powerful feature but be careful that changes made to a resource file (.bas, .cls, .frm) in one project do not negatively impact any other project.

[image: Image] A VBA project can be distributed by providing a single .mvba file. VB6 projects compile to a single file (.exe, .dll, .ocx) but are best distributed using a Setup program that installs DLLs and other resources (such as the Visual Basic Runtime Libraries) that may be needed for the program to run correctly.

[image: Image] Since VBA programs must be run from within the host application, we know the host application is on the user's computer. Since VB6 compiled programs can run independent of any host application, it is possible that someone could install a program designed for MicroStation on a computer without MicroStation installed.

[image: Image] Even after VBA programs are distributed, it is easy to debug them because debugging can take place and source code can be stepped through on the user's machine (as long as the code is not 'Locked'). After a VB6 program is compiled, the code cannot be stepped through or viewed on the user's machine.

[image: Image] The VBA environment is installed with applications such as MicroStation and Microsoft Excel. VB6 must be purchased and then installed to use it.

VB6 PROJECT STRUCTURE

We have already identified the fact that VB6 Projects are similar to VBA projects in that they make use of Code Modules, Class Modules, and User Forms.

When we begin a new VB6 Project, there are a number of different types of VB6 projects we can create. We will begin by creating a "Standard EXE".

[image: Image]

When we begin a new VBA project, a Code Module is created by default. When we begin a new "Standard EXE" project in VB6, a User Form named "Form1" is created by default.

[image: Image]

The IDE of VB6 is nearly identical to that of VBA. Here, we can see the Project, Properties, Toolbox, and User Form.

Let's take a couple of controls from the Toolbox and place them on the Form. We will place a ComboBox, a Label and a CommandButton on the Form.

[image: Image]

At this point, we do not need to do anything to the project. We are simply going to compile the program by going to the VB6 menu and select File > Make Project1.exe.

The Make Project dialog box displays and here we specify a file location and a file name.

[image: Image]

The file Project1.exe is created and it can be executed whether MicroStation is running or not, or whether MicroStation is installed or not.

When we run our new program, we see the Form we created. It can be Maximized or Minimized. It can be re-sized to any size. There are Form Properties that control the use of these Form sizing functions but by default, Forms are inserted into a project with the ability to Minimize, Maximize, and Resize.

[image: Image]

When we save our project, we are asked to supply the names and locations for two files: Form1.frm and Project1.vbp. This differs from VBA where we are only asked to supply the name and location of a single .mvba file.

Just to review, we have created three distinct files at this time. We created a .frm file (User Form), a .vbp file (VB6 Project File) and an .exe file (Compiled Executable). When we are ready to distribute our application to others, of these three files, the only file we need to distribute is the .exe file.

Let's 'Remove' the current project we are working on and create a new project in VB6. We remove projects by either shutting down VB6 entirely or by going to the File menu in VB6 and selecting File > Remove Project.

[image: Image]

When we create a new project, a new User Form is created for us again. We are not going to use this new Form so we will remove it by going to the Project Window and right-clicking on the Form, then selecting Remove Form1.

After we remove the new default Form, we can see that we now have a project named "Project1" with nothing in it. Let's add the Form from the previous project by going to the menu and selecting Project > Add File.

[image: Image]

When we select the Form we saved previously and click Open, it is added to the Project. Double-clicking on the Form in the "Forms" folder opens it so we can edit it.

Remember, we are not adding the previous Project, only the Form (a part of the previous Project).

Let's add another Combobox and Label to the Form and change the size of the Form.

[image: Image]

The first Project we created was named "Project1". This is the name VB 6 gave it. We want to name this one "Project2". We do this by going to the VB6 menu and selecting Project > Project1 Properties.

[image: Image]

Let's talk about this dialog box. We can see the Project Name is being shown as "Project1". Let's change this to "Project2".

The Startup Object selection is critical. At this point the setting is "Sub Main". This means when we run this program either at design time or runtime, it looks for a procedure named "Main" in a Code Module. For our example here, we don't want to start with "Sub Main" because we don't have a "Sub Main". We want to select "Form1" from the list. The Startup Object ComboBox contains the names of all User Forms that can be used as Startup Objects. If we had Forms named "Form2" and "Form3" in this Project they would show up in this list as well.

Now that these changes have been made, the Project Properties dialog box should look like this:

[image: Image]

When we click OK we can now save our Project. When we click the Save button, we are asked to name and specify a save location for the Project file.

[image: Image]

The name of the .vbp file defaults to the Project Name set in the Project Properties dialog box. In this case, we will accept the default name of Project2.vbp. We are not asked for the location or name of the Form because it had already been saved in our previous Project. The .frm file is saved with the new controls on it and with its new size properties.

Let's remove Project2 by going to the VB menu and selecting File > Remove Project2. Now, we will open Project1 again.

When we open "Project1" again and look at "Form1" it reflects the changes made when it was being used in "Project2". This 'linking' of program design elements into projects is powerful. But as with most things that are powerful, we should be careful so we don't abuse it either intentionally or unintentionally. If, for example, we forget that Form1 is being used in two projects, we may make modifications to it in "Project2" that causes it to stop working properly in "Project1".

Now, we compiled Project1 before we began Project2. We made changes to Form1 when we were in Project2. What happens when we execute Project1.exe? Do we get the new Form or do we get things as they were when we compiled Project1? Answer: when we compile a program, everything is compiled into the executable as they are at the time the project is compiled. The executable program does not change to reflect modifications made to its design elements. If, however, we open and recompile Project1, the new executable (.exe) reflects the changes that were made up to the point that we re-compiled the project.

This exercise teaches us a few very important principles.

[image: Image] Multiple VB Projects (.vbp files) can make use of the same resource file (.frm, .bas, .cls, etc.).

[image: Image] Compiled .exe files are static. Changes made to design elements compiled into .exe files are not reflected in the .exe file unless it is re-compiled.

[image: Image] By default, compiling an .exe file does not result in saving source .frm, .bas, or .cls files. It is possible to create an entire program using VB6 and compile it without saving any of the source files to disk. Although potentially dangerous, this can be useful when we want to make a fairly significant change 'just to see what happens' and we don't want to lose our 'working' code. We can make changes, run it in design mode or compile it, and 'see what happens'. Only after we know the code works properly do we save our project. On the other hand, if we want VB6 to automatically save our project each time we compile our project, we can change a Tools > Options > Environment Tab > When a program starts setting.

Thus far we have created two "Standard EXE" projects. There are two other note-worthy projects and they are:

[image: Image] ActiveX DLL — Allows us to create a 'program' that can NOT be executed by itself but other programs can 'connect' to it. An example of an ActiveX DLL would be the "Microsoft ActiveX Data Objects Library". We cannot 'execute' it so it runs as an independent program but we can 'connect' to it to allow easy access of databases.

[image: Image] ActiveX Control — Allows us to create our own 'Controls' that show up in the Toolbox in VBA and VB6. An example of an ActiveX Control is a ComboBox that automatically displays the list of Levels in a .dgn file. We would begin with the basic ComboBox and would write code to populate it. Once completed and compiled (to an .ocx file) we would be able to drop it onto a Form in MicroStation's VBA environment and it would automatically populate with Levels.

CONTROLLING MICROSTATION WITH VB6

We have created a couple of VB6 projects already. We have placed a few controls on a Form and have compiled one of the projects. But the application "Project1", even though compiled, does nothing for us. We can click on the ComboBox or on the Button but nothing happens. We can Minimize, Maximize, and Resize the Form but this does not really do anything for us. Let's look into the steps necessary for us to begin controlling MicroStation from our application "Project1".

The first step to help us to communicate with MicroStation is to add a Reference. In VBA we do this with the menu items Tools > References. In VB6 we do this with the menu items Project > References.

The list that appears will likely differ from computer to computer because each computer has different software installed on it. The list is in alphabetical order and we want to browse for "Bentley MicroStation DGN #.# Object Library".

[image: Image]

Once selected we can work with MicroStation much easier than we could before it was selected.

Now, we want to populate the ComboBoxes in our Form before it is displayed. We will write some code in the "Form Load" event (in VBA we would use the Form Initialize Event).

Now for the code in the Form Load event:

Private Sub Form_Load()

Dim myMStationC As MicroStationDGN.ApplicationObjectConnector

Dim myMStation As MicroStationDGN.Application

Dim myLevel As MicroStationDGN.Level

Dim myCell As MicroStationDGN.CellInformation

Dim myCellInfoEnum As MicroStationDGN.CellInformationEnumerator

Set myMStationC = GetObject(, _

"MicroStationDGN.ApplicationObjectConnector")

Set myMStation = myMStationC.Application

'Populate Levels

For Each myLevel In myMStation.ActiveDesignFile.Levels

Combo1.AddItem myLevel.Name

Next

'Populate Cells

If myMStation.IsCellLibraryAttached = True Then

Set myCellInfoEnum = _

myMStation.GetCellInformation Enumerator(True, True)

While myCellInfoEnum.MoveNext

Set myCell = myCellInfoEnum.Current

Combo2.AddItem myCell.Name

myCellInfoEnum.MoveNext

Wend

End If

End Sub

[image: Image]

Let's review the code now. We know we want to connect to MicroStation. We do this by using GetObject and use the MicroStationDGN.ApplicationObjectConnector as the Class we 'Get'. Then we get the Application Object from the ApplicationObjectConnector. Once we have the Application of the ApplicationObjectConnector, we are able to work with MicroStation in the same way we do in VBA.

We place the name of each Level in the ActiveDesignFile into "Combo1".

If a CellLibrary is attached, we add the name of each Cell in the Library to "Combo2".

And what happens when the user clicks the Button?

Private Sub Commandl_Click()

Dim myMStationC As MicroStationDGN.ApplicationObjectConnector

Dim myMStation As MicroStationDGN.Application

Dim myCell As CellElement

Dim CellInsPt As Point3d

Set myMStationC = GetObject(, _

"MicroStationDGN.ApplicationObjectConnector")

Set myMStation = myMStationC.Application

Set myCell = myMStation.CreateCellElement3(Combo2.Text,_

CellInsPt, True)

myCell.Level = myMStation.ActiveDesignFile.Levels(Combo1.Text)

myMStation.ActiveModelReference.AddElement myCell

End Sub

When the CommandButton is clicked, we insert the selected cell at (0, 0, 0) on the selected level.

Each time we use GetObject, it takes time to connect to MicroStation. Let's make a few modifications to our code so we don't need to connect to the MicroStationDGN.ApplicationObjectConnector every time we click the button.

'General Declarations Area of Form

Dim myMStationC As MicroStationDGN.ApplicationObjectConnector

Dim myMStation As MicroStationDGN.Application

Private Sub Commandl_Click()

Dim myCell As CellElement

Dim CellInsPt As Point3d

Set myCell = myMStation.CreateCellElement3(Combo2.Text, _

CellInsPt, True)

myCell.Level = myMStation.ActiveDesignFile.Levels(Combo1.Text)

myMStation.ActiveModelReference.AddElement myCell

End Sub

Private Sub Form_Load()

Dim myLevel As MicroStationDGN.Level

Dim myCell As MicroStationDGN.CellInformation

Dim myCellInfoEnum As _

MicroStationDGN.CellInformation Enumerator

Set myMStationC = GetObject(, _

"MicroStationDGN.ApplicationObjectConnector")

Set myMStation = myMStationC.Application

'Populate Levels

For Each myLevel In myMStation.ActiveDesignFile.Levels

Combo1.AddItem myLevel.Name

Next

'Populate Cells

If myMStation.IsCell LibraryAttached = True Then

Set myCellInfoEnum = _

myMStation.GetCellInformationEnumerator(True, True)

While myCellInfoEnum.MoveNext

Set myCell = myCellInfoEnum.Current

Combo2.AddItem myCell . Name

myCellInfoEnum.MoveNext

Wend

End If

End Sub

By declaring the variables myMStationC and myMStation in the General Declarations area of the Form, these variables are accessible in other areas of the Form such as the CommandButton Click Event as long as they are initially Set in the Form Load event.

We can perform a test run of our Application while still within VB6. Clicking the Start button in the VB6 toolbar, using the VB6 menu Run > Start, or pressing the <F5> key executes the program inside VB6. We can also step through our code by using the <F8> key repeatedly just as we do in VBA.

Let's compile our program now. File > Make Project1.exe compiles our project into the file Project1.exe. Once compiled, we can execute the program by double-clicking on it in Windows Explorer or adding a Shortcut on the Windows Desktop.

Our first VB6 Project was pretty simple. Let's try building a new project that makes use of some of the Controls not available in the standard VBA toolbox. We will name this project "Project3".

Here is what the Form looks like when it is executed:

[image: Image]

When we select a drive and a folder, the DGN files in the selected folder display in the File list. When a file is selected, the Levels in the file are shown in the Listbox. The Listbox is available in VBA. The Drive Listbox, Directory Listbox, and File Listbox are not.

[image: Image]

We can see the Drive, Directory, and File Listboxes in the Toolbox. These are three of the Controls that are available to us in VB6 but are not available in the Standard VBA Toolbox.

Let's take a look at the code now that we know what the program is going to do:

'General Declarations Area

Dim myMStationC As MicroStationDGN.ApplicationObjectConnector

Dim myMStation As MicroStationDGN.Application

Private Sub Form_Load()

Set myMStationC = GetObject(, _

"MicroStationDGN.ApplicationObjectConnector")

Set myMStation = myMStationC.Application

End Sub

Private Sub Drive1_Change()

Dir1.Path = Drive1.Drive

List1.Clear

End Sub

Private Sub Dir1_Change()

File1.Path = Dir1.Path

List1.Clear

End Sub

Private Sub File1_Click()

Dim myLevel As MicroStationDGN.Level

Dim myDF As MicroStationDGN.DesignFile

Set myDF = myMStation.OpenDesignFileForProgram(_

Dir1.Path & "\" & File1.FileName, True)

List1.Clear

For Each myLevel In myDF.Levels

List1.AddItem myLevel.Name

Next

myDF.Close

End Sub

When the Form is Loaded, we attach to MicroStation. When the Drive changes, we update the Directory Listbox to reflect the change. When the Directory Listbox changes, we update the File Listbox to reflect the change. When the user clicks on a .dgn file in the File Listbox, we open it 'ForProgram' and add its Levels into the Listbox. Opening a file by using OpenDesignFileForProgram opens the file in memory without opening it in MicroStation's editor. Since we are not going to be making any changes to the .dgn file, we open it as Readonly.

Let's name the Form "Form3" and the Project "Project3". After saving the Project, we can compile it and run it.

Creating an ActiveX Control in VB6

VBA gives us a number of standard Controls. Listbox, Textbox, Combobox, Checkbox, CommandButton. When we work with MicroStation, we may see user GUI controls we wish we had in VBA. One of the benefits of VB6 is that we can create our own controls in VB6 and then use them in VBA. An entire book could be written on this topic alone (actually, entire books have been written on this topic). So, we will create a simple control that can be used in VB6 or in VBA. This control will display the Models and Levels in the Active Design File. This will be done with a TreeView control.

Here are the steps to creating this control:

1 Create a new "ActiveX Control" project in VB6.

[image: Image]

2 Change the Name of the Control to "msvba_modeltree".

[image: Image]

3 Right-click on the Toolbox, click "Components", and select "Microsoft Windows Common Controls 6.0" in the list. Then click the OK button.

[image: Image]

4 Add a TreeView control to the UserControl area and name it "tv1".

5 Change the "Style" property of the TreeView to "7 - tvwTreelinesPlusMinusPictureText".

6 Add a Reference to "Bentley MicroStation DGN 8.9 Object Library" in the Control Project (Project > References).

We now have the framework for our new Control.

[image: Image]

So, we have a Control named 'msvba_modeltree' with a TreeView control on it named 'tv1'. What do we want this control to do?

[image: Image] Display the Models in the Active Design File in the Tree View under a top Node of "Models".

[image: Image] Display the Levels in the Active Design File in the Tree View under a top Node of "Levels".

[image: Image] Create an Event named "SelectionChanged" when the user clicks on a Node in the Tree View and return the Node object that is selected.

[image: Image] Institute a method named "GetModel" and another named "GetLevel" that returns the Model or Level Object that is selected in the Tree View.

[image: Image] Allow the user (actually the programmer) to resize the control and have the Tree View change size accordingly.

Here is all of the code in the Control:

'General Declarations Area

Dim myMSApp As MicroStationDGN.Application

Dim myMSAppCon As MicroStationDGN.ApplicationObjectConnector

Event SelectionChanged(SelectedNode As Node)

Private Sub UserControl_Initialize()

Dim myModel As MicroStationDGN.Model Reference

Dim myNode As Node

Dim myLevel As MicroStationDGN.Level

Set myMSAppCon = GetObject (, _

"MicroStationDGN.ApplicationObjectConnector")

Set myMSApp = myMSAppCon.Application

'Models

Set myNode = tv1.Nodes.Add(, , "tv1Models", "Models")

For Each myModel In myMSApp.ActiveDesignFile.Models

tv1.Nodes.Add "tv1Models", tvwChild, "mod_" & myModel.Name, _

myModel.Name

Next

myNode.Sorted = True

'Levels

Set myNode = tv1.Nodes.Add(, , "tv1Levels", "Levels")

For Each myLevel In myMSApp.ActiveDesignFile.Levels

tv1.Nodes.Add "tv1Levels", tvwChild, "lvl_" & myLevel.Name, _

myLevel.Name

Next

myNode.Sorted = True

End Sub

Private Sub UserControl_Resize()

tv1.Width = UserControl.Width - tv1.Left * 2

tv1.Height = UserControl.Height - tv1.Top * 2

End Sub

Private Sub tv1_Click()

RaiseEvent SelectionChanged(tv1.SelectedItem)

End Sub

Function GetLevel() As MicroStationDGN.Level

Dim xSplit As Variant

xSplit = Split(tv1.SelectedItem.FullPath, "\")

Select Case UCase(xSplit(0))

Case "MODELS"

Set GetLevel = Nothing

Case "LEVELS"

If UBound(xSplit) > 0 Then

Set GetLevel = _)

myMSApp.ActiveDesignFile.Levels(xSplit(1))

Else

Set GetLevel = Nothing

End If

End Select

End Function

Function GetModel() As MicroStationDGN.Model Reference

Dim xSplit As Variant

xSplit = Split(tv1.SelectedItem.Full Path , "\")

Select Case UCase(xSplit(0))

Case "MODELS"

If UBound(xSplit) > 0 Then

Set GetModel = _

myMSApp. ActiveDesignFile.Models(xSplit(1))

Else

Set GetModel = Nothing

End If

Case "LEVELS"

Set GetModel = Nothing

End Select

End Function

Private Sub UserControl_Terminate()

Set myMSApp = Nothing

Set myMSAppCon = Nothing

End Sub

Now, let's take a look at the Events in which we have placed this code to make sure we are clear on what is happening.

Private Sub UserControl_Initialize()

When the Control is Initialized, we get the MicroStation Application Object and the Models and Levels of the ActiveDesignFile. We place the Model and Level names in the Tree View named 'tv1'.

Private Sub UserControl_Resize()

When the Control is resized, we change the size of the Tree View based on the Control's width and height and the Tree View's Left and Top properties.

Private Sub tv1_Click()

When the user clicks on a Node in the TreeView, we raise the SelectionChanged Event and provide this event with the Node that is selected in the TreeView. Note that the Event SelectionChanged is declared in the General Declaration area of the Control.

Function GetLevel() As MicroStationDGN.Level

When the Control is added to a Form in VB6 or in VBA, we can use the GetLevel method of our Control and the Control returns the selected Level or 'Nothing' if the selected node in the Tree View is not a Level.

Function GetModel() As MicroStationDGN.Model Reference

Similar to GetLevel, GetModel returns a Model Object if one is selected in the Tree View.

Debugging ActiveX Control Projects

We have just created the framework for a new ActiveX Control. How can we test it to see if it works? We can compile it, and then insert it into a new VB6 or VBA project. But that would force us to re-compile each time we find a bug or other error. It would also keep us from stepping through the code to aid in our development.

VB6 gives us the ability to create a Project Group. Project Groups are, as the name suggests, a group of individual VB6 projects that are opened in the same session of VB6. Before we create a new Group, we should save our ActiveX Control Project. And before we save our Project, we need to give it a name in the Project > Properties dialog. We will name it "msvbaControls".

When we save an ActiveX Control project, we save the Project (.vbp file) and the Control in the Project (.ctl file). Let's save the Project and Control with the file name "msvba_modeltree".

Now we are ready to add a new Project to our Controls Project, thus creating a Project Group.

1 Select File > Add Project. (Don't click "New Project"; we need to Add a Project.)

2 Select "Standard EXE".

3 Go to the VB6 menu and select File > Save Project Group.

 We are asked for a Project Group file name.

4 Save the project as "msvba_modeltree".

 We are also asked to give the new Project and Form a file name.

5 Save the new Project and Form as "testingmodeltree".

[image: Image]

When we look at the Project window now in VB6 we will see that we have two projects loaded. When we are working in a Project Group, one of the projects is set as the "Start Up Project". Controls cannot be executed' by themselves so we will set our new 'testingmodeltree' project as the Start Up Project. We do this by right-clicking on the Project and selecting "Set as Start Up".

Now, in the Project window, double-click on the Control we just created so that it displays. Next, we are going to close the Control by clicking the Close button at the top of the window.

[image: Image]

Why did we do this? Because we cannot add the Control in the new Project we created when the Control is open. We do not need to unload the Project, we only need to close the Control window.

[image: Image]

Now, when we select our new Project's Form and look at the Toolbox we should see our Control in the list. Clicking on our new control and dragging it into our new Form initializes the Control.

[image: Image]

When we run our new Project, the Form is displayed and the Tree View is available.

[image: Image]

At this point, we have created a new ActiveX Control and have added a new Project that makes use of the Control. Let's add a little bit of code now to the new Project so we can test the Event and Methods of the Control. We also need to add a Reference to the "Bentley MicroStation DGN Object Library".

Private Sub msvba_modeltree1_SelectionChanged(_

SelectedNode As MSComctlLib.Node)

Dim myLevel As MicroStationDGN.Level

Dim myModel As MicroStationDGN.ModelReference

MsgBox SelectedNode.Text & vbCr & SelectedNode.FullPath

Set myLevel = msvba_modeltree1.GetLevel

If myLevel Is Nothing = False Then

MsgBox myLevel.Name & vbTab & myLevel.Number, , "LEVEL"

End If

Set myModel = msvba_modeltree1.GetModel

If myModel Is Nothing = False Then

MsgBox myModel.Name & vbTab & myModel.Description, , "MODEL"

End If

End Sub

Here is the "SelectionChanged" event we created in our Control. We display the selected node's Text property and its FullPath property. Then we use the GetLevel and GetModel methods.

Compiling our ActiveX Control

Before we compile our ActiveX Control into an .ocx file, we must set the ActiveX Control Project as the "Start Up" Project. After we do this we can select File > Make msvba_modeltree.ocx from the menu in VB6. Let's compile it into the Control Project's folder so we know where it is.

Compiling an ActiveX Control is a little different than compiling a Standard EXE. Of course, the file extension is different, but the Control is also "registered" on the development computer. This registration step must be done manually or with a Setup program on any computer where the control is to be used. We use the command "RegSvr32.exe" in the Command Window to register the control.

In Windows, go to the Start button and click the Run shortcut. When presented with the Run dialog box, type "cmd" and click OK.

[image: Image]

Now, type:

regsvr32.exe "C:\MicroStation VBA\msvba_modeltree.ocx"

and press the <Enter> key. The path entered needs to point to the location of the .ocx file. This .ocx file may be in a different folder so the path may need to be adjusted.

When we press <Enter>, if everything was entered correctly, we will see the following dialog box:

[image: Image]

This registration step is necessary on any computer where we want to make use of the Control. If this registration step is not performed, the Control will not be available.

Now that we have compiled our ActiveX Control, let's take a look at it inside MicroStation's VBA environment.

After inserting a new Form in a MicroStation VBA Project, right-click in the Toolbox and select Additional Controls.

[image: Image]

[image: Image]

Our new Control should show up in the list. When selected, it displays in the Toolbox inside VBA.

Drag and drop the Control on to the Form and size it. Then press the <F5> button to Run the form.

A MessageBox may display warning us of the use of this ActiveX Control. After getting past this dialog box, the Form is displayed and the Control is populated with the Models and Levels in the Active Model Reference.

Creating ActiveX Controls is fairly simple and straight forward. We have created one that interacts with MicroStation. So, the next time we see a User Interface in MicroStation or another application we wish we could use, we can create our own control complete with its own Properties, Methods, and Events. These custom controls can be used from within VB6 and in VBA.

Creating ActiveX DLLs

We just finished creating an ActiveX Control. ActiveX Controls allow us to create custom user interface Controls based on existing controls, some of which are not normally available in VBA. Now we are going to look at creating an ActiveX DLL.

ActiveX DLLs are compiled .dll files that we can access through VB and VBA applications. They are often used to 'wrap' functionality into a single .DLL file and are called a 'wrapper' when this is done. They can be created to isolate specific logic and calculations from general application logic.

[image: Image]

Let's create a new ActiveX DLL file now by starting a new VB6 Session and selecting "ActiveX DLL" as the type of project we want to create.

When we create a new "Standard EXE" project, a new Form is created by default. When we create a new "ActiveX DLL", a new Class Module is created by default. The names of the Project (set in the Project Properties window) and the Class Modules are extremely important when creating an ActiveX DLL.

When we look at the MicroStation Object Model we can see a top-level Object named MicroStationDGN. Just under this Object is the Application Object. If we were to create a structure similar to this we would name our project "MicroStationDGN" and the Class Module "Application". Since we don't want to confuse our new DLL's Object Model with that of MicroStation's, we will use a different naming convention.

Let's name our Project "msvba_WinAPI" and the Class Module "System".

[image: Image]

[image: Image]

In addition to naming the Project in the Project Properties dialog box, the Version Compatibility should be set to "Project Compatibility".

The code we place in the Class Module named "System" is entered similar to code entered into any Class Module. Here is the code in total:

Private Declare Function GetSystemMetrics Lib "user32" (ByVal nIndex _

 As Long) As Long

Private Declare Function GetComputerName Lib "kernel32" Alias _

"GetComputerNameA" (ByVal lpBuffer As String, _

nSize As Long) As Long

Private Declare Function GetDiskFreeSpace Lib "kernel32" Alias _

"GetDiskFreeSpaceA" (ByVal lpRootPathName As String, _

lpSectorsPerCluster As Long, _

lpBytesPerSector As Long,_

lpNumberOfFreeClusters As Long,

lpTotalNumberOfClusters As Long) As Long

Private Declare Function GetLogicalDriveStrings Lib "kernel32" Alias _

"GetLogicalDriveStringsA" (ByVal nBufferLength As Long, _

ByVal lpBuffer As String) As Long

Private Declare Function LogonUser Lib "Advapi32" Alias "LogonUserA" _

(ByVal lpszUsername As String, _

ByVal lpszDomain As String, _

ByVal lpszPassword As String, _

ByVal dwLogonType As Long, _

ByVal dwLogonProvider As Long,

phToken As Long) As Long

Private Declare Function ShellExecute Lib "shell32.dll" Alias _

"ShellExecuteA" _

(ByVal hwnd As Long, ByVal lpOperation As String, _

ByVal lpFile As String, _

ByVal lpParameters As String, _

ByVal lpDirectory As String, _

ByVal nShowCmd As Long) As Long

Const SM_CXSCREEN = 0

Const SM_CYSCREEN = 1

Function Version() As String

Version = App.Major & "." & App.Minor

End Function

Sub ScreenSize(ByRef x As Long, ByRef y As Long)

x = GetSystemMetrics(SM_CXSCREEN)

y = GetSystemMetrics(SM_CYSCREEN)

End Sub

Function ComputerName() As String

Dim CompName As String

CompName = Space(255)

GetComputerName CompName, Len(CompName)

ComputerName = Left(CompName, InStr(1, CompName, Chr(0)) - 1)

End Function

Function DiskFreeSpace(DriveLetter As String, DiskTotal As Variant) _ As Variant

Dim SectorsPerCluster As Variant

Dim BytesPerSector As Variant

Dim FreeClusters As Variant

Dim TotalClusters As Variant

GetDiskFreeSpace DriveLetter, SectorsPerCluster, _

BytesPerSector, FreeClusters, Total Clusters

DiskTotal = BytesPerSector * SectorsPerCluster * Total Clusters

DiskFreeSpace = BytesPerSector * SectorsPerCluster *

FreeClusters

End Function

Function LogicalDrives() As Variant

Dim LDrives() As String

ReDim LDrives(0) As String

Dim DriveBuff As String

Dim XSplit As Variant

DriveBuff = Space(255)

GetLogicalDriveStrings Len(DriveBuff), DriveBuff

XSplit = Split(DriveBuff, Chr(0))

ReDim LDrives(O To UBound(XSplit) - 2)

For I = LBound(LDrives) To UBound(LDrives)

LDrives(I) = XSplit(I)

Next I

LogicalDrives = LDrives

End Function

Function CheckLogon(UserName As String, Password As String) _ As Boolean

CheckLogon = LogonUser(UserName, " ", Password, 2, 0, 0)

End Function

Sub WinOpenFile(FileName As String)

ShellExecute 0, "OPEN", FileName, "", " ", 0

End Sub

Testing an ActiveX DLL is similar to testing an ActiveX Control. We Add a new Project (Add Project, not New Project) to our existing project, creating a Project Group. Then in the new "Standard EXE" project, we add a Reference to the ActiveX DLL we just finished creating:

[image: Image]

Once the Reference is added, we use it as we have many other References in this book. If we add a CommandButton to the form in the new testing EXE project and go to the Click event of the button we can enter the following code:

Private Sub Commandl_Click()

Dim myMsVBA As New msvba_WinAPI. System

Dim XS As Long

Dim YS As Long

Dim XDrives As Variant

Dim I As Long

XDrives = myMsVBA.LogicalDrives

MsgBox Join(XDrives, ", "), , "Drives On System"

For I = LBound(XDrives) To UBound(XDrives)

MsgBox XDrives(I) & vbCr & _

myMsVBA.DiskFreeSpace(CStr(XDrives(I)) , 0), , _

"Drive Free Space"

Next I

MsgBox myMsVBA.ComputerName , , "Computer Name"

myMsVBA.ScreenSize XS, YS

MsgBox XS & ", " & YS, , "Screen Resolution"

MsgBox myMsVBA.CheckLogon("Administrator", "adminpwd"), , _

"LOGON"

myMsVBA.WinOpenFile "c:\abcdefg.pdf"

End Sub

We have discussed previously the fact that we can place code into Class Modules and use them in our code. When we compile the Class into an ActiveX DLL, it makes the code much easier to use. Multiple VB and VBA projects can now 'attach' to our ActiveX DLL.

Just as with the ActiveX Control, this DLL file must be registered by using Regsvr32.exe before it can be used on computers other than the one on which we are developing the DLL. When we compile the DLL file in VB6, VB6 registers it for us.

This ActiveX DLL can be used by other VB6 Applications as well as VBA Applications developed in MicroStation VBA.

COMPILING AND DISTRIBUTING APPLICATIONS

When we are writing code in a MicroStation VBA project (mvba file), we can simply give our users the file and if we are not using custom ActiveX Controls, in most circumstances, everything will work well. When we are writing code in VB6, we need to compile the Application. And even after we compile the application, there is usually more that we need to do. Let's first examine compiling VB6 programs and then we will deal with distributing our applications written in VB6.

Compiling Applications

When it is time to compile an Application in VB6, select File > Make …

[image: Image]

The text we see after the word "Make" differs based on the name of the project and what type of project we are working in. In addition to seeing "Make" and a project name we may also see "Make Project Group". Make Project Group is used to compile all Applications in the current Group.

So, compiling an application is very simple. We can see the menu items here. But when should we compile?

It is possible to create an entire application without compiling until the time comes that we are ready to distribute it. In the case of an ActiveX Control and an ActiveX DLL, we can Add a Project to the Project Group and test the Control or DLL without compiling. If, however, we want to test a Control or DLL in another application such as MicroStation's VBA environment, we need to compile it. When it comes to Standard EXE projects, compiling a project may be useful during the development process to test performance. When we run a program in Design Mode (when we can break into the application, step through code, etc.), VB6 applications run much slower in design mode than when they are compiled. By default, compiling a VB6 application causes a more thorough check of our code by the compiler. Errors in Modules, Forms, Procedures, Functions, etc., that were not identified when we ran the program in Design Mode will surface when we compile a project.

Compiling a VB6 project usually results in an .exe file (Standard EXE), an .ocx (ActiveX Control) or a .dll (ActiveX DLL) file. It would appear as though we could e-mail or distribute this one file to anyone in the world and our program would work on their computer just as it does on ours. And this may work from time to time but this is not always the case.

Distributing VB6 Applications

When we speak of distributing VB6 Applications, we mean not only placing files on another's computer but also registering controls and DLLs and otherwise 'setting up' their computer.

Standard EXE Applications

When a Standard EXE Application written in VB6 is to be distributed, there are at least two files that should be distributed: the EXE file and the VB6 Virtual Machine file (msvbvm60.dll). Without the VB6 Virtual Machine file, VB6 Applications cannot run. The VB6 Virtual Machine DLL is installed on a large number of computers but there is no guarantee that it is installed on every computer where our software is installed, so it should be distributed with our application.

In addition to these two essential files, other considerations must be made. For example, let us suppose that we have created an application that makes use of the Internet Transfer Control for sending files to an FTP server. This control (an .ocx file) is installed with VB6. It is extremely useful. With it we can create a powerful internet-enhanced program. But if we give our program (an EXE file) to someone and they do not have this ActiveX Control on their computer, our powerful program will go nowhere. It will do nothing but display error MessageBoxes.

[image: Image]

When we are looking for files on which our application is dependent, there are two places where we need to look. The first is in the References dialog box.

Here we can see a large number of References. The top four shown are standard to any VB6 program. We don't need to worry about them. The other References that are selected are the ones that should concern us. When an item in the References list is selected, its full path is shown after the "Location" label.

The other area we should look into is the Toolbox. If, for example, we are using a TreeView control, we need to make sure that the file containing the TreeView control is distributed.

[image: Image]

Right-click on the Toolbox and select "Components". This brings up the Components dialog box. When we select "Selected Items Only", only those Controls that have been 'selected' are displayed. The fact that a Control has been selected does not mean it has been inserted into our project. If it has not been inserted, the Control does not need to be distributed with our Application. Right?

If we attempt to 'un-check' an item that is inserted, we will see this MessageBox:

[image: Image]

Any files that are "un-checkable" are not actually used in our program so we do not need to distribute them.

OK. We know which files we need from the References and the Controls area. We know that we need to Register DLLs and ActiveX Controls on the host computer. How do we best do this?

We have already used the RegSvr32.exe registration process. We could place a series of these registration commands in a batch file (.bat file). We could then compress these source files and registration batch file into a zip file. Although this solution would certainly work, it is far from elegant and user friendly.

Let's examine the solution that is shipped with VB6: the Microsoft Package and Deployment Wizard. It is found in the "Microsoft Visual Basic 6.0" Start menu.

[image: Image]

Before running the Package and Deployment Wizard, it is a good idea to close down VB6.

1 The first step to using the Package and Deployment Wizard is to select which Visual Basic Project (.vbp) file we want to distribute. Then we click on the Package button.

[image: Image]

2 The next dialog presents the choice between a "Standard Setup Package" and a "Dependency File". We will select a Standard Setup Package.

[image: Image]

3 We are next asked to select a folder in which to create the Setup.exe file.

[image: Image]

4 After selecting a folder, we are asked to verify which files we are to include in the Setup file. This step takes care of determining which files need to be distributed with our Application. So, if we are going to use the Package and Deployment Wizard, we do not need to worry about looking at the References and Controls we have added.

 This step is also important because we can Add files to our Setup package that may not be added automatically. For example, if we have written a User Manual and created a PDF file of it, we can Add the file in this step and it will be compressed with the other project files and 'installed' on the user's computer.

[image: Image]

5 After verifying which files are to be included in the Setup file, we are asked whether we will be distributing the setup as a single file or if it is to be placed on multiple floppy disks (outdated but still an option).

[image: Image]

6 Next, we supply the title for the Setup package:

[image: Image]

7 Shortcuts can be placed in the Start Menu or in other places.

[image: Image]

8 The files that have been included in the setup package must be placed somewhere. By default, DLLs and OCX files are placed in the System32 folder. We can, however, change the location of these files in the next dialog box:

[image: Image]

9 We are not going to specify our projects testing executable as a 'Shared File' so we will continue through the next dialog box without selecting our project's executable file.

[image: Image]

10 The last dialog box we have to deal with allows us to specify a Script name.

[image: Image]

After we click the Finish button, our setup file is created.

[image: Image]

After the Setup program is complete, a report is generated and we are given the option of saving the report or closing the wizard.

[image: Image]

So, we have completed the Package and Deployment Wizard. And what do we have to show for it? Early on in the packaging process, we were asked for a location to place our deployment files. When we browse to the location we selected, we see the files created by the Wizard.

[image: Image]

We are given a Project1.CAB file, a setup.exe file, and a SETUP.LST file. The .CAB file contains all of the files that are to be distributed and they (all of the files) are compressed into a single file. The .LST file specifies where each of these files are to be saved. It can be modified after the CAB and setup.exe file is created. As for the setup.exe file, its only purpose is to extract the files in the .CAB file and place them in the folder specified in the .LST file. It also registers components as instructed in the .LST file. The Support folder contains all of the files in their un-compressed state.

The Microsoft Package and Deployment Wizard does a fairly good job at packaging up programs developed in VB6. There are, of course, other products that create installation programs as well. One of these is Macrovision's InstallShield Express.

REVIEW

VB6 has an environment that looks and feels a lot like VBA. In addition to creating stand-alone programs, we can create our own custom ActiveX Controls as well as ActiveX DLLs. When we finish our programming and compiling, we can distribute our application by using the Microsoft Package and Deployment Wizard which ships with VB6.

Once we 'attach' to MicroStation, developing in VB6 is nearly identical to developing inside of MicroStation's VBA environment. All of the code we have created and worked with inside of MicroStation VBA can be 'ported' to VB6 with very little difficulty.

There is one thing we need to be careful about when 'porting' a VBA program to VB6. When we are working in VBA, several Objects are naturally exposed for our use, the Application object, for example. In MicroStation's VBA environment, we can type

Application.ActiveDesignFile

and the code works. When we are working in VB6, every MicroStation Object must be implicitly set. If we declare a variable to represent the MicroStation Application as Public in a Code Module, however, we only need to set it once and we can use it thereafter without the need to 'set' it again.

[image: Image]NOTE: Microsoft Visual Studio 6 has been replaced with Visual Studio .NET 2003 and Visual Studio .NET 2005. The .NET family of development products can produce standalone .EXE files and can create DLL files that are accessible through COM. However, .NET cannot be used to create ActiveX Controls. So, if a new Control is needed in MicroStation's VBA environment, it should be created in VB6.

[image: Image]

39 Using VB.NET

On the surface, it appears as though VBA, VB6, and VB.NET are identical. They each bear, in part, the title "Visual Basic" and make use of the same "Visual Basic" basics. And yes, they are very similar. But there are also differences between them. VBA and VB6 have much more in common than VB.NET The differences between them (VBA and VB6) and VB.NET can be quite significant, depending on which 'area' we are considering. When Microsoft introduced the VB.NET environment in 2003, one of the aims was to make Visual Basic much more Object-Oriented. This is one of the primary differences between VB.NET and VBA or VB6.

This chapter deals with not only controlling MicroStation in VB.NET applications but also concentrates on the differences between these environments so we can become more proficient in the VB.NET environment and language. We will be using Visual Studio 2005 for our discussion.

In this Chapter:

[image: Image] An Introduction to the VB.NET Environment

[image: Image] You can do this in VB.NET!

[image: Image] VBA / VB.NET Cross Reference

[image: Image] Distributing VB.NET Applications

[image: Image] The Future of VB.NET with MicroStation

VB.NET INTRODUCTION

Let’s take a look at the VB.NET environment. The first thing we should get out into the open is the fact that whereas VB6 is an Application and VC++ is its own Application, the .NET environment is used for developing Applications in VB, C# (pronounced C Sharp), J#, etc.

[image: Image]

The Start Page of the Visual Studio 2005 environment

From the Start Page of Visual Studio 2005, we can create or open new Projects. In addition to the ability to create new projects and open existing ones, we can see the RSS feed from Microsoft’s MSDN Visual Basic homepage. (We discussed RSS technology in an earlier chapter.)

Creating a new Project

[image: Image]

We will create a new Project named "MicroStation Control A". It will be a Windows Application. As with VB6, a new project is created with a single Form added.

We know we want to control MicroStation. What is the next step? Adding a Reference, of course.

1 From the Project menu, select Add Reference.

[image: Image]

2 Select the COM tab and scroll down to "Bentley MicroStation DGN #.# Object Library". Clicking the OK button adds the Reference and we are ready to continue.

3 Double-click on our Project Name in the "Solution Explorer" and then select the References tab to display all the references of the current project.

[image: Image]

 From this window, we can see a reference named System, one named System.Data, another named System.Drawing and others. They have a Type of ".NET". We can see that the Bentley MicroStation reference has been added. Its Type is "COM".

 Let’s write some code now.

4 Switch over to the Form1.vb tab and pin the Toolbox by clicking on the pushpin icon at the top of the toolbox.

5 Now, drag and drop a Button from the Toolbox to the Form.

[image: Image]

6 Next, double-click on the Button to enter the Click event of the Button.

7 Now that we are in the Click event of the Button, we are going to enter some very simple code that 'attaches' to MicroStation and displays the Application’s Caption in a MessageBox. Here is the entire listing of code that includes this basic functionality.

Public Class Form1

Private Sub Button1_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

Dim myMSAppCon As MicroStationDGN.ApplicationObjectConnector

Dim myMSApp As MicroStationDGN.Application

myMSAppCon = GetObject(, _

"MicroStationDGN.ApplicationObjectConnector")

myMSApp = myMSAppCon.Application

MsgBox(myMSApp.Caption)

myMSApp = Nothing

myMSAppCon = Nothing

End Sub

End Class

The code should look very familiar. It resembles the code we created in VB6 as well as code created for Microsoft Excel. One of the main differences between what we see here and what we used before is the absence of the "Set" statement when we are working with Objects. Why is this? Because all variables are Objects in VB.NET. Strings are Objects. Integers are Objects. So, we don’t need to use "Set" when we are assigning variables their values or objects.

If we look at the MessageBox statement, we see that we are using parenthesis in VB.NET where we do not do this in VB6 except when we are getting a return value. Any time we use a Function or Procedure in VB.NET that uses Parameters, we surround the Parameters with parenthesis.

8 If we try running our code, we will find that the code seems to run fine. But before doing anything else, we should save our project. Selecting File > Save All displays the Save Project dialog box.

[image: Image]

With the settings as they are shown, a new directory is created named "MicroStation Control A".

Compiling our application

1 We begin compiling our application by going to the menu Build > Build MicroStation Control A.

[image: Image]

 When we "Build" our application, an .exe file is generated. Let’s take a look at this next graphic and then we will discuss it.

[image: Image]

 When we compile applications in VB.NET, by default, they are compiled into one of two folders: Debug or Release. "Debug" and "Release" are compiler configurations we can use as we develop and compile our applications. These configurations have different settings pertaining to debugging, performance options, and processor preferences. We specify which configuration we want to use in the "Configuration Manager" (Build > Configuration Manager).

[image: Image]NOTE: If we are attempting to debug an application in VB.NET and we seem to be unable to step through our code using <F8>, we should look at the Configuration Manager to check the active Configuration settings. Chances are, we are attempting to debug an application with the Release Configuration selected (which disables much of the debugging capabilities of VB.NET).

2 If the Configuration Manager menu item does not appear in the menu, you can turn it on by setting the option in Tools > Options.

[image: Image]

3 Select "Show advanced build configurations" to turn on Configuration Manager in the Build menu group.

 Now, let’s take a look at the Configuration Manager.

[image: Image]

 When we Build our applications, they are placed in the folder specified for the active configuration. By default, "Release" compilations are compiled in the Release folder and "Debug" compilations are compiled in the Debug folder. We use the Configuration Manager to specify the Active Configuration. When we Build our applications, the compilation is based on the active configuration.

This concludes our brief introduction to the VB.NET environment in Microsoft Visual Studio 2005.

YOU CAN DO THIS IN VB.NET!

We just created a very simple, very small application in VB.NET. There are some differences between the IDE (Integrated Development Environment) of VB.NET and that of VBA and VB6. Once we learn how to use the IDE in VB.NET, we can begin looking around a little at what else we can do in VB.NET If we explore a little bit, we will find a few 'tools' that are not readily available in VBA. Let’s create a few applications that make use of VB.NET-specific functionality.

The next project we will create is a "Windows Application" project named "MicroStation Control B". The source files are on the CD accompanying this book.

Let’s take a look at the application when it is being run. We will discuss the functionality and then look at the code.

[image: Image]

The concept for this application is fairly simple. We see a list of cells that can be inserted into MicroStation with a thumbnail image of the Cell accompanying the Cell name. We also see information about the selected cell in a text box on the right. This additional 'information' is stored in an .info file with the same file name as the preview image. If a line beginning with the text "Website Address:" is found in the .info file, a hyperlink 'To Website' is shown which, when clicked, opens a new web browser window and opens the website address in the .info file. If a website address is not in the .info file or if an .info file is not available, the "To Website" link is not displayed. When the user double-clicks on an item in the ListView control, the 'double-clicked' cell is inserted into MicroStation. To keep things simple, we will insert the Cell at the center of the current view.

Rather than hard-code cell names and force the user to create thumbnail images of a particular size, we base the contents of the entire list on the availability of bitmap (.bmp) files in the Application’s folder. The name of each bitmap file corresponds with a cell name. Information Files (.info) match the file name of the bitmap files and contain reference information about the cell. A thumbnail is automatically created in memory for use in the ListView based on each bitmap file. Each dynamically created thumbnail is 64 pixels wide and 64 pixels high. The source bitmap files can be any size but will ideally be square in shape since the thumbnail image that is created does not compensate for differences in aspect ratios.

Here is the code for this project. Keep in mind that we already have a reference added to the Bentley MicroStation DGN #.# Object Library.

Public Class Form1

Public ExePath As String

Public FixedHeight As Long

Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim myFile As System.IO.FileInfo

Dim myFolder As New _

System.IO.DirectoryInfo(Application.ExecutablePath)

Dim myLstVI As ListViewItem

Dim myImg As Image

Dim myThumb As Image

ExePath = myFolder.Parent.FullName

For Each myFile In myFolder.Parent.GetFiles("*.bmp")

myImg = Image.FromFile(myFile.Full Name)

myThumb = _

myImg.GetThumbnailImage(_

ImageList1.ImageSize.Width , _

ImageList1.ImageSize.Height, _

Nothing, Nothing)

myThumb.Tag = myFile.Name.ToUpper.Replace(".BMP", "")

ImageList1.Images.Add(_

myFile.Name.Replace(".bmp", ""), myThumb

myLstVI = lstvCells.Items.Add(myThumb.Tag, _

ImageList1.Images.Count - 1)

Next

End Sub

Private Sub lstvCells_ItemSelectionChanged(ByVal _

sender As Object, ByVal e As _

System.Windows.Forms.ListViewItemSelectionChangedEventArgs) _

Handles lstvCells.ItemSelectionChanged

Dim myFileInfo As IO.FileInfo

Dim myFileReader As IO.StreamReader

TextBox1.Text = ""

LinkLabel1.Visible = False

myFileInfo = New IO.FileInfo(ExePath & "\" & _

e.Item.Text & ".info")

If myFileInfo.Exists = True Then

myFileReader = myFileInfo.OpenText

TextBox1.Text = myFileReader.ReadToEnd

myFileReader.Close()

If InStr(TextBox1.Text, "Website Address:") > 0 Then

LinkLabel1.Visible = True

End If

End If

End Sub

Private Sub lstvCells_DoubleClick(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles _

lstvCells.DoubleClick

Dim myMSAppCon As _

MicroStationDGN.ApplicationObjectConnector

Dim myMSApp As MicroStationDGN.Application

Dim myCellElem As MicroStationDGN.Cell Element

Dim CellOrigin As MicroStationDGN.Point3d

ProgressBar1.Visible = True

ProgressBar1.Value = 10

myMSAppCon = GetObject(, _

"MicroStationDGN.ApplicationObjectConnector")

ProgressBar1.Value = 20

myMSApp = myMSAppCon.Application

ProgressBar1.Value = 40

CellOrigin = myMSApp.CommandState.LastView.Center

ProgressBar1.Value = 60

myCellElem = myMSApp.CreateCellElement3(_

lstvCells.SelectedItems(0).Text, CellOrigin, True)

ProgressBar1.Value = 80

myMSApp.ActiveModelReference.AddElement(myCellElem)

ProgressBar1.Value = 100

ProgressBar1.Visible = False

End Sub

Private Sub LinkLabel1_LinkClicked(ByVal sender _

As System.Object, ByVal e As _

System.Windows.Forms.LinkLabelLinkClickedEventArgs) _

Handles LinkLabel1.LinkClicked

Dim xSplit As String()

Dim strWebsite As String

xSplit = Split(TextBox1.Text, vbCrLf)

For Each strWebsite In xSplit

If strWebsite.StartsWith("Website Address:") = True Then

Dim a As ProcessStartInfo = New ProcessStartInfo(_

Mid(strWebsite, InStr(strWebsite. ": ") + 2))

Process.Start(a)

End If

Next

End Sub

Private Sub Form1_Resize(ByVal sender As Object, _

ByVal e As System. EventArgs) Handles Me.Resize

If FixedHeight = 0 Then

FixedHeight = Me.Height

Else

Me.Height = FixedHeight

End If

End Sub

End Class

Code is placed into five events which are triggered by either the application starting or by user interaction. Let’s discuss each of these events and what they are accomplishing.

Private Sub Form1_Load

This application makes use of a ListView control. This control allows us to display images and descriptions in a list. ListView controls use ImageList controls to hold the images that are to be displayed inside the ListView control. We look in the folder in which the Application resides (the .exe file) for any Windows Bitmap (.bmp) files. Each Bitmap file represents a Cell in MicroStation. These Bitmap files can be 'CAD drawn' or can be actual photographs or illustrations of the object the Cell represents. We create a thumbnail in memory for each bitmap by using the GetThumbNailImage method of the Image object. Although this same functionality could be duplicated in VBA, VB.NET makes this step very easy. After adding each thumbnail to the ImageList, we add an item to the ListView using the thumbnail image just 'created' and the description of the Cell.

Private Sub lstvCells_ItemSelectionChanged

Each time the user changes the selection in the ListView, we look to see if an .info file is available for the selected bitmap. If we find an .info file, we populate the TextBox with the contents of the .info file. If we find a line in the .info file that contains "Website Address:", we make the LinkLabel control visible so it can be clicked.

Private Sub lstvCells_Doubleclick

When the user double-clicks on the ListView, we insert the double-clicked cell into MicroStation. There are numerous ways we can determine the cell’s origin. In our example, we place the cell in the center of the current view in MicroStation. A ProgressBar displays the progress of the code as it runs.

Private Sub LinkLabel1_LinkClicked

The only way to click on the LinkLabel is for it to be visible. It is only visible if "Website Address:" is in the .info file of the selected cell. When the LinkLabel is clicked, we get the "Website Address" in the .info file and start a new process using the website address. Process.Start begins a new process (starts an application) and opens the provided file in the application. Process. Start is equivalent to the ShellExecute Windows API call we discussed in a previous chapter.

Private Sub Form1_Resize

User Forms in VB6 and VB.NET can be resized. In our example we only want the form to be able to be resized in its width. So, we use a Variable named FixedHeight when the form is initially created (the Resize event is triggered as well as the Load event when a Form is displayed) and continue to use this variable for the Form’s Height any time the Form is resized.

As we review the code shown above or if this project is opened in Visual Studio, we will find that something is missing. What is it? We do not have any error handling. As a standalone .EXE file, it is possible someone could open the program without MicroStation running first. As we look through the code we can see that the only place where this may be a problem is in the lstvCells_DoubleClick event. Let’s add a little error handling the VB.NET way. It is a little different than what we have used in VB6 and VBA.

Private Sub lstvCells_DoubleClick(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles lstvCells.DoubleClick

Dim myMSAppCon As MicroStationDGN.ApplicationObjectConnector

Dim myMSApp As MicroStationDGN.Application

Dim myCellElem As MicroStationDGN.CellElement

Dim CellOrigin As MicroStationDGN.Point3d

ProgressBar1.Visible = True

ProgressBar1.Value = 10

Try

myMSAppCon = GetObject(, _

"MicroStationDGN.ApplicationObjectConnector")

ProgressBar1.Value = 20

myMSApp = myMSAppCon.Application

ProgressBar1.Value = 40

CellOrigin = myMSApp.CommandState.LastView.Center

ProgressBar1.Value = 60

myCellElem = myMSApp.CreateCell Element3(_

lstvCells.SelectedItems(0).Text, CellOrigin, True)

ProgressBar1.Value = 80

myMSApp.ActiveModelReference.AddElement(myCellElem)

ProgressBar1.Value = 100

Catch ex As Exception

Select Case Err.Number

Case 429 'MicroStation not started

MsgBox("MicroStation is not started." & vbCr & _

"Please start MicroStation and try again.")

ProgressBar1.Visible = False

Exit Sub

Case Else

MsgBox(ex.Message & vbCr & ex.StackTrace , , "ERROR")

ProgressBar1.Visible = False

Exit Sub

End Select

End Try

ProgressBar1.Visible = False

End Sub

When we perform error checking in VB.NET, we anticipate that a line of code may cause an error. We Try the line or lines of code after which we Catch the error or errors that may arise. We will see a few additional examples of this as we continue.

A DGN BROWSER APPLICATION

Our next application is also a Windows Application. It is titled DGN Browser. It makes use of a TreeView control, a CommandButton, a TextBox, a Folder Browser Dialog, a NotifyIcon, an Image List, and a ToolTip Control. Let’s take a look at the GUI when it is being run.

[image: Image]

Users browse to a folder they want to view. Each .dgn file is loaded into the TreeView control and each .dgn file is opened in MicroStation "For Program". Levels and Models are extracted and displayed under the "Levels" and "Models" icons under each design file. The 3D and 2D models are distinguished by their icons.

Once again, MicroStation must be running for this program to work correctly. If it is not running, we don’t want our program to blow up, so we simply show the .dgn files in the TreeView but Levels and Models are not shown.

Here’s what it looks like when MicroStation is not running:

[image: Image]

Let’s imagine that we have built this application and we are so pleased with it that we are sure users will want it available with the quick click of a mouse. How can we make our program this accessible? One way is to place it in the Windows Status Notification Area of the Task Bar.

[image: Image]

How difficult is this to accomplish in VB.NET? Simply add a "NotifyIcon" Control to the Form and it displays in the TaskBar. Of course, we could not let this wonderful program show up with a standard VB.NET icon so we use the MicroStation V8 XM icon.

So, to review:

1 The program is launched by double-clicking on the icon in the Windows Status Notification area.

2 We select a folder by clicking the Browse button. The program then finds all .dgn files in the selected folder and displays the file name in a TreeView.

3 If MicroStation is open, we use GetObject to attach to MicroStation and open each file in the list "For Program" and add the Levels and Models to the Tree View control.

Simple enough? It truly is when working in VB.NET.

Here’s the code:

Public Class Form1

Private LastPath As String

Private myMSApp As MicroStationDGN.Application

Private myMSAppCon As MicroStationDGN.ApplicationObjectConnector

Private MicroStationError As Boolean

Private MicroStationOpen As Boolean

Private Sub NotifyIcon1_MouseDoubleClick(ByVal _

sender As System.Object, _

ByVal e As System.Windows.Forms.MouseEventArgs) _

Handles NotifyIcon1.MouseDoubleClick

Me.WindowState = FormWindowState.Normal

End Sub

Private Sub Button1_Click(ByVal sender As System.Object,_

ByVal e As System.EventArgs) Handles Button1.Click

FBD1.SelectedPath = LastPath

FBD1.Description = "DGN Explorer Path:"

FBD1.ShowDialog()

TextBox1.Text = FBD1.SelectedPath

DisplayDGNs(FBD1.SelectedPath)

End Sub

Private Sub DisplayDGNs(ByVal PathIn As String)

Dim myDI As IO.DirectoryInfo

Dim myFI As IO.FileInfo

Dim myNode As TreeNode

Dim FileCounter As Long

tv1.Nodes.Clear()

myDI = New IO.DirectoryInfo(PathIn)

If Not myDI.Exists Then

MsgBox("The path " & PathIn & " does not exist.", _

MsgBoxStyle.Critical)

TextBox1.Text = ""

Exit Sub

End If

LastPath = PathIn

ToolTip1.SetToolTip(TextBox1, PathIn)

FileCounter = 0

ProgressBar1.Visible = True

For Each myFI In myDI.GetFiles

FileCounter = FileCounter + 1

ProgressBar1 .Value = FileCounter * 10

ProgressBar1 .Refresh()

Select Case myFI.Extension.ToUpper

Case ".DGN"

myNode = tv1.Nodes.Add(myFI.Name)

myNode.ImageIndex = 0

myNode.SelectedImageIndex = 0

If MicroStationError = False Then

GetFileComps(myFI.FullName, myNode)

End If

End Select

If FileCounter = 10 Then FileCounter = 0

Next

ProgressBar1.Visible = False

tv1.Sort()

End Sub

Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

LastPath = "C:\MicroStation VBA"

End Sub

Private Sub GetFileComps(ByVal FileIn As String, _

ByVal FileNode As TreeNode)

Dim myLevel As MicroStationDGN.Level

Dim myModel As MicroStationDGN.Model Reference

Dim LevelNode As TreeNode

Dim ModelNode As TreeNode

Dim tmpNode As TreeNode

If MicroStationOpen = False Then

Try

myMSAppCon = GetObject(, _

"MicroStationDGN.ApplicationObjectConnector")

myMSApp = myMSAppCon.Application

Catch

MicroStationError = True

Exit Sub

End Try

Dim DGNFile As MicroStationDGN.DesignFile

Try

DGNFile = myMSApp.OpenDesignFileForProgram(_

FileIn , True)

Catch

FileNode.ForeColor = Color.Red

Exit Sub

End Try

LevelNode = FileNode.Nodes.Add("Levels")

Level Node.ImageIndex = 1

Level Node.SelectedImageIndex = 1

ModelNode = FileNode.Nodes.Add("Models")

Model Node.ImageIndex = 3

Model Node.SelectedImageIndex = 3

For Each myLevel In DGNFile.Levels

tmpNode = Level Node.Nodes.Add(myLevel.Name)

tmpNode.ImageIndex = 2

tmpNode.SelectedImageIndex = 2

Next

For Each myModel In DGNFile.Models

tmpNode = ModelNode.Nodes.Add(myModel.Name)

If myModel.Is3D Then

tmpNode.ImageIndex = 4

tmpNode.SelectedImageIndex = 4

Else

tmpNode.ImageIndex = 5

tmpNode.SelectedImageIndex = 5

End If

Next

DGNFile = Nothing

End If

End Sub

End Class

The ImageList Icons are located on the CD that accompanies this book.

Are there things we could do to make this program even more powerful? Of course. We could automatically open a file when it is double-clicked in the Tree. We could allow the user to drag and drop folders from Windows Explorer into our DGN Explorer. We could store the most recently selected folders in a ComboBox instead of using a TextBox to display the selected path. We could have the option of including subfolders when a folder is selected. There are many things we could do to this project but we are not going to do them here. We will leave embellishments up to the reader.

VBA TO VB.NET REFERENCE

One question that is often asked is, "What programming language should I be learning? VBA? VB6? VB.NET?" That is a good question. And if you ask this question to 100 different experts, you will hear a 100 different answers. We discussed some of the reasons why you would want to develop in VBA versus VB6 or VB.NET previously. If there are clear distinct benefits to developing in VBA, then of course, specializing in VBA makes sense. And if VBA is the primary development environment, then VB6 is a much more natural transition than VB.NET. However, as they say, "The writing is on the wall". VB6 is going away and VB.NET is the future, so, it would be a good idea for us to get familiar with the .NET environment and how things are done in VB.NET. And as for VBA, Microsoft has developed a .NET-like VBA environment for applications, so it will likely be adopted in the coming years.

This section of this chapter is not meant to be a comprehensive listing of VBA to VB.NET calls. Rather it aims to provide information on how some of the common things we have explained in this book are being done in VB.NET See the Other References section in this book for more information on the VB.NET environment.

Everything is an Object

When developing in VBA or VB6, we can declare a variable as a String. In VBA and VB6, a String is a data type, not an Object. In VB.NET, a String is an Object with its own properties and methods. For example, when we type the name of a variable declared as a String and press the period key, we see:

[image: Image]

As we can see here, we can use the ToUpper method of a String Object instead of using UCase (see below).

Ucase(myName) 'VB6 and VBA

myString.ToUpper 'VB.NET

ToUpper is a method of the String Object. And how about the String Object’s properties? Yes, there are Properties as well. In VB.NET, we use the Length property of a String Object instead of using the Len function (as we do in VB6 and VBA).

Overloaded

That word brings vivid pictures to mind. In VB.NET it means that a single procedure, method, function, etc., can have more than one implementation, each with its own set of unique Parameters. Here’s an example using the FileInfo Object’s Open method:

[image: Image]

When we attempt to use the Open method of the FileInfo object, we initially see the Intellisense hint as being "1 of 3". We can step through each of the overloaded methods by using the arrow keys or by clicking on the Up and Down arrows shown in the tooltip. These methods make use of varying numbers and types of parameters but all accomplish the same thing — they open a file as a FileStream.

Not only are standard VB.NET functions, procedures, etc., overloaded, but we can create our own overloaded functions as well. This comes in very handy because if we need the same function to be used with different parameters, we can overload it instead of adding a constantly growing number of optional parameters to the function.

Procedures and Functions

In VB.NET, parenthesis are placed around Procedure calls as well as Function calls. One example of this is the MessageBox.

In VBA and VB6:

MsgBox "This is a test."

In VB.NET:

MsgBox("This is a test.")

Accessing ASCII Files

Reading and Writing ASCII files is easy to do in VBA and VB6. It is also easy to do in VB.NET.

Reading Files in VBA

Sub ReadFileVBA()

Dim FFile As Long

Dim strLine As String

FFile = FreeFile

Open "C:\MicroStation VBA\points.txt" For Input As #FFile

While EOF(FFile) = False

Line Input #FFile, strLine

Debug.Print strLine

Wend

Close #FFile

End Sub

Reading Files in VB.NET

Sub ReadFileA()

Dim myFS As New IO.StreamReader(_

"C:\MicroStation VBA\points.txt")

While myFS.EndOfStream = False

Debug.Print(myFS.Read Line)

End While

myFS.Close()

End Sub

Sub ReadFileB()

Dim myFS As New IO.StneamReader(_

"C:\MicroStation VBA\points.txt")

Debug.Print(myFS.ReadToEnd)

myFS.Close()

End Sub

In VB.NET we can read a file one line at a time just as we do in VBA. We also have the option to ReadToEnd. When we use the ReadToEnd method, we are returned the entire file at once in one String.

Writing Files in VBA

Sub WriteFileVBA()

Dim FFile As Long

Dim strLine As String

FFile = FreeFile

Open "C:\MicroStation VBA\points2.txt" _

For Output As #FFile

Print #FFile, "1,1,0,1"

Print #FFile, "2,2,0,2"

Print #FFile, "3,3,0,3"

Print #FFile, "4,4,0,4"

Close #FFile

End Sub

Writing Files in VB.NET

Sub WriteFileA()

Dim myFW As New IO.StneamWriter(_

"C:\MicroStation VBA\points2.txt")

myFW.WniteLine("1,1,0,1")

myFW.WniteLine("2,2,0,2")

myFW.WniteLine("3,3,0,3")

myFW.WniteLine("4,4,0,4")

myFW.Close()

End Sub

Writing files in VB.NET is very similar to writing files in VBA. We write one line at a time.

E-mailing in VB.NET

For an example of e-mailing using VBA, refer to previous chapters where this was discussed. As for VB.NET, here are a couple of examples:

Sub SendMailA()

Dim mySMTP As New System.Net.Mail.SmtpClient

mySMTP.Host = "yoursmtpserver.com"

mySMTP.Send("me@bentley.com", "you@bentley.com", _

"MicroStation VBA", "Emailing using .NET is easy.")

End Sub

Sub SendMailB()

Dim mySMTP As New System.Net.Mail.SmtpClient

Dim myMessage As New System.Net.Mail.MailMessage

Dim myAttachment As New System.Net.Mail.Attachment(_

"C:\MicroStation VBA\points.txt")

mySMTP.Host = "yoursmtpserver.com"

myMessage.To.Add("you@bentley.com")

myMessage.From = New _

System.Net.Mail.MailAddress("me@bentley.com")

myMessage.Subject = "Emailing an Attachment"

myMessage.Body = "HTML Email is also easy."

myMessage.IsBodyHtml = True

myMessage.Attachments.Add(myAttachment)

mySMTP.Send(myMessage)

End Sub

The first example, SendMai1A shows us that with only three lines of code, we can send an e-mail. SendMailB does things a little differently. SendMailB adds an Attachment to the e-mail that is being sent. Of course, the SMTP.Host, From, and To fields in each of these examples need to be modified to reflect legitimate e-mail server and mailbox settings.

Traversing a Folder and its Subfolders

We have seen already how this can be done using the File System Object in VBA. Let’s take a look at how this is accomplished in VB.NET. The first example gets all of the subdirectories of a specified directory:

Sub TraverseFolders()

Dim myDI As New IO.DirectoryInfo("C:\MicroStation VBA")

Dim mySubDI As IO.Directory Info

For Each mySubDI In myDI.GetDirectories("*.*", _

IO.SearchOption.AllDirectories)

Debug.Print(mySubDI.Full Name)

Next

End Sub

GetDirectories has three different implementations. The one shown here allows us to specify a pattern to look for as well as the ability to specify "AllDirectories" or "TopDirectoryOnly".

In VBA, we use a recursive procedure to get to the subfolders. When we use VB.NET, we can get all folders with a single line of code.

[image: Image]

Getting All Files in a path

Just as VB.NET makes it easy to traverse the folders under a specified folder, traversing files under a specified folder (and its subfolders) is also done with only a few lines of code:

Sub FindFilesA()

Dim myDI As New IO.DirectoryInfo("C:\MicroStation VBA")

Dim myFI As IO.FileInfo

For Each myFI In myDI.GetFiles("*.DGN", _

IO.SearchOption.AllDirectories)

Debug.Print(myFI.Full Name)

Next

End Sub

In this example, we get all .dgn files beginning in the C:\MicroStation VBA path and its subdirectories.

[image: Image]

Returning Function Values

VB.NET requires us to use the 'Return statement when a function needs to return a value. This is different than VBA and VB6 when we use the name of the function, then the equal sign, then the value or object that is to be returned.

Windows API Calls

The .NET Framework exposes many objects with methods and properties that previously had been the exclusive realm of Windows API calls. For example, accessing the entire Windows Registry was a somewhat tedious process. Of course, we could create our own classes that wrapped up the code for accessing the Registry. In VB.NET, accessing the Registry is much easier, though. But not all Windows API calls are placed at our fingertips as we will see in our next example.

When we look at Windows Explorer, files are shown with their names and then with an icon. The icon normally reflects the application that is used to open or edit the file. There are several places in the Registry where the "DefaultIcon" property of a specific file type is found. In our next example, we are going to look at each file extension in a folder, attempt to find the default icon that is used for each file extension in the Registry, and then save the icon out as a Bitmap (.bmp) file. To accomplish this we will use two Windows API calls as well as the built-in Registry access objects in .NET.

First, here are the Windows API calls declared just below the "Public Class" statement in VB.NET:

Declare Function ExtractIcon Lib "shell32.dll" Alias _

"ExtractIconA" (ByVal hInst As Integer,_

ByVal lpszExeFileName As String, _

ByVal nIconIndex As Integer) As Integer

Public Declare Function FindExecutable Lib "shell32.dll" Alias _

"FindExecutableA" (ByVal lpFile As String, _

ByVal lpDirectory As String, ByVal lpResult As String) As Long

The first call, ExtractIcon extracts a specific icon from an .exe or .dll file. FindExecutable allows us to specify a file name and it returns the path to the program registered to open the file. We will see these used in a little while.

Let’s look at the main Procedure that kicks things off.

1 We begin by getting a DirectoryInfo Object that is pointing to the path C:\MicroStation VBA.

2 When we look at each file in this folder, we check to see if we have already created a Bitmap file for the file extension of the file we are looking at. If we have not already created a Bitmap file for the file extension, we begin the process of identifying the icon file to use to create the Bitmap.

3 Our first attempt at identifying the icon is looking in the Windows Registry based on the File Extension. If this fails, we get the Icon from the registered application of the file. If this fails, we get the default Windows icon (which comes from the shell32.dll file).

4 When we successfully obtain an Icon, we save the file as a Bitmap. Then, later in the code, we place the Icon in a PictureBox control and then save it out to a file. The reason we use the PictureBox control is to maintain some of the transparency information found in the icon file.

Sub SaveFileIcons()

Dim myDI As New IO.DirectoryInfo("C:\MicroStation VBA")

Dim myFI As IO. FileInfo

Dim IconFile As IO.FileInfo

Dim myIcon As Bitmap

Dim tmpImage As Image

Dim myPictureBox As New PictureBox

For Each myFI In myDI.GetFiles

IconFile = New IO.FileInfo(myDI.Full Name & "\" & _

myFI.Extension.Replace(".". " ") & ".bmp")

If IconFile.Exists = False Then

'First look at extension

myIcon = IconFromExtension(myFI.Extension)

If myIcon Is Nothing = False Then

myIcon.Save("c:\MicroStation VBA\" & _

myFI.Extension.Replace(".", "") & ".bmp", _

System.Drawing.Imaging.ImageFormat.Bmp)

Else

'Now look at file

myIcon = IconFromFile(myFI.Full Name)

If myIcon Is Nothing = False Then

myIcon.Save("c:\MicroStation VBA\ " & _

myFI.Extension.Replace(".", "") & ".bmp", _

System.Drawing.Imaging.ImageFormat.Bmp)

Else

'Use Default Windows Icon

myIcon = GetDefWinIcon()

myIcon.Save("c:\MicroStation VBA\" & _

myFI.Extension.Replace(".", "") & ".bmp", _

System.Drawing.Imaging.ImageFormat.Bmp)

End If

End If

If myIcon Is Nothing = False Then

myPictureBox.Image = myIcon

tmpImage = myPictureBox.Image

tmpImage.Save("C:\MicroStation VBA\" & _

myFI.Extension.Replace(".", "") & ".abmp")

End If

End If

Next

End Sub

Now, for the Functions IconFromExtension, IconFromFile, and GetDefWinIcon. Each of these functions use another function, IconFromValue, which parses the results of the DefaultIcon value when it is retrieved from the Registry.

Function IconFromExtension (ByVal FileExtension As String) _

As Bitmap

Dim MyKey As Microsoft.Win32.RegistryKey

Dim MyDefaultKey As Microsoft.Win32.RegistryKey

Dim myCR As Microsoft.Win32.RegistryKey

Dim myDefaultIcon As Microsoft.Win32.RegistryKey

Dim DefValue As String

myCR = Microsoft.Win32.Registry.ClassesRoot

MyKey = myCR.OpenSubKey(FileExtension)

If MyKey Is Nothing Then

Return Nothing

Exit Function

End If

'First look for Value

DefValue = MyKey.GetValue("DefaultIcon")

If DefValue Is Nothing = False Then

Return IconFromValue(DefValue)

Exit Function

End If

'Next look for Key

DefValue = MyKey.GetValue(" ")

If DefValue Is Nothing = False Then

MyDefaultKey = myCR.OpenSubKey(DefValue)

If MyDefaultKey Is Nothing = False Then

'Look for Key

myDefaultIcon = MyDefaultKey.OpenSubKey("DefaultIcon")

If myDefaultIcon Is Nothing = False Then

Return _

IconFromValue(myDefaultIcon.GetValue(""))

Exit Function

Else

'Look for Value

Return _

IconFromValue(MyDefaultKey.GetValue("DefaultIcon"))

Exit Function

End If

End If

End If

Return Nothing

End Function

Function IconFromFile(ByVal FileIn As String) As Bitmap

Dim myDI As IO.Directory Info

Dim myFI As New IO.FileInfo(FileIn)

Dim myExe As String

Dim nIcon As Long

Dim tmpBitmap As Bitmap

myDI = New IO.DirectoryInfo(myFI.DirectoryName)

myExe = Space(255)

FindExecutable(myFI.Name, myDI.FullName, myExe)

nIcon = ExtractIcon(0, myExe.Substring(0, _

myExe. IndexOf(Chr(0))), 0)

If nIcon > 0 Then

tmpBitmap = Bitmap.FromHicon(nIcon)

Return tmpBitmap

Else

Return Nothing

End If

End Function

Function GetDefWinIcon() As Bitmap

Dim nIcon As Long

Dim tmpBitmap As Bitmap

nIcon = ExtractIcon(O, "C:\Windows\System32\shell32.dll", 0)

tmpBitmap = Bitmap.FromHicon(nIcon)

Return tmpBitmap

End Function

Function IconFromValue(ByVal ValueIn As String) As Bitmap

Dim xSplit() As String

Dim tmpBitmap As Bitmap

Dim nIcon As Long

tmpBitmap = Nothing

xSplit = Split(ValueIn, ",")

If xSplit(0) = "" Then

Return Nothing

Exit Function

End If

Select Case xSplit.Length

Case 1 '.ico file

If xSplit(0).Contains("%") = False Then

If xSplit(0) <> "" Then

tmpBitmap = Bitmap.FromFile(xSplit(0))

End If

End If

Case 2 '.exe or .dll file

nIcon = ExtractIcon(O, xSplit(0), xSplit(1))

If nIcon > 0 Then

tmpBitmap = Bitmap.FromHicon(nIcon)

End If

Case Else

Return Nothing

End Select

Return tmpBitmap

End Function

[image: Image]

When this program is run, Bitmap files are created for each unique file extension found in the specified folder.

DISTRIBUTING VB.NET APPLICATIONS

Distributing a VB.NET Application is a matter of a few mouse clicks because it is built into VB.NET.

[image: Image]

1 Use Build > Publish XXXXXXX to begin the 'publishing' process.

[image: Image]

 We are asked where to publish our application. In addition to publishing to the hard drive, we can publish to an FTP server or Web server.

[image: Image]

2 In our example, we will create a Setup that is to be run from CD-ROM or DVD-ROM.

[image: Image]

 To simplify things, we will not use the Update feature.

[image: Image]

3 Clicking Finish causes the Publish Wizard to create the setup file.

 It takes a few moments to create the Setup file. "Publish building" is shown in the status bar of the VB.NET IDE with an animated icon.

[image: Image]

 Here are the files generated by the Publishing Wizard.

[image: Image]

REVIEW

The specific API calls used to control MicroStation using VB.NET are not different in any way when compared with Microsoft Excel or VB6. We still add a Reference to the "Bentley MicroStation DGN #.# Library". We still use GetObject. The are other differences between VB.NET and VB6/VBA. These differences often result in greatly simplifying file and folder access as well as other areas of programming that had previously been difficult and tedious. There is little question that VB.NET is the future of VB programming. Although we can continue to develop powerful applications in MicroStation’s VBA environment, it is a good idea to become familiar with the .NET world.

[image: Image]

Additional Sources

GENERAL VBA RESOURCES

http://msdn.microsoft.com/vba

VBA Overview, Whitepapers, etc.

http://bentleyinstitute.bentley.com/catalog.aspx?discipline=10
 Programming Classes offered by Bentley

Mastering Microsoft VBA; ISBN: 0782144365

VBA Developer’s Handbook; ISBN: 0782129781

Google, Yahoo, or other Internet Search for "VBA" or "Visual Basic for Applications"

http://discussion.bentley.com

Look for the bentley.microstation.v8.vba discussion group.

VB and VBA in a Nutshell; ISBN: 1565923588

SQL STATEMENTS

http://msdn.microsoft.com/library/en-us/tsqlref/ts_sases_9sfo.asp?frame=true

SQL Statement Explanations and Examples from Microsoft

VB.NET

http://msdn.microsoft.com/vbasic/

Visual Basic 2005 Programmer’s Reference (Programmer to Programmer); ISBN: 0764571982

MATHCAD

www.mathcad.com

XML

XML in a Nutshell, Third Edition, ISBN: 0596007647

XML Programming Bible, ISBN: 0764538292

[image: Image]

OEBPS/Images/pg166_01.jpg
[LR13

OEBPS/Images/pg168_01.jpg
Cell Insertion

OEBPS/Images/pg169_01.jpg
ocumonts and Sellingshl Users\pplicaton Data¥Documenis\entleyWorkSpacerojectsWintrledha\Ch,

werrm

Priv.

bin
bixm
bix
Fer

sub Userform_Initialize ()
Mylevel As Level
MyCellBnun As CellInformationEnumerator
MyCell As Celllnformation
Each Mylevel In ActiveDesignFile.levels
cmblevels.AddIten MyLevel.Name
MycellEnun = Application.GetCellInformationEnumerator (True, T
1e MyCellEnun.MoveNext
st MyCell = MyCollEnum.Current
cmbCells. AddIten MyCell.Name

OEBPS/Images/pg166_02.jpg

OEBPS/Images/pg167_01.jpg

OEBPS/Images/pg164_01.jpg

OEBPS/Images/pg164_02.jpg

OEBPS/Images/pg162_02.jpg

OEBPS/Images/pg163_01.jpg

OEBPS/Images/pg164_03.jpg

OEBPS/Images/pg165_01.jpg

OEBPS/Images/pg161_01.jpg

OEBPS/Images/pg162_01.jpg

OEBPS/Images/pg158_03.jpg
abl

OEBPS/Images/pg160_01.jpg

OEBPS/Images/pg154_02.jpg
foreDroporpaste
MsgBox CheckBox 1y

OEBPS/Images/pg155_01.jpg
12 C:Documanis andSetings Al Usersopliction DataDocuenertsentleyWarkSpacs Project\nitediebaiChpr... (& EI06)
commmet " e 3

brivate Sub Comandbutton]_Keyprass (b5Val KeyAscii As Maforms.Returninteger) =)

OEBPS/Images/pg153_02.jpg
A C:\Documents and Settings Wil Users\Application Datal.

EE%

Brivate Sub CommandButtonl Click () k-

MsgBox CheckBoxl.Value
NeuLeveiName o tithevelNams.te
o I, -
& Torion

% Tosngn
o Top

& vawe

o Visible

& Widtn

CommandButiont v ok

OEBPS/Images/pg154_01.jpg
‘CommandButiont v chck

Private Sub CommandButtonl Click (

MsgBox CheckBox1.Value
End Sub

OEBPS/Images/pg158_02.jpg

OEBPS/Images/pg155_02.jpg
/A C:\Documents and Seftings\All Users Mpplication DataWDocumentsiBentieyWorkSpacewrojects\... =B
Commandoustont . Mouseon

erivats Sub CommandButtonl MouseDown (ByVal Button As Intager,
Byval Shift As Integer,

Byval X As Singls, Byval Y As Single)

OEBPS/Images/pg158_01.jpg
Level Name:

Type & Lovel Name that s 4 characters ong.

OEBPS/Images/pg152_02.jpg

OEBPS/Images/pg153_01.jpg
 properties - Command... ﬂﬂg

CommandButtont Conmandeutton

Aphabetc Categorzed

(vame) Commandeuttont
Accelerator

Autosze Faise
TR O] crsoooooors

BadStye L fBackstylecpaque.
Cancel Faise

Caption Commandsistont
ConrolTpText

OEBPS/Images/pg152_01.jpg
Cell Insertion

OEBPS/Images/pg144_01.jpg
Microsoft Visual Basic

OEBPS/Images/pg144_02.jpg
MicroStation X

Line Lengths must be numert

OEBPS/Images/pg137_01.jpg
NPANPANDAND ANDAN

OO0OOO(
OO0OOO(
0010010}
OO0OO(
ERHIEEERE

OEBPS/Images/pg141_01.jpg
™ immediate

OEBPS/Images/pg149_01.jpg
@ Microsoft Visual Basic Help
Me=8

DateDiff Function
See ko Exengle

Returns a Variant (Long) specifying the number of tme intervals between two specfied
dates,

Syntax
DateDiff(interval, date1, date2(, firstdayofweekl, firstweekofyearl])
The DateDf function syntax has these named araumens

Part Description

interval Required. String expression that is the interval of time you
use to caiculate the dfference between date! and date2.

datet, datez Required; Variant (Date). Two dates you want to use in the.
calculation

firstdayofweek Optional. A constant that specfies the first day of the week. If
not specified, Sunday is assumed

firstweekofyear Optional. A constant that specifies the first week of the year.
If not specified, the first week is assumed to be the week in
which January 1 oceurs.

Settings
The interval arqument has these settings

OEBPS/Images/pg151_01.jpg
Cell Insertion.

Level | SIDEWALK

Insertion Po.
x o

OEBPS/Images/pg145_01.jpg
Microsoft Visual Basic

Runtine rror 2147221504 (80040000):
Level name & duplcate

OEBPS/Images/pg148_01.jpg
- Object Browser
[vsa
[

Classes. Members of DateTime'
© <globals> Calendar

& Collection | Date

42 ColorConstants. Dates.

S Daterdd |
© T
S DatePart
® DateSertal
© Datevalue
©Day
S Hour
S Minute
42 Information S Month
42 Interaction Now
48 keyCodeConstants | Second
Time

Function DateDIT /rterval As String Datet, Date2,

[FirstDeyOfWeek As ViDayOfWeek = voSundayl.

[FirstWeekOfYear As VIl stWeekOrear = voFirstiant])
Member of YA DateTime.

OEBPS/Images/pg134_01.jpg
B TextPoints.txt -Notepad [2J[EDEK]

1.5,2.5,0,Note 1
34.2,54.12,0,Note 2 Logsonetes
43.2,1.43,0,Note 3 431211.43, 8, oe 3

22.3,33.4, 0. Note 4 221333140} Note &

OEBPS/Images/pg135_01.jpg
Note 2

Note 4

Note 1 Note 3

OEBPS/Images/pg133_02.jpg
3 Microsoft Excel - exefiles.xml
“] He Edt Wow Inset Fomak Ioos Ot
AT Y

exe
8

% calc exe 3/31/2003 6,00 00 AM
| 27 chamapexe 36172003 6:0000 AM
26 chkdskexe 3317200360000 AM
29 chkntfsexe 3317200360000 AM
| 30 cidaemonexe 36172003 6:0000 AM
W W \EXE Files /

Ready

OEBPS/Images/pg12_01.jpg
Mactosine [<Al Standard Projects> v

i

 [This procedure draws a fine.

-
=

OEBPS/Images/pg130_01.jpg
= Waches

OEBPS/Images/pg128_01.jpg
. Registry Editor

(vale not set)
Itworks

iy ComputerKEY_CLRRENT_USERSoftwarel and VBA Progyan SettngsiL esring Merostation VBAIChepter 9

OEBPS/Images/pg129_01.jpg
B immediate B

The Key SaveSetting value is "It Works" -

OEBPS/Images/pg131_02.jpg
B output.txt - Notepad {2 |[E)

OEBPS/Images/pg133_01.jpg
3 Microsoft Excel - exefiles.xml
“] He Edt Wow Inset Fomak Ioos Ot
AT Y

exe
8

% calc exe 3/31/2003 6,00 00 AM
| 27 chamapexe 36172003 6:0000 AM
26 chkdskexe 3317200360000 AM
29 chkntfsexe 3317200360000 AM
| 30 cidaemonexe 36172003 6:0000 AM
W W \EXE Files /

Ready

OEBPS/Images/pg130_02.jpg

OEBPS/Images/pg131_01.jpg
B outputixt - Notepad (2)EfE)

Ble Edt Fomat Vew e

"First line.”
“Second 19ne.

OEBPS/Images/pg127_01.jpg
X Watches

DonFles(0)
DorFiestt)
DorFiesc2)
DarFies(3)
DanFies(s)
DarFles(s)

“CWcroStation VBADocsichecter0d dar
“C WicroStation VBADocs\chepter04 dgr”
“CWicroStation VBADocs chacter06 dar”
“C WicroStation VBADocs\chedter07 dgr
“C WicroStaton VBADocs\checter08 dar”
€ WhcroStation VBADacs chacter03 dgn”

OEBPS/Images/pg126_01.jpg
W Immediate cE®

Ci\Program Files\Bentley\.
Ci\Program Files\Bentley\..
Ci\Program Files\Bentley\Documentation

C:\Program Files\Bentley\Licensing
Ci\Program Files\Bentley\MicroStation

OEBPS/Images/pg126_02.jpg
B immedite

C:\Program Piles\Bentley\MicroStation\atl71.dll
Ci\Program Files\Bentley\Microstation\automationdgn.dll

C:\Program Files\Bentley\Microstation\bdtidoc. htm
Ci\Program Files\Bentley\Microstation\bentley.microstation.hosting.dll
Ci\Program Files\Bentley\Microstation\bentley.microstation.textlib.dll

g >

OEBPS/Images/pg122_01.jpg
Microstation (3]
saar05 11292700

=

OEBPS/Images/pg122_02.jpg
6/1/2005 11:40:54 AM
5/28/2005 3:40:54 BM
5/28/2005 11:44:54 AM
5/28/2005 1
9/28/2005 1
6/1/2005 11:40:54 AM
5/28/2009 1.
8/28/2005 1.

5/28/2005 11:40:54
5/28/2005 11:40:54
5/28/2005 11:40:54
5/28/2005

5/28/2005
5/28/2005
5/28/2005 54
5/28/2005 11:40:54

EEEEEEXE

i

OEBPS/Images/pg121_01.jpg
MicroStation

OEBPS/Images/pg121_02.jpg
Level Creator

OEBPS/Images/pg124_02.jpg
MicroStation

MeroSkaton DatefTime: 62112005 7:43:14 M

OEBPS/Images/pg124_03.jpg
Microstation (%)

OEBPS/Images/pg123_01.jpg
W Immediate

Days 363269
Hours 8718445
Minutes 523106644
Seconds 31386398632
Months 11936
Weeks 51895

Years 995
Quarters 3979

OEBPS/Images/pg124_01.jpg

OEBPS/Images/pg120_02.jpg
Title Goes Here [X]

Q o
=

Title Goes Here (5]
Testog e

b

OEBPS/Images/pg11_01.jpg
& VBA Project Manager
0O e E B> e =

Name D Location Auto-Load
Intioduction VBA Iniroducton D \MVBA Files\Introduction mvba v

OEBPS/Images/pg120_01.jpg
MicroStation

MicroStation [X] | microstation

) vttt | 2) comomtacotnar

OEBPS/Images/pg114_02.jpg
M jmmediate

OEBPS/Images/pg114_03.jpg
W inmediate |

OEBPS/Images/pg114_01.jpg
W immediate

OEBPS/Images/pg118_01.jpg
WicroStation MicroStation ()| microstation (3]

OEBPS/Images/pg119_01.jpg
WicroStation MicroStation ()| microstation (3]

OEBPS/Images/pg115_01.jpg
W Immediate

OEBPS/Images/pg117_01.jpg
MicroStation

OEBPS/Images/pg112_02.jpg
2 v SN

OEBPS/Images/pg113_01.jpg

OEBPS/Images/pg111_02.jpg
M immediate [S 8

OEBPS/Images/pg112_01.jpg
B immediate (2 [E)E)

OEBPS/Images/pg109_01.jpg
M immediate

TestTanl()
XChange = 4

HypAngleDegrees = 36.8699
HypAngleRadians = 0.643501149881057
YChange = 3.00000025679859

OEBPS/Images/pg109_02.jpg
M immediate

TestTan2 ()
Y¥Change = 3

HypAngleDegrees = 36.8699
HypAngleRadians = 0.643501149881057
XChange = 3.99999965760191

OEBPS/Images/pg110_02.jpg
Wicrostation (%)

36 869857645544

el

OEBPS/Images/pg111_01.jpg
The absolute value of 4 is 4

The absolute value of -5 is 5

<

OEBPS/Images/pg10_01.jpg

OEBPS/Images/pg110_01.jpg

OEBPS/Images/pg100_01.jpg
Wicrostation [X) | Microstation [86)| Microstation [5€]| microstation (5] Wicrostation (5]
1/1/2005 4:45:00 PM.

Cx]

OEBPS/Images/logo.jpg
o | Bentley

Institute Press

OEBPS/Images/pg105_01.jpg

OEBPS/Images/pg100_02.jpg
MicroStation

(600) s55-1212

|

OEBPS/Images/pg108_01.jpg
TestsinCos ()
HypLength = 10
HypAngleDegrees = 30

HypAngleRadians = 0.523598775598299
XChange = 8.66025403784439
YChange = §

<

OEBPS/Images/backcover.jpg
= Bentley

Learning MicroStation VBA provides an in-depth tour of one of MicroStation's
most powerful customization abilities. The book starts by supplying the foundation
for understanding VBA basics and then shows how to apply the fundamentals to
real-world situations. Written by a seasoned author and VBA instructor, Learning
MicroStation VBA provides full coverage of the VBA subject - taking you through

the basicslike the editing environment, modules, visual interface, and MicroStation
object model through advanced topics like the Windows AP, interacting with other
applications, and Visual Basic, among many other things. As both a comprehensive
text book and workbook, this book serves as an integral part of Bentley Institute
programming courses. An accompanying CD includes all source code referenced in
each chapter of the book. The CD also includes procedures, and addenda to the book
as well as a comprehensive Object Model lsting and other example files such as V8
DGN files, Microsoft Excel spreadsheets, Microsoft Access databases, and more
Whether you are a MicroStation user who simply wants to make your job easier or an
experienced programmer who wants to master the nuances of MicroStation VBA, this
book is an invaluable resource for earning MicroStation VBA

Included on the CO for this edition:
Al source code referenced in each chapter of the book

Procedures and addenda to the book

Comprehensive Object Model isting

Other example fles such as VB DGN files,

Microsoft Excel spreadsheets, Microsoft Access databases, and more

For information on the latest product updates, workshop schedules, and baoks,
please visit our website at: www.bentley.com/baoks

Category Visual Basic
Covers: MicroStation
User ademic and Professional

Bentley

Institute Press | “

www.bentley.com/books

971414181

T

OEBPS/Images/chlogo.jpg

OEBPS/Images/arr.jpg

OEBPS/Images/pg39_02.jpg
MicroStation V8 Yisual Basic for Applications Help

a1 @\ « & o

Fde Locse Back Pt Qo
Sontnts | gtn Goach v
T T

ccessing an et Vries

12 Addg e Mol 1 s

2] Adng e Conens oo Ferce 03 e i,

] Ansaeive
Agphston Elener Exrie

3 s By Lenah

3 v o

5] Atchng s Seachng s Col Ly

3 81 Curve Pt Eicion

S B —

128 4pie SutaceFom Pl

1218 4pie SufaceFom ScateredPos Acponnsion

5] Cntrng heView 3 Cus

5] Chanong Rlererce Fie ot o scbée o Lol
Chanond n Aachnen o Ffererce ha Dol Model.

hanon Codte ka1 S v Event

2] Channg e Ul Dier o tachmert

Vertex List Example

This example lustrates some of the methods of the
16, s ntarface. The example ' & simpl primidve

Sammand that mplaments svent handiers for tar, ta
DI, and reset. Because the othar evert handlers ot

Sensives amandEvants do noting n s example,

ey have bean omied

Mostofth logc fo this exarmple s in the dta point
ent handie. Tt teat 1 etarrne ¢ 4 has s seved
Foforence o an element. i o, ries t locate an

Clement using LagasElsment If X successtaly fnds an
Ciement that 505parts the Vertextist siersce, &
Fereves the 15t of verices uaing Gatiarsccs T privts

SUbseauart data ports, detacts hat akeady has on
clement. I uses Gattlusastieamert o get e ndex cf
e Tt verax of the segment loses o he dats paint
Using that ifarmation, & pits he range of the losest
Segment

The reset event handier inthis examsle ust restrts the

Command. 1t mopkes - e St bt
s Merostanon's command

OEBPS/Images/pg3_01.jpg
Wities Werlspace Window _Help

onnect Web Brovser
HIML Author
o Selector

Inage :
Render »

Augdary Coordnates

Saved yev

Narmed Groups

gatch
Batch Process

Standards Checker >

onverter

Packager
archive

aerate Section
nstal Eonts.
Data Cleanup

Dmensin Audt

Macros. Ak+FE
£ ysvaBascEator ARsF1L

OEBPS/Images/pg3_02.jpg
& vea Project Manager 1ol
(] E“.] EAr e s
Name [[- oropect PO Location Auoload |

Detaul

C\Progiam Fles\Benlley\, \Delaul mvba

OEBPS/Images/pg400_01.jpg
Tangent

Q-0 - T @ Ul

CAP Text Selct Text o be Captaized

(O @\ - PEETI | Hl3]e]s]sl7]e
4P Tow Gk st coren

[TANGENT |

Q- \ - T |) 0]23]4s]sl7]s
 Element Selection > Identiy element to add 1o set

OEBPS/Images/pg392_02.jpg
C:\Documents and Settings\All Users\Application DataWDocuments),

Inplements IPrimitiveCol

OEBPS/Images/pg394_01.jpg
& VB Project Manager
D@#d®@A> &8

[Nome Dezciption _Localion AutoLoad
Thoptet! S S A Ui s 7|

OEBPS/Images/pg395_01.jpg

OEBPS/Images/pg39_01.jpg
¥’ MicroStation V8 Visual Basic for Applications Help.

O @ &

Hede Locale Pint Qptions

(Corlerts | ipdex | Seach | Favaikes

=3 Geltng Stated wih Visual Baskc
5] Looding and rring 2 VA macio
+ _J MioStalenVB Obiects
T Frequeny asked MicioSteton VEA Questons
+) Usngthe MicroSiaion VBA Inroce
) Recoudng and Reving Macios
Auomsing conmon MicoStaton asks
‘Wotking wih MicrcStton Obiects
Wotkingvilh Mictotaton Everts
2] Custoaing MicroStaton wih Vil Basic:
2] Converingfom MicoStaton Back 1o VBA
+) Deveoping Code nVBA
2] Chonges o MiciStaion V8 XM Edion

| Microstation v

al Basic for
Applications

Visual Basic and
VEA are tharoughly
modern object-
oriented
programming
environments used
by both professional
application
developers and
casual
programmers.
Visual Basic is the
primary
development
platform for a large

| number of

commercial
products, some of

| which you may use

on a daily basis.
Visual Basic for
Applications shares
most of Visual

OEBPS/Images/pg385_01.jpg
References - Chapter1]

Bvaiable References:

 VisualBasi For Applcatons
 Bentley Microstation DGN 8.0 Obiect Lbxary
 OLE Autonatin
 Mrosch Forms 2.0 Objct i
1hS Helper COM Comporer 1.0 Type Lbrery
145 RADIUS Protocol 1.0 Type Lbrary.
SaldWorks OLE Automaton 1.0 Type Lbear
Jnsoftware - PWrks! VS Fiealer Control
Insoftware - Pworks VS FIP Control
Insoftwre - PWiorks! VS TFTP Control
) Wdeasoft VSFiexGrid 7.0 (Lght)
AboutDlg 1.0 Type Lbrary

Ao 11 T #vavy
<
Microsof Serpting Runtene

Location: C:\WINOOWSIsystemZiscrrun.dl
Language: Standard

OEBPS/Images/pg392_01.jpg
C:\Documents and Settings\All Users\Application Data\Documents1.

Tmplements IPrimitiveCommandEvents

OEBPS/Images/pg418_01.jpg
—X

OEBPS/Images/pg418_02.jpg

OEBPS/Images/pg41_01.jpg
Ao

v Untad S Engn v Qi v

earch Results

TrTe | fnd
E

sttCTvervicen (uppart) 18 romut Viem A1

OEBPS/Images/pg410_01.jpg

OEBPS/Images/pg412_01.jpg

OEBPS/Images/pg414_01.jpg

OEBPS/Images/pg417_01.jpg

OEBPS/Images/pg402_01.jpg
iuple contastsl +

Locotion

OEBPS/Images/pg408_01.jpg
- G

OEBPS/Images/pg40_01.jpg
00 BREG S e @ 2
e

Visual Basic for Applications

OEBPS/Images/pg362_01.jpg
VBA Mafch Properties

O O b -Eoas v @ OEpldslslr
[VeA Match Popetes » Selcta s “Sousce” Element:

OEBPS/Images/pg561_02.jpg
& Visual SQL Query Builder

50L SelectStaement

OEBPS/Images/pg362_02.jpg
£ C:\Documents and SettingsallU... (= (B[]

R ——

VBA Text Align

OEBPS/Images/pg352_01.jpg
B immediate [EE5)

CGPLACE LINE CONSTRAINED
PLACE BLOCK ICON
CGPLACE CIRCLE ICON

HATCH ICON
Attach Tags

WORDPROCESSOR PLACE TEXT ICON
PLACE CELL ICON

MEASURE DISTANCE ICON
DIMCREATE ELEMENT

PLACE FENCE ICON

<

OEBPS/Images/pg560_01.jpg
¥ Data Link Properties

Provider| Comection | Advanced | Al

Speciyth foowing to connect to Access data
1. Select or enter a dtabase name

C\Microstation VBAIDalabaselnkT est s

2 Ente ifomation tolog on o the database:
Username: Adrin

7]Blank password (7] Allow saving password

(]

OEBPS/Images/pg352_02.jpg

OEBPS/Images/pg560_02.jpg
Microsoft Data Link 3)

OEBPS/Images/pg353_01.jpg

OEBPS/Images/pg560_03.jpg
Information

"o MSCATALOG table exits,
Aitachrents of database dta to graptical lements wil not be

posste.
To creste an MSCATALOG tabe, 0o to

Settings>Database->Setup.

] Do ot deply sgan.

OEBPS/Images/pg35_01.jpg
22 Visual Basic Reference

a @&

Hie Locae

& D
Bk Ford

Corlents index _ Search. Favortes

+ @ Vsl Bk HowTo Topcs

+ @ Vil Basi Language Rfeence

+ @ Vi Base Addin Model

BT o o e
Wil Fams Obiet Mocel Overic

MicooltFoms Design Refsence
® bictcsc Forms Develope T
= 3 Micosot Foms Otiect Model et
Everts

Methods
= 3 Otiects,Colectrs,and Cortls
Y
2] Checkbon Conkl
2] Combobos Contl

O DG & &

Stop Refiesh Home Font

ComboBox Control

Seedlso Example Propertes Methods

the user can select an existing value as with & ListBox.
Remarks

1f & ComboBox is baund to & dats source, then the
ComboBox inserts the value the user enters or selects
into that data source. If & muftcolumn combo bo;
bound, then the BoundColumn property determines
which value is stored in the bound data source.

The list in a ComboBox cansists of rows of data. Each
row can have one or mare columns, which can appear
with or without headings. Some applications do not
support column headings, others provide only Imitec
support

OEBPS/Images/pg561_01.jpg
There s na MSCATALOG tabl. Create ane now?

OEBPS/Images/pg348_01.jpg
& VBA Project Manager
Dedd &1> o=

OEBPS/Images/pg558_03.jpg
% Data Link Properties

" Provider | Connecion Advanced | All

Selectthe dta you wand o connect -

OLE DB Providets)

Conneciviy Servie Provider

MedaCataogDB OLE DB Provider
MedaCataoghfeigedDB OLE DB Provides
MedaCataogWebDB OLE DB Provider
MictosolIS4M 1.1 OLE DB Provider
MictosolJet 351 OLE DB Proveer

Vicicach Jet 4 0 OLE DB Provider

Micosolt OLE DB Pravider For Data Ming Servies
Micosoft OLE DB Provider for Indexing Service
Mictosolt OLE DB Providr ot Itenet Publshing
MictosoftOLE DB Provider for DDBC Divers
MictosoftOLE DB Provider for OLAP Services
Mictosoft OLE DB Provider fox OLAP Services 80
Mictosolt OLE DB Providet for racle
Mictosoft OLE DE Provide: fox Ok Search

Mitosoft OLE DB Provider for SOL Server
New>> [

(o]]

OEBPS/Images/pg348_02.jpg
L Pl soartne

;

A2 Pce ks

OEBPS/Images/pg559_01.jpg
 Data Link Properties

Provder Comnection Advanced Al

Speciythe folowing o conect to Access data
1. Select o eter database name.

2 Enierinfomaton tolog onto the database:
User name: Adrin

) Blark password | Allow saving paseward

OEBPS/Images/pg348_03.jpg

OEBPS/Images/pg55_01.jpg
P C:Wicrostation VBAYChapter05.myba - frmChOS5 (Code)
CommandButiont v ciek

Privace Sub CommandButctonl Click()

Din NyTarget is Wew clsTarget

NyTarget.% = CDbl(cxtX.Text)
NyTarget.¥ = CDbl(ExtY.Text)
NyTarget.2 = CDbl(cxtZ.Text)
nyTarget.Drav

End Sus

== ¢

OEBPS/Images/pg34_01.jpg
1 Visual Basic Reference

Refiesh _Home

Conters _ipdex | Seach Favortes | Visual Basic

.

Vil Baic Conceptul Topes

Vil Baic How To Tgics

Vissl Basic Language Refarence Visusl Basic includes many documentation toos,
e each designed to help you learn and use

pGse A hitodd particular aspect of the product. The documentation

Microsch Fome Fskeerce provided with Visual Basic includes the following:

Welcome to the Visual Basic documentation.

o Visual Basic User Interface Help

Look here for Help on interface elements of the
Visual Basic Editor, such as commands, dialog
boxes, windows, and toolbars.

Visual Basic Conceptual Topics.

The Conceptual Help tapics include information
t0 help you understand Visual Basic
programming

Visual Basic How-To Topics

Look in the How 7o section of Help to find useful
common procedures, for example, how to use
the Object Browser or how to set Visual Basic
Environment options.

Visual Basic Language Reference

The Language Reference is the place to find
Help on Visual Basic the language: all s
mathods, prapartia, Satamantt, fincfinns,

operators, and objects.

OEBPS/Images/pg55_02.jpg
Sub DrawCircle()
‘Declare Variables
Dim MyCir As E11ipseflement
Dim CenPt As Point3d
Dim RotMatrix As Matrix3d
‘Create Circle
CenPt.X = 0
CenPt.Y = 0
CenPt.Z = 0

Set MyCir - Application.Create€llipseElenent2(Nothing, CenPt, _

0.25, 0.25. RotMatrix)
Application.ActiveModelReference.AddElement MyCir

OEBPS/Images/pg558_02.jpg
UDL Filename:

0L Fissone] DasbaetrcTen

OEBPS/Images/pg382_02.jpg
& Registry Editor
Fle Edt Vew Favorkes Heb
= L1 VoA Fie Attachment Vewer Ty Data

3 Defats gy

+ S et v Slnadesits Rtz
+ L vewort

iy o AKEY_CURRENT_USERSoftware\ Va0 VBA o etgel A e ttchment VeweriDefaks

Troe
Bpatn REGSZ Cirostaton VBA

OEBPS/Images/pg37_02.jpg
#? Visual Basic Reference

0 & e 2 O O & & &

Hie Locae Back Fowad Sp Reieh Home o P

Contents Idex Semch Favortes

Ways to put data n a istBor or
o

See Ao

tachnique; you can Ioad the st from two-
dmensional arrss

Cuent togic:
Ways toput g Lison o ComboBion

OEBPS/Images/pg56_01.jpg
Sub DrawCircle2(Radius As Double)
‘Declare Variables
Dim MyCir As E1lipseElement
Dim CenPt As Point3d
Dim RotMatrix As Matrix3d
‘Create Circle

CenPt.X = 0
CenPt.Y = 0
CenPt.Z = 0

Set MyCir = Application.CreateE1lipseFlement2(Nothing, CenPt,
Radius, Radius, RotMatrix)
Application.ActiveModelReference.AddElement MyCir
End Sub

OEBPS/Images/pg381_01.jpg
VBA Files From Levels

AAREA
A-AREA-OCCP.

AEQPIRACCS
AEQPHFIXT
AEQPHHHOVE

c\Mcrostation VEAlexporttest don

Bt

OEBPS/Images/pg56_02.jpg
Sub DrawCircle3(x As Double, Y As Double, Z As Double, _
Optional Radius As Double = 1.25
‘Declare Variables
Dim MyCir As EllipseElement
Dim CenPt As Point3d
Dim RotMatrix As Matrix3d
‘Create Circle
CenPt.X = X
CenPt.y = ¥
CenPt.2 = 2

Set MyCir = Application.CreateEllipseElement2(Nothing, CenPt, _

Radius, Radius, RotMatrix)
Application.ActiveModelReference.AddETement MyCir
End Sub

OEBPS/Images/pg381_02.jpg
o and el Usppleien Dt Dscenty ey sk g c Wit idsiChapler

i o i Ao it

OEBPS/Images/pg57_01.jpg
Sub TestDrawCircle3)
DrawCircle3 2.25, 2.25, 0
DrawCircle3 2.25, 2.25, 0, 1.125
End Sub

OEBPS/Images/pg382_01.jpg
Browse for Folder

¥

o Local D (C:)

12) Key Largo)

5 profects on Py (V)
56 PunyzRem on Puny? ()

+ 5 Rore on Dev @)
3 Shared Documents
123 Adninstrtor’s Documents
123 Guests Dosumerts
23 Jorryw's Documents
3 o' Docments

5 83 N Blarnc

OEBPS/Images/pg57_02.jpg
Sub TestDrawCircles ()
DrauCircles 2.25, 2.25, 0
bravCircles 2.25, 2.25, 0, 1.125

DrawCitcled(x As Doute, Y As Doube, 2 As Doube, [Radis As Doible = 1.25)
End Sub

OEBPS/Images/pg368_01.jpg
1. Note 1.
2. Note 2.

3. Note 3.
4. Note 4.

OEBPS/Images/pg563_01.jpg
Sokct | Wb | | Ouky|

OEBPS/Images/pg36_01.jpg
Conlents | Index | Search Favorles Comtents| Index | Search Favories

Type nthe keypod o fnd:

Sting keyword
Stings fuction
stngs
abgring
characler
comparg
Concatenaing
convering.
daa pes
nediengh
foms
pstivng
lefmos characters

Type inthe kesptord o fnd:

o

clearng
e

compaing
convering.
Culing and pasing
| enemg
| tomnumbers
1| mparing

looping

seatching/eplacing

Sting data ype
et les

nsering
TextSean obiect
The binary conpatbiity DLL or E>
The binay conpatbiity DLL or >
Then kepword
Ths (e keyword)
Tie Horzonialy command
Tie Vericaly command
Tine furcton
+ |ime e
|| Vasang

Giference.
Tine kepword
time slamp
Trne sttement
T funciion
Tivr functon
s
times
| sdang
| convering
cresing

Date datatype.
| | _oetemnng ¥

OEBPS/Images/pg565_01.jpg
Microstation (€]

OEBPS/Images/pg377_01.jpg
£ C:\Wocuments and Settings\hil Use... [)E5)[%)

e

£ Y fils From Levels X

OEBPS/Images/pg566_01.jpg
‘SQL Select Statement
INSERT INTO Lots sk, Owner) VALUES (1, Jones Famiy]

OEBPS/Images/pg37_01.jpg
Contents | Index | Seatch Favortes
Type inthe words) o searchfr.

ool v
Lt Topes | Displey
Seect toic Found 67
Tite Locaton Rark ~

s
ViualBasc ... 2
Unabl o uroad wih.. VisualBasc | 3
Undersanding Obect . VisualBasc 4
MatchFound, Malch . MciosotFo_ 5
6
7
8

Lajout Event OidLel . Miciosot Fo.
Ste Propery MiciosoltFo.
OblCick Event, CanP. Miciosot Fo
ConboBox Conkol A MiciosaftFo. 3
Waystoput dataina . MicosoftFo. 10
LitPropery Micosolt Fo_. 11
Things you candowt.._ MiciosotFo 12
Stye Propery Example MiciosotFo. 13
MalchEnty Property, . MiciosotFo_ 14
AucTabPropety MiiosohFo_ 15
BoundComn Propety MicrosoRtFo.. 16

Tex Property MiciosotFo 17
CuX Propety MiciosotFo 18
TedCoumn Propery MicrosotFo 19
Value Propet MicrosotFo. 20

Locked, DiopButtor§. . MictosoltFo 21
DropDownMethod Ex_. MictosotFo. 22
DragBehavior Poperty MicosoltFo 23
Listwidlh Propety Ex.. McrosoltFo | 20
Ustows Property Ex. MicrosotFo. . 25
LneCount Propety MicosoltFo 26
Additems o alistusi.. MeiosohFo.. 27

LeldexPropery MetosotFo | 20
LitSbiPopety MewotFo. 2 v
] Seach previous resuts

Match sims words
" Seatch tles rly

OEBPS/Images/pg566_02.jpg

OEBPS/Images/pg562_01.jpg
UL Select 5

CREATE TABLE Hitory(msik rteger, Onnes Char50) PurchaseDate

[e]
A s

OEBPS/Images/pg366_01.jpg
Private Sub btnAlignCenter Click ()
Alignselected
ModeCerier

End _AlgnSelectecQElem o [mevbaAlignodeCenisr
@ msvwanlignModsLen
Private Sub btnA @ mevbaAlgniodeRight

nhlodeLemt)

(Byval But

OEBPS/Images/pg562_02.jpg
Select Table

OEBPS/Images/pg20_01.jpg

OEBPS/Images/pg46_01.jpg
;Wicrostation YBAVChapter05, myba

Su Main()

OEBPS/Images/pg646_01.jpg

OEBPS/Images/pg789_01.jpg

OEBPS/Images/pg20_02.jpg

OEBPS/Images/pg46_02.jpg
Sub Main()
"Declare Variables
Dim MyLine As LineElement
Dim MyCir As E1lipseElement
Dim CenPt As Point3d
Dim LineSt As Point3d
Dim LineEn As Point3d
Dim RotMatrix As Matrix3d
‘Create Horizontal Line
LineSt.X = -1
LineEn.X = 1
Set MyLine = Application.CreateLineElement2(Nothing, LineSt, LineEn)
Application.ActiveModelReference.AddElement MyLine
‘Create Vertical Line
LineSt.X = 0: LineSt.Y = 1

OEBPS/Images/pg647_01.jpg
F21 ¥BA Project Manager

OEBPS/Images/pg20_03.jpg

OEBPS/Images/pg470_01.jpg
12 CaDocuments and Setings\WAll Users\Wpplicaion ataDocoments\ereyWors . =)
2l —fh

Privats Sub myLE_LineAdded (AddedLine As LineElement)

End Sub

OEBPS/Images/pg21_01.jpg
Add-in Manager

Avalable Addins
VBA Add In for MictoStation XM

Descrpion

‘Addin crested for MictoStation VBA

Load Behavior
Starup / Unloaded

Load Behavior

OEBPS/Images/pg191_01.jpg
7 MicroStation V8 Visual Basic for Applications Help

I @ ¢« = & 6

Fde Lwwe Bak Fowad P Qo

Cortots oo | Somch | Fat 2
Tipeinthe kepdioind.

sepkcanSinetas

Application object structure
The structure of the application object i shown below

Application Object
Foptcaon Ooect | ol g

{pesiantiia)
{Mode Referonce}
{settings}

{Workspace}
AooeclScorafof oEME

| Appoumtewinacs Method {estiLibrary}
| AcElenertOtpect

vea o - 5o {codinputauece}
[aodsole Pcpaty

(eapalen Obect » (string}
esPanerea Pty

[vcPoesColnas Viod
Aronsymboeblane Poset
ronTomntoCrarsymbet o {Long)
tow arinsofont rapety d
o TamnatoS meollype s

shopkc s ement Propey = {stringh
AchcElement Popey

ctochment Propady application —t » {s0ol)
oot per€

s pieC ek eert Pcpery serence {Bool}
55 e aceblement Fipe

CefEeert Progery
Cranatislonar Focery
5 eCedlonen ooty {Bool}
ssConpentlenert ety

s ompenshopeLlement Propes lBool }
 saCompetingEienent Popery

o et Prpety | {8ool}
CuvetmantFopety =
55 ik emert gty

220 i e ity “{Bool}
s et emert Popery

5 e e Fcpety {string)
it et gy

Lok aert Prgery “1on fLeng)
st neElenent Popety

et

{commanastare}

o {stringh

OEBPS/Images/pg464_01.jpg
X Watches

OEBPS/Images/pg63_03.jpg
Sub TestGetExcelWS()
Dim MyWS As Object
Dim Celll As Double
Dim Cel12 As Double
Dim Cel13 As Double
Set MyWS = GetExcelWS
Celll = MyNS.Range("B2")
Cell2 = MyNS.Range("C2")
Cell3 = MyNS.Range("D2")
End Sub

OEBPS/Images/pg787_01.jpg
Sub RunInternetExplorer ()
Dim myInet As Object
Set myInet = CreateObject ("InternetExplorer.Application”)

myInet.

OEBPS/Images/pg95_01.jpg
R Watches

“C crostation VBAYocs Chapter0? d

VarartfStrog(0103)
o sing

xSpi(1) “Mcrostaion VBA" strog

“So(z) “docs’ strog

ey “chapter07 dgr Sng

OEBPS/Images/pg192_01.jpg
[0 Actvestodseterence
[Actvesetirgs
[0 Actvenorkspace

[@ urscrnsoemation

(B Exectingveprct

[Fuame
HosacteDeserFie
Lees——
Heort
IsAcademicversion
sColLbroryatached
sRegstered
sSerazed
Keynargnents

[Leteostion

[@wan

[messagecerter

[ane

E pan

E processo

[Rastermonager

[StnsatsCraciercortoter

[Torposton

[usertone

@ vee

[versen

[vewe

C wan

o cetibrary>

“chaptert1 3gn (20 - V8 DON) - MecroStaton V8 XM Edton”

1

°C/Program Fles Bertiey WicroStatonistaton xe”
True
True

Fise
Foise
True

4

ustatior®
“C Program Fies BertieyWicroStation”
160

DesipFleesinFie
ModeRsterenceModsiRet|
Settings ettngs
WorkspaceMorkspace.
CelLbrary

BspineiBspine
CodnputGueue Cadnoutanl
strng '
CommandStsteConmandS |
Long [
Cursorfomatonicursorr |
ObectVBFroject '
sting '
Bodkenn '
Bodkesn '
Long '
Bookan '
Bovean '
Bodesn '
Bodean '
stng '
Loog. '
MakaryMLirery 1
MessageCerterMessagec|
stng

sting

Long

ResterMansger RosterMn
StanardsCrecherCanrol
Long '
swng '
Ovctivee i
Swng '
ockean '
Long '

OEBPS/Images/pg465_01.jpg

OEBPS/Images/pg643_01.jpg
Standards Check Complete

Standards Check Conglete
114 Problems Found

50 Problems Fixed

64 Ignored Probien

Review Report e report0t L xri?

(e

Standerds Check Complete

64 Problems Found
0Probiems Fied
64 Ignored Protlem

Review Repart i reportDI2.xvi?

OEBPS/Images/pg787_02.jpg
Sub RunInternetExplorer(
Din myInet As InternetExplorer
set myInet = CreateObject ("InternetExplorer.Application”
myInet.
myIne e Adde
MsgBo eff Appiication
myTne & Busy
MsgBo S CllentTowindow
End Sub & Contaner
& Document
S Erecvs

Jaf/wwna. bentley. con”
site. "

/wni. microsoft . com”
ebsite. "

OEBPS/Images/pg96_01.jpg
I chapter07, dgn.extract - Notepad LB
T ER Famt Yo tob

c:\microstation vea\docs\chaptero?. dgn

OEBPS/Images/pg19_01.jpg

OEBPS/Images/pg469_01.jpg
% C:locuments and Settings\AllUsers\ipplication Data... (& |[Ef)

(General) © Dectaations)

Dim WithEvents myLE As clsLineElem

OEBPS/Images/pg643_02.jpg
Fiot Procossas

dschucked:

st

OEBPS/Images/pg788_01.jpg
Microsoft Excel

user terface.don, Index (20 - V8 DG) - Mcrostaion V8 X Edton (Beta)

==

OEBPS/Images/pg97_01.jpg
2 e EJEIR)

OEBPS/Images/pg19_02.jpg
add Watch |

59 Quekwatch ShitsFs

| Gl Albredkponts CoShitsFs

OEBPS/Images/pg469_02.jpg
 C:\Documents and Settings\Al Users Wpplication Data... (C)[85](58)
© ectuations)

As clsLineElem

OEBPS/Images/pg645_01.jpg
B Doty Sptem, b Stander s Chece:

Bentiey Systems, inc. Standards Checker
Version 89212

Coowd A1 it e Prions e Fnd P

ang Do 8530088101 39080 DMYS Aamisuatr SOES3 T IKBU oy g

o 111 T i
Fowm 1014 T i .
Foom 1094 OT i
Rosm 10107t
Roam 10810 OT i

OEBPS/Images/pg788_02.jpg
Microsoft Visual Basic

Runtine eror 429
‘ActiveX component cant reate object

OEBPS/Images/pg97_02.jpg
MicroStation %

Learming Microstation VA ©2005

o

OEBPS/Images/pg630_01.jpg
Standards Checker Settings

Beings None (TN VNSRS) X
Checks

(7] VBA StandChc A D
Do =
Check Tew Stes Setings
7] heck Dinenson Sl
1) Check Element Templates Setngs |
Check Line Sy Setings

OEBPS/Images/pg781_02.jpg
CaleulteQuantity(Overal)

OEBPS/Images/pg88_01.jpg
B immediate

OEBPS/Images/pg462_02.jpg
Import File
Lookin | L Micostation VBA

Caronts
Ccdmateral
(Csource Code
Cadocs
o

Fioname. | cUStatonDiaog i

Fiesoflgpe: | VB Fies (“fm"bas . ck)

OEBPS/Images/pg631_01.jpg
VBA Standards Checker Settings
o Lol ki To P
e Contans nly Logtmae Rou Lobes
ot CPcroStanon VoAb et

¥ Automaticaly Fixrors
o

3]

OEBPS/Images/pg782_01.jpg
1.9685

1626

d Edo

E\LO—TO

1.9265

1.9685

OEBPS/Images/pg92_01.jpg
arning
ing MicroStation VBA

microscation VBA

OEBPS/Images/pg190_01.jpg
Dim MyApp As Application
set MyApp = Application
MsgBox myapp.

End Sub o ACSManager
o ActveDesignFiie
 ActiveModelReference
o ActiveSettings
o AdtveWorkspace
© AdgAtiachmentEventsHandler
S AddChangeTrackEventsHandler

OEBPS/Images/pg463_01.jpg
. C:\Documents and SettingsWl Userswtpp... (£ /B8 80

(General) © Dectaations)
=

Bublic StartPoint As Point3d =
Bublic EndPoint As Point3d

=«

OEBPS/Images/pg63_01.jpg
StartCen.Y = 2
StartCen.Z = 0

Set MyCir = Application.CreateEllipseElement2(Nothing,
StartCen, 1, 1, RotMatrix)

Application. ActiveModelReference.AddElement MyCir
Dim Rotangle As Double
For RotAngle = 0 To 360 Step 30

CenPt = PolarPoint2(StartCen.X, StartCen.Y, StartCen.Z, _
DTR(RotAngle), 4)

Set MyCir = Application.CreateEllipseElement2(Nothing, _
CenPt, 1, 1, RotMatrix)

Application.ActiveModelReference.AddETement MyCir
Next RotAngle
End Sub

OEBPS/Images/pg785_01.jpg
References - VBAProject

Avalable References:

Mcrosof Access 11.0 Object Lbrary
Microsoft Active Server Pages Object bary
Microsoft Active Server Pages ObjectCortext Object
Microsoft Actvetiovie Control
Microsoft ActiveX Data Objects (ui-dmensionl) 2
Microsoft ActiveX Data Objects 2.0 Lbrary
Microsoft ActveX Data Objects 2.1 Lbrary
Microsoft ActveX Data Objects 25 Lirary
Microsoft ActveX Data Objects 26 Lirary
Microsoft ActiveX Data Objects 2.7 Library
Microsoft Activex Data Objects 2.8 Lbrary
Microsof ActveX Data Objects Recordset 2.7 Lbrary
Mioeekh actve P

< >

Messenger Type Lirary.
Location: C:program Flesilessenger|msmsas.exe.
Language: Standard

OEBPS/Images/pg92_02.jpg
MicroStation

CfjMerostaton VBAdocchapter?.dgn

=

OEBPS/Images/pg190_02.jpg
Dim MyApp As Application
set MyApp = Application
MsgBox myapp.ActiveDesignFile.
End sub S agaewLevel
© AtachCalorTable
o Autor
o Cliert
S Close.
e Comments
e Company

OEBPS/Images/pg463_02.jpg
Microsoft Visual Basic
Conple e

Constans, seHencth s, s, usr-dfned ypes s Decre satoments ot skowed a5 Pubk merbers of cbject s

o Jwe]

OEBPS/Images/pg63_02.jpg
Function GetExcelWS() As Object
Dim ExcelApp As Object
Set ExcelApp = GetObject(, "Excel.Application")
Set GetExcelWS = ExcelApp.activesheet

End Function

OEBPS/Images/pg786_01.jpg
Add Referen

S e T

OEBPS/Images/pg93_01.jpg
MicroStation

C:Merostation VBAldocs|chapter0?.don
CiMerostation VBAY

OEBPS/Images/pg879_03.jpg
Name See Type

VBATOVENET 1000 Fie Folder
setpere. 422K8 Appication
FVBA To VB NET appication KB Applcation Manest

VBA To VB.NET_1_0_0_0.applcation 6B Appication Manifest

OEBPS/Images/pg781_01.jpg
1.9685

2.0457

1.9685

2.2264

OEBPS/Images/pg87_01.jpg
BB
Tim Functions Trin Space Characters.

 Trim Punctions Trim Space Characters.
ons Trim Space Characters.

OEBPS/Images/pg23_02.jpg
- 2§ Chapter03 (C:\Documents an |
= 5 Forms.
B userformt

= 5 Modies
2 Moduiet
= 5 Class Modues:

OEBPS/Images/pg488_01.jpg
B Levettap.ixt - Notepad

ELEcTRIC
NATGAS
FragR

OEBPS/Images/pg65_02.jpg
Sub GetThreeVals3(Byval X As Double, ByVal Y As Double, _
Byval Z As Double)

End

OEBPS/Images/pg23_03.jpg
% Project - Chapter03 [(9]-019)
e e S

& Closst
2 Modude1

8 UserFornt

OEBPS/Images/pg48_01.jpg
Dim CenPt As Point3d

Dim LineSt As Point3d
Dim LineEn As Point3d
Dim RotMatrix As Matrix3d
‘Create Horizontal Line

LineSt.X = CenX - 1
LineSt.Y = CenY
LineSt.Z = CenZ
LineEn.X = CenX + 1
LineEn.Y = CenY

LineEn.Z = CenZ

Set MyLine = Application.CreatelineElement2(Nothing, LineSt, Linefn)
Application.ActiveModelReference.AddElement MyLine

‘Create Vertical Line

LineSt.X = CenX

LineSt.Y = CenY + 1
LineSt.Z = CenZ
LineEn.X = CenX
LineEn.Y = CenY - 1

Line€n.Z = CenZ
Set MylLine = Application.CreateLineElement2(Nothing, LineSt, LineEn)
Application.ActiveModelReference.AddElement MyLine

“Create Circles

CenPt.X = Cen

CenPt.Y = Ceny

CenPt.Z = CenZ

Set MyCir = Application.CreateEllipseElement2(Nothing, CenPt,
0.25, 0.25, RotMatrix)

Application.ActiveModelReference.AddElement MyCir

Set MyCir = Application.CreateEllipseElement2(Nothing, CenPt,_
0.5, 0.5, RotMatrix)

Application.ActiveModelReference.AddETement MyCir
End Sub

OEBPS/Images/pg244_01.jpg
ActiveDesignfile.SaveAs test.dgn”, True,

e Y e - s st)

OEBPS/Images/pg22_02.jpg
@Jvd.,&

View Mcrostation|

OEBPS/Images/pg47_02.jpg
ks

OEBPS/Images/pg657_01.jpg
MicroStation

Ciprogram Fies|AdobelAcbat 6.0lAcobatiAcrobat.exe-

=y

OEBPS/Images/pg798_02.jpg
Customize
=
Toobas:

@»

(T30 etings
[Borders
Chart
L] Chart MenuBar
Craer Reference
Compare Side by Side
L] Control Tobbox:
[l ovagram.
Drawng
] orawng Canvas
] Exk Design Mode
[Externai Data
L Forms
L Forma Audting

e

|

OEBPS/Images/pg22_03.jpg

OEBPS/Images/pg47_03.jpg
Sub DrawTarget(CenX As Double, CenY As Double, CenZ As Double)
‘Declare Variables
Dim MyLine As LineElement
Dim MyCir As EllipseElement

OEBPS/Images/pg658_01.jpg
Microstation (K]

Fres Bytes: 1,969,815.55 K8
TotalBytes: 39,999,500.25 KB

Percent Free: 94,92

L=y

OEBPS/Images/pg798_03.jpg
MNew Toolbar
Tober name:

MiroStaton VEA

OEBPS/Images/pg22_04.jpg

OEBPS/Images/pg47_04.jpg
Linekn.X Linekn.Y 1
Set Myline = Application.CreatelineElement2(Nothing, LineSt, Linefn)

Application.ActiveModelReference.AddETement MyLine

‘Create Circles

Set MyCir = Application.CreateEl1ipseElement2(Nothing,
CenPt, 0.25, 0.25. RotMatrix)

Application.ActiveModelReference. AddETement MyCir

Set MyCir = Application.CreateEllipseElement2(Nothing, _
CenPt, 0.5, 0.5. RotMatrix)

Application.ActiveModelReference. AddElement MyCir

End Sub

OEBPS/Images/pg659_01.jpg
Wicrostation ()

OEBPS/Images/pg798_04.jpg

OEBPS/Images/pg23_01.jpg

OEBPS/Images/pg480_01.jpg
W immediate

Unsupported
Unsupported
Unsupported
Unsupported
Unsupported

Unsupported
Unsupported
Unsupported
Unsupported
Unsupported

OEBPS/Images/pg65_01.jpg
Sub GetThreeVals2(X As Double, Y As Double, Z As Double)
Dim db1X As Double
Dim db1Y As Double
Dim db1Z As Double
db1X = X
db1y
db1z
db1X
db1y
db1z
End Sub

OEBPS/Images/pg799_01.jpg
Customize

Toogars Commands Optons

To add command to 8 toobar: select a categary and drag the.
command out o this diakog o to 3 toobar.

Cotegores: Commangs:

Window and Help
Draving
Autoshapes.
Charting

web

Forns

Contral Toobox

OEBPS/Images/pg471_01.jpg
[Bementaccess
b temertconr
@ ElemertLinestyie
EementLineWett
©
fsactve.
sDisplayed
IsFronLevelibrary
sfrozen
Ishiise
Istocked

[overridecoior
[overrdeLnestye
OverdeLineeigrt
ParertLevel
Pt
UsingOverrdeColor
UsingOverrdeL neStye
UsingOverrdeL neesht
t@ten2
n3

medLevelEementAccessAl
o

o
1

True
Tre
Folse
Foise
Foise
Foise
"Level 17
1

o

o

Tee

VerirtOoecti evet

sting
Mo eveElemertaccess
Long

LineStyletnestye

Lorg

Long

Boolean

Boolean

Boolean

Boolean

Boolean

Boalean

strng

VarirtiOtectievel
Varrt/Otiectievel

OEBPS/Images/pg64_02.jpg
Sub TestGetThreeVals()

Dim
Dim
Dim
A=
B =
C=

A As Double
B As Double
C As Double
100
200
300

GetThreeVals A, B, C

End Sub

OEBPS/Images/pg796_01.jpg
C@ N e wN -

] c
2 ExistingTerrain
6 Builing SteTerain
7 ExistingTerainMesh
1 Frame
8 BuildingSiteMesh
4 Links
0 Defaut

OEBPS/Images/pg47_01.jpg
ks

OEBPS/Images/pg21_02.jpg

OEBPS/Images/pg475_01.jpg

OEBPS/Images/pg653_01.jpg
M Immediate

= Herd Drive
Drive D:\ 1s a CD/DVD Drive
& Removable Drive
& Mepped Drive

OEBPS/Images/pg796_02.jpg
Name
1 ExistingTerrain

2 Buiding StteTerain
3 ExistingTerainMesh
4 Frame

5 BuidingSiteMesh

6 Links

c
Description

Existing Terrain Level
Buiding Site Terain Level
ExistingTerrainMesh Level
Frame Level
BuidingSiteMesh Level
Links Level

OEBPS/Images/pg19_03.jpg

OEBPS/Images/pg21_03.jpg
[
G Marosoht visuslBasc el F1

bout Mcosoft Vsl Basic

OEBPS/Images/pg477_01.jpg
MicroStation

Enter Valu:

Microtation

OEBPS/Images/pg655_01.jpg
Microstation (5]

OEBPS/Images/pg797_01.jpg
2 Nems " Nurber_Descpion Fie loged F]

» T——— 5]
ExistingT enain 1 Existing Tenain Level Chaptes37_... Master Oo
Buidng SteTenan 2 BuidngSte TeranLevel Chapled?_ Maste (]0
ExisingT enairMesh 3 Edstnglenseileshlevel Chopled?_ Maser (10
Fiame 4 Fiame Level Crepted? . Masier [J0

s o
o 2

OEBPS/Images/pg22_01.jpg

OEBPS/Images/pg477_02.jpg

OEBPS/Images/pg656_01.jpg
Microstation (5]

Star Time: 4:35:37 PM.
End Tine: 4:35:38 P

OEBPS/Images/pg798_01.jpg

OEBPS/Images/pg98_01.jpg
Microstation () | Microstation (€] | Microstation (5] | Microstation (3€)

s
=]

OEBPS/Images/pg793_01.jpg
[CIO3ED ¢ Decuments and SettinasiAl Users Apalicabion DakalBertleyIWorkspace Projectsl
‘GPENED C:{Documents and Setings|Al Users\Applcation DatalBentley\WorkSpacel Projectsl
CLOSED Ci\Docurets and Settings| Al Users\Applkaton DataBerley WorkSpace Projectsi
(GPENED C:{Documents ond Settings| Al Users|Bpplcation Data{Bentiey WorkSpacelrojectsl
CLOSED C:{Docurnents and Settngsll ers|Applation Datalperley WorkSpace Projectslt

(OPENED C:{Documents and SettngsIAl Users|Appication Datalertley WorkSpacelProjectsil

OEBPS/Images/pg99_01.jpg
Microstation () | Microstation (5] | Microstation Microstation (5]

012

OEBPS/Images/pg64_01.jpg
Sub GetThreeVals(X As Double, Y As Double, Z As Double)

k=1
{=2
=3

OEBPS/Images/pg795_01.jpg
R

3|

- 26 veAProject sook1)
=\ Mot xcelObcts
) st (sreet)
) 5t (Sreed)
St (et
Trewobock
s
& vode1

ectuations) =

OEBPS/Images/pin.jpg

OEBPS/Images/pg440_01.jpg
Create File A - C:Wicrostation VBAY
Saven | L) Miciostaon VBA

[Coponts
(Cacd material
asource Code
s,
Cadocs
et don
ez don
LAJftes.don
s don

]fées.dgn
fie6.dgn
)fie7.dn

Moo o0
Paces Savsastps [MooStaion OGN Fes)

OEBPS/Images/pg436_02.jpg
Open File - C:Wicrostation VBAY (K]

testd.don
ek found.
Please verfy the carrct e nams was gven.

=3

OEBPS/Images/pg60_01.jpg
Set MyArc = Application.CreateArcElement2(Nothing, CenPt, 1.5, _

1.5, RotMatrix, DTR(45), DTR(90))
Application.ActiveModelReference.AddElement MyArc
End Sub

OEBPS/Images/pg760_02.jpg
= Watches

OEBPS/Images/pg867_02.jpg
[<10 3+ Open (mode As System.I0.FleMode) As 5ysten 10 Flestean
|mode: 5ysten. 10, FleMode constant specyigthe moge (o exale, Open o Append) n whehtoopen the e

(27 3= Open (ode s 5yston 10 Flsiode, acces As System 10, FleAccess) s y2om.10,FaSiroon
{Opens aFie 1 the spectied mode weh read, w, or resjurte ocess.

(3665w Open (ol s Systam 10, Fieods, ccess As Systom 10, FeAccess, chre A Sytom 10, FeShare) s Sy 10 Flsstrear.
{opens a e i the spectied mode wkth read, wrke, o readjweie access and the speckied sharng aption.

OEBPS/Images/pg438_01.jpg
Open File - C:Wicrostation VBAY

Lok | 3 Micostaion VBA

J

Recent

s
-
s code

\Ipies.

s

s v vrson 2.
Sz s
Denmsts

)Mrosaton Objec Model -
leeaminghs veads

OEBPS/Images/pg60_02.jpg

OEBPS/Images/pg760_03.jpg
Sub TestMathcadB ()

Dim
Dim
Dim
ser
Set
Set.

BYNCA As Mathcad.Application
BYNCU As Mathcad.Uorksheet

BYNCY As Mathcad.NumericValue

BYNCA = GetObject(, "Machcad.Application”)
BYNCU = myNCA. Act iveVorksheet.

mYHCV = myNCW.GetValue ("Roughength”)

magbox mymev.
o Assiiing
o imap
o Integer
o Feal
& Type

End Sub

OEBPS/Images/pg86_01.jpg
Microstation (X] Microstation (X]

OEBPS/Images/pg43_01.jpg
warmoas o st
o “gonat> ot
2 rcupraminns
2 scamame: Aceogevserence
S besicton 1 [Avasetngs
2 optctoncierir e
2 dopcstoncnicoomeds | & AdasenmenEentsHander
& arcelement ® AddChangeTrackEventsHandler
42 AreaPattem S AddLevelChangeEventsHandler
2 st s ——
&% Atachments ' AddModelActivateEventsHandler
& auwiianCoordinateSystemElemer | © AddMocelChangeEventsHandler
|2 Bspine. S AdgSaveAsEventsHandler
&% BspineCure. 'S AddViewUpoateEventsHandier
5 o:pnecuneeiement S Sopanaizon
& BsplineSurface. o [[® PopHorzontaiscaiingF uF orEMF
g s conean 2 T

rosdrty
[

OEBPS/Images/pg60_03.jpg
Function PolarPoint(X As Double, Y As Double, Z As Double, _

Angle As Double, Distance As Double) As Variant

Dim XChange As Double
Dim YChange As Double
XChange = Cos(Angle) * Distance
YChange = Sin(Angle) * Distance
Dim PPoint(0 To 2) As Double
PPoint(0) = X + XChange
PPoint(1) = Y + YChange
PPoint(2) = 2
PolarPoint = PPoint

End Function

OEBPS/Images/pg761_01.jpg
Microstation [

OEBPS/Images/pg43_02.jpg
crostatontH

Classes

2 CompersrapeE ement

2 Complesstangeiement

<% ConeEtement

| conrcortent

& crossratcrpston S Close

2 Cursorormaton Comments

2 cuneiement Company.

| atavaseLnc S CustomProperyEasts
2 patasiock DatCreates

o DatsEniyRegon DatsCastPoted

23 esigrie DateLastsaved

2 Oimensioncioment DefsutNodeIReteence
2 Dimensionsye S DeletaLevel

2 Dimensionsivies Dimensionstyes

d oLong Edor

Funchon AddNewLeveK LeveNarme A3 ST As Lol
Menter of o500l s e

OEBPS/Images/pg612_01.jpg

OEBPS/Images/pg42_01.jpg
3 Bentley | Discussion Group Directory - Wicrosoft Internet Explorer

e EX Yo Fgontes ook tep
Ot - ©- W @G P rremw @ (2-55
55 |) el bentiy.comfen-U{Communty DscussentGroupsiDrectoryl ¥ (£ G0

Nicrostation
(new)

OEBPS/Images/pg605_01.jpg
Browse For Folder

OEBPS/Images/pg758_01.jpg
e]
Be Bt Yow It Fomat Lok Smbokcs Mndow

D-3@ 8RY B8 - T MO 20C
Nomal B v v Bru EES
BFE=EDs e MySte

= oL LIRS it

RoughLength = 188 + 5in

| JambShim =
|

| StkeShim = L

|

} MaxLength = 300cm
| MinLength = Socm

FinishLength = RoughLength ~ JambShim ~ StrikeShim
FishLength = 12 4 FIF

OEBPS/Images/pg862_01.jpg
FZI0GH Browser
C\Documents and Setings\Al Users\Appication D [Browse

- ¥ T “
oty

* AFE-GBIGgEM
AFBGBidgMisc

emomatn
it
Pl
pEs
et

AZN35Len
- Delaut
Frame

Links
Object
= I3 Models
7 Composte Cut Ground FlootPlan
Ground FlootFlan
= A BSI300AE201 Elevatons don
= Levels
AFAG Subshich

OEBPS/Images/pg434_01.jpg
Open File - C:Wicrostation YBAY

Lok |) Miciostation VBA

Cofonts) “fie1o.con
Cocdmateral]flea.don
CisouceCode <|fieb.don
Cires Aresterdocs
Cdocs

it don

ez don

e dgn

)i don

AJties dgn

] o

<]fi7.don

et don

<]fies.don

MictoStaton DGN Fies (“dgr)
71 0pen as eadonly

OEBPS/Images/pg606_01.jpg

OEBPS/Images/pg759_01.jpg
», Object Browser

B

«

Classes Members of Warkshest
2 Regions Appication

% Stingvaive 5 Changes

2 value © Close

& Window FullName

% Windows S Gatopton

worksheet © T ——
& Workshestieiadata Name

2 Worksheets Needssave

Funclion GetValue(bsriame As Sting) As Object
Menber of Mathead Wk sheet

OEBPS/Images/pg862_02.jpg
DG Browser

C\Dacimerts and Setingr\Al Urersopkesion D

A BSI300AE101Plan don

A BSI300AE01 Elevaions dgn
A BSI300AE301 Sectons dgn
A BSI0AES01 Detais. don
A BSI300AE701-ACPlan dgn
A BSIS00AES Atium dgn

B BSI0AE Core don

A BSIAESShelldn

A BSI0C9Stedn

4 BSI200G1001 Cover dn
A 851300613 DMestr don
4 BSI3001 Simeiondon

4 BSI3005 8 tiom dgn
4 BSI3005 8 Stuchualdgn
A BSI00<9Signdgn

OEBPS/Images/pg435_01.jpg

OEBPS/Images/pg608_01.jpg
W immediate

C:\icrostation VBA\BatchProcessing\File A.dgn
C:\icrostation VBA\BacchProcessing\File B.dgn
C:\Hicrostation VBMBatchProcessing\File C.dgn
€ \Hicrostation VBMBatchProcessing\File D.dgn
C:\Hicrostation VBA\BatchProcessing\File E.dgn
C:\Microstation VBA\BatchProcessing\Batcha\File F.dgn

€:\Hicrostation VEA\BatchProcessing\Batchi\File G.dan
C:\Microstation VEA\BatchProcessing\Batchh\File H.dgn

C:\Microstation VEA\BatchProcessing\Batcha\File J.dgn

Ci\icrostation VBA\BatchProcessing\Batchk\BatchA-1\File K.dgmn
C:\icrostation VEA\BatchProcessing\Batchh\BatchA-1\File L.dgn
€:\Microstation VBA\BatchProcessing\Batchh\BatchA-2\File H.dgn
C:\Microstation VBA\BatchProcessing\Batchh\BatchA-2\File N.dgn

OEBPS/Images/pg759_02.jpg
Microstation [5€)

OEBPS/Images/pg863_01.jpg

OEBPS/Images/pg436_01.jpg
Open File - C:Wicrostation VAL

Lookj |) MictostaionVBA

Ciforts -]fles.don
Cicdmaterid <Jfiet0.don
Casouce Code]fiea.don
Caes “Jfieb.don
adocs rasterdocs.dgn
fiet.don

e
MicroStaton DGN Fies (- dgr]
() Open as jeadoniy

OEBPS/Images/pg609_01.jpg
Batch Processing

Curent Folder:
Fies n Folder

Fées ToProcess

>

<cc

OEBPS/Images/pg760_01.jpg
nmnnne
] EECE
|
oinoEnn

OEBPS/Images/pg867_01.jpg
T RERxs8:.

sy
Lol

oy S e
e S

“lass Formi Funcion ToUgper() As Strng (+ 1 overoads)
e o daemecn

sace Sub Buc I nder A= System.Object,

ByvaL e T 's) Mandles Buttont sek

Din myame
ptane = -1 Comon | A

EeoBox Imvtiess

OEBPS/Images/pg855_02.jpg
Configuration Manager

Active soktion configuraton: Actve soktion pltform:
Release ¥ o
Project contexts (check the projec confgurations to buid or deploy):

Project Configuration Plaform

MeroStation Control A Release v Ay o

OEBPS/Images/pg753_01.jpg
W immediate

118325
Yi22781
21514

DATASET|xy=18325,22791, 514
Cable x118290

Cable Y122929

Cable 71894

OEBPS/Images/pg856_01.jpg
¥ Cell Selector

A CreatedBy: Bentey Sysiems
© Cleste Dote: 17172006
‘Websie Addess. bt/ beriey con

.

OEBPS/Images/pg601_01.jpg
BB ProcessTheselevels.ixt - Notepad

Fie Edt Fomat View Heb

< \icrostation vea\satcherocess 1ng\File a.don
vl A

Level

Level

Level

Cevel

Level ¢

C:\Microstation vB\BatchProcessing\File C.dgn
1

C:\Microstation vBA\BatchProcessing\File E.dgn
Tevel s
Level ©
vl 7

OEBPS/Images/pg756_01.jpg
References - Chapter 36

Mathcad Prvate Aukomation Type Ltrary.
Mathcad XSLT Extensions Lbrary.
MAXConganents 1.0 Type Lbrary
Mead 1.0 Type Lbeary.

Mehfee ViusScan APT 1.0 Type Lieary

Mehfoe com Vius Map Typely

Mehfee com Vi Scan ControlType Lbrary.

MCLauncher 1.0 Type Lirary

MedaPlayer 1.0 Type Lbrary

MerchankCard 13.0 Type Lxary

Messenger AP1 Type Lbrary

Messenger Extensins Type Lbrary
Mo e T e

Mathead 12 Automation 421

Location: C:Program Fles\Mathsoftathcad 13}aukomation,
Lenguege: Standard

OEBPS/Images/pg85_01.jpg

OEBPS/Images/pg423_01.jpg

OEBPS/Images/pg602_01.jpg
Information

i [C:\¥icrostation VBA\BatchProcessing|Fie EE.dgn] does
ot st

=

OEBPS/Images/pg757_01.jpg
' Object Browser

B

v o«
Classes Members of Application’
© <globals> Euﬂwewmﬂnw

Elppiicaton ActiveWorksheet

& CustomMetadataCollection Application
% CustomMetadataltem S CloseAl

% IMathcadapplication2 DefaulfFilePath
% IMathcadRegion2 FulName.

& IMatheadWorksheet2 Height

o2 MathcadWorksheets2 Let

2 etadata Name

& Mathcadold Parent

& Mathintertace Path

& Matriwvalue S auit

s# MCADpOption # out

4# MCCustomMetadataType Top

1 MCFileFormat Version

19 MCRegionType IeS* Visiole

| # MCSaveOption IS Wicth

| MCWindowState # WindowActvated
| MCWorksheetOption 7 WindowDeactivated
& Numericvalue IES* Windows

& Region F WorksheetClosing
& RegionMetadata 7 WorksheetOpened
& Regions. |8 Worksheets.

Class Application
Member o i
Methcas Appication Obiect

OEBPS/Images/pg85_02.jpg

OEBPS/Images/pg452_01.jpg
Microsoft Visual Basic

OEBPS/Images/pg62_01.jpg

OEBPS/Images/pg779_01.jpg
ActutSpucing(Ovenal Qty)

Spacingiln - ActusSpacing(Width QuyWidt)

Spacing¥ln - ActuaSpacing(Height, QiyHeight)

OEBPS/Images/pg879_02.jpg
Publish buiding.

OEBPS/Images/pg458_01.jpg
Open File - C:Wicrostation VBAY
Lookjc | L) Mitostaion VBA

Fonts. Efie7.dxf
L) Ocmeeis s
oot Dsoracoe [AJeodn
s

@ 5.

Deskiop

&

OEBPS/Images/pg62_02.jpg
Function PolarPoint2(X As Double, Y As Double, Z As Double, _
Angle As Double, Distance As Double) As Point3d

Dim XChange As Double

Dim YChange As Double

XChange = Cos(Angle) * Distance
YChange = Sin(Angle) * Distance
Dim PPOint(0 To 2) As Double

PolarPoint2.X = X + XChange
PolarPoint2.Y = Y + YChange
PolarPoint2.Z = 7

End Function

OEBPS/Images/pg780_01.jpg

OEBPS/Images/pg461_01.jpg
| o pogtes
et
Irpot e
Epor e
enove dsUalbnDIA0g
4 e
e

OEBPS/Images/pg62_03.jpg
Sub TestPolarPoint2()
Dim StartCen As Point3d
Dim CenPt As Point3d
Dim RotMatrix As Matrix3d
Dim X As Variant
StartCen.X = 2

OEBPS/Images/pg462_01.jpg
Flename: chUStaborDidogcls

Save e ype: | Class Fis ")

OEBPS/Images/pg443_01.jpg
Standard Message Box

OEBPS/Images/pg61_01.jpg
Sub TestPolarPoint()
Dim StartCen As Point3d
Dim CenPt As Point3d
Dim RotMatrix As Matrix3d
Dim X As Variant
StartCen.X = 2
StartCen.¥ = 2
StartCen.Z = 0

Set MyCir = Application.CreateEllipseElement2(Nothing, _
StartCen, 1, 1, RotMatrix)

Application.ActiveModelReference.AddETement MyCir
Dim RotAngle As Double
For RotAngle = 0 To 360 Step 30

X = PolarPoint(StartCen.X, StartCen.Y, StartCen.Z, _
DTR(RotAngle), 4)

CenPt.X = X(0)
CenPt.Y = X(1)
CenPt.Z = X(2)

Set MyCir = Applicatfon.CreateEllipseElement2(Nothing,
CenPt, 1. 1, RotMatrix)

Application.ActiveModelReference.AddElement MyCir
Next RotAngle
End Sub

OEBPS/Images/pg766_01.jpg
= Object Browser

&=

?

Classes Members of IMathcadRegion2

| & {MaincadRegion2
& IMaihcadWorksheet2
& IMathcadWorksheets2

& Mathinterface
& Matrivalue
4 MCAppOption v

Application

Froperly Mathinterface As Hathiniertac e
read.only
Member of Mathcad IMathcadReqion?.
property Mathiterface

OEBPS/Images/pg877_02.jpg
Publish Wizard

Where do you want to publish the application?

‘Specky the locaton to publsh this applcation:
CMroStation VBAIVEA To VB.NET

You may publsh the appication o a web sk, FTP server, o fe path.
Exampls:

Oiskpath: c:\deploylmyappication

Fie share: \lserver|nyapplcation

FTP server: Ffjtp.microsoft confmyapplcation

Web ske: it fwwme. mirosof.comfmyapplcation

OEBPS/Images/pg444_01.jpg
Information

Thiis atest

OEBPS/Images/pg620_01.jpg
Sub TestEmail2()
Dim myMail As New CDO.Message
myMail.To = "batch@microstationlogging.com”
myMail.From = "batch@microstationlogging.com®
myMail.Subject = "MicroStation VBA Batch Process Log"
myMail.HTMLBody = *File name: filea.dgn
" &
“Computer: " & ThisComputerName & "
" & _
“Date: 1/1/2005"
/schemas.microsoft.con/" &

myMail.Configuration.Fields. Item("htt;
“cdo/configuration/sendusing®) = 2

myMail.Configuration.Fields. Item("http://schenas.microsoft.con/* & _
“cdo/configuration/smtpserver”)
“yoursmtpserver.com"
myMai1.Configuration.Fields. Ttem("http: //schemas.microsoft.con/™ & _
*cdo/configuration/smtpserverport”) = 25

myMail.Configuration.Fields.Update
myMail.AddAttachment "C:\test.dgn"
myMail.Send

End Sub

OEBPS/Images/pg767_01.jpg
7 Object Browser

Classes Members of Mathintertace'
& IMathcadRegion2 ErorMsg
&% IMathcadWorksheet2 HasError
&% IMathcadworkshests2 UnitsxiL

% IMetadata ML
& Mathcadold

Blucueiae]

& Matrivalue
52 MCAppOption

Class Mathiiterface.
Merber of Mot
Mathcod Mathieterfoce odject

OEBPS/Images/pg878_01.jpg
Publish Wizard

How will users instal the application?

© From a UNC path or e share-

OEBPS/Images/pg448_01.jpg
W Watches

PFIeEs(3)

OEBPS/Images/pg628_01.jpg
Standards Checker Setings

Checks
VBA StendChk A Dia
Levels

[Check Test Stes
7] Check Dimensn Syes
) Check Element Tempites
] Check Line Stes

Lz B [cecd |

OEBPS/Images/pg771_01.jpg
Width : 18 Sm. HoleDia - 12mm
Heght ' M Zn MefSpacing: Somm
OutsideBulter - S0mm.

Oversll_ OutsideBufter2

CuettaQunt(Ovenl - YeAL_OusideBue 2
Oty HoleDia + MuSpacng.

QWi e ColelsteQuistity(Widt) + 1

Qugteight - trnc(CalelateQuantity(Height) - 1

Ovensl_Ouwsdebtn2
ActutipacngOveny - L_OUSIBD
st Qywidn

Spacingiln - ActualSpacing Width)

Spacingin - ActuiSpacing(Heigh)

HoleDialn - HoleDia
OuteideBuiadn - OuteideButer

Widthin - Width
Heightin | Height

widtin 17
Hugitn 26
Qw6
Qstgst - 10

Spaongla 1705
Spacing¥la - 3205in
HoleDialn - 0472in
OutsideBulfodn - 1960in.

OEBPS/Images/pg878_02.jpg
Publish Wizard

Where wil the application check for updates?

03 The applcation wil check for updates from the following location:.

) The applcation wil nok check for updates.

OEBPS/Images/pg450_01.jpg
M Watches

FleEas0) oo
Flebas() owg’
Flebsd) "

OEBPS/Images/pg629_01.jpg
Standards Checker Settings

77 Check Ten Sules
77 Check Dimension Syes
[Chec Elenen Tenpltes
] Check Lne St

Cs

OEBPS/Images/pg778_01.jpg

OEBPS/Images/pg879_01.jpg
Publish Wizard

Ready to Publisht
The wizard wil now publsh the applcation based! on your choices

e application wil be published to:
FleiC: MicroStation 20VBAVBA%20T0% 20V8. KT/

When this sppicaton s nstale on th cient machine, & shortcut wibe added tothe Start Meny, and the
appicaton can be uninstalled va AddRemove Progams.

OEBPS/Images/pg762_01.jpg
Microsoft Visual Basic

OEBPS/Images/pg871_01.jpg
VEA\BacchProcessing.

VEA\ca naversal
EA\docs.
VEADocumentc
EAVFones
VEA\ tron mark
\Microseation VB\FTS in VB Do
€ \Mscroscacion VBA\pics
C\Mscrostation VBA\Source Code
C:Mscrostacion VBA\USGS.
€ \Microseation VBAWBE
\Microseation VBAFTF in VB Dot
C:\Bicrostation VBA\FTP in VB Dot
€ \Bscrostacion VBAVFTS in VB Dot
C:\Mscrostacion VBA\FIP in VB Dot
C:\Mscrostaion VBA\FP in VB Dot
C: \Microstacion VBK\FIP in VB Dot
€ \Mscrostacion VBA\FP in VB Dot
C-\Mscroseation VEAVFTY n UB Dot

Heercs
e

Hee\VB Fepsanple
He\VBPepSanpletbin

e\ FepSaapleohs
Net\VE\PepSaxple\ab\Dabug
NeC\VE\FepSanpletoh\Debug Tenp}
ey smen

OEBPS/Images/pg616_01.jpg
Registry Editor
Fie Edt Vew Favomes Heb

L Learing Mirostatin VBA
11 Microsoft Viual Basic Addins (Ot (vae not set)

= Mcrotaton veA CilFieB.don
4 Batch Processing CilFie.don

OEBPS/Images/pg763_01.jpg
MicroStation

OEBPS/Images/pg872_01.jpg
\Microseacion
- \mscrostacscn
- \mscrestacson
- \mscrostacion
- \mscroscacson
- \nscrostacion
- \nscrostacson
- vnscrostacson
c: vnsceostacion
cvnscrosacion
- visceostacion
c: vnscrostacion
- vnscrostacton
c: vnscrostacson
o vnscrostacson
scrostacion
Wscrostacion
c: vnsceostacion
c: visceostacion
\mscrestacson

"

VBA\Bacebrocarring\File 1.dgn
VBABaceProcessing\BacehD File
VBA\BacchProcessing\BacehD\ Tale
VBN \BacchProcessing\BacchD\ File
VBA\BacchProcessing\BaccD\ File
VBA\BacchBrocessing\BacehCiFile
VEA\Bacchbrocessing\BacchC\File
VEA\BacchBrocessing\BacchB\ File
VEA\BacchProcessing\BacchB\File
VEA\BacchProcessing\BacchB\File
VEA\BacchProcessing\Bacchh\File
VEA\Bacchbrocessing\BacchA\File
VBA\BacchProcessing\BacchA\File
VEA\BacchProcessing\BacchA\File
VEA\BacchBrocessing\BacchABat chA-3\ i e
VEA\Bacchbrocessing\BacchABatchA-3\ i e
VEA\Bacchbrocessing\BacchA\BacchA-2\ e
VBA\Bacchbrocessing\BatchA Bat chA-2\ T Lo
VBA\Bacchbrocessing\BatchA Bt hA-1\ e
VBA\Bacchbrocessing\BacchA Bt k=11 T e

FESEEREIRE

OEBPS/Images/pg441_01.jpg
Create File A - C:\Wicrostation VEAY

CiMrostation VBAIfleS don akeady exsts.
00 you want to replace 7

ves

OEBPS/Images/pg619_01.jpg
MicroStation YBA Training

£450.00 160 Wardour Street, London LK
US§500,00 Huntigton Beach, CA USA
£450.00 180 Wardour Stree, London UK

OEBPS/Images/pg764_01.jpg

OEBPS/Images/pg876_01.jpg

OEBPS/Images/pg442_01.jpg
Create File from Seed - C:Wicrostation VBAY
Savein: | L) Microstaion VBA
o]
Oicdmaterl
(Dsource Code

Capks
(docs.

]fie2.dn
)fie3.don
e don
s, dgn
]fies.don
“fie7.don
]fies.don
2]ties.don
“]fle10.dn

MyNewok Savessbpe McioSabon DG Fis -0
seed I Docmerts s Sasg Al UssaVigstouion Browse_ |

OEBPS/Images/pg619_02.jpg
References - Chapter30

Avalable References:

Mirosoft APC 6.0 Object Liteary
Mcrosoft APC 6.3 Object Lbrary
Mecrosoft APC 6.4 ObjectLbary
Microsoft AutoDiscovery Type Liary
Mrosof Browse 3

o idows 2000 Lixac
Microsoft CE ADO Corirol 3.0
Microsoft CE ADO Cortrol 3.1
Microsoft CE ADO Ext. 3.1 for DDL
Microsoft CE Comm Cortrol 3.0
Microsoft CE Common Didog Cortrol 3.0
Microsoft CE Fe System Control 3.0
Microsot CE Finandia Functions 3.0
Wit CF GoutContrel 311

<

Miroscft CDO for Widows 2000 Lrary

Location: CAWINDOWSsystem2icdosys. &l
Language: Standard

OEBPS/Images/pg765_01.jpg
JambShim

StrikeStim

MasLengh = 30cm.
MinLength = Socm
FinishLength = RoughLength ~ FIF (JambShim) — StrikeShim

OEBPS/Images/pg877_01.jpg
Buld Debug Data Tods Win

% BukdveATovENET !
bl VBA To VB AET
Clean VoA To VBT
R

Configuration Manager

OEBPS/Images/pg86_02.jpg
M immediate

January
February
Harch
april
Ny

June

July
Juguse
Seprember
october
November
Decenber

OEBPS/Images/pg323_01.jpg
DeteL astodited
Fieostion
GrapticGrous
HasanyTags
Drsplayset
IsComponertelement
sFromattschmert
sGraptical
Istiaden

Istinear

Istocked

Is¥odited

Istew

IsSnagpabie

vald

[@Level

= Lneneigrt
e ogeRererence

lgtens

®
msdlemertClassPrinary
o

#912012005 52633 PMe
000017

o

Faise

True.

Faise

Faise

Toe

Faise

Faise

Faise

T

True

True

True

o

<Attemyting 0 perform a pon-(MsdEenertSubtype

clementTypesharedCel

EinentCache/EemertCac
Long
MedBmertCiass
Long
oute

Long

Leveltevel
LneStyiednestye

Long
ModeReterencemodeRe1

MsdBenentType
Stng
Strng
VaritiOtjectEenent
VaritiOtjectElement

|
I
I
I
I
'
'
'
'
'
'
'
'
'
'
'
'
'
I
I
i
1
i
'
'
'
'
'

OEBPS/Images/pg53_01.jpg
' C:Wicrostation VBA\Chapter05,mvba - claTargel (Code)

Dousle

s pean()
Din Myline is LineElenent
Hpsr ds Ellipseriement
Linese 1= Poimtia
FotNaceix Ae ateind
Linest.x = X - 1
Linese.y
Linest 2
Linern.x
Linern.¥
Linern.z
Sar Wyline = Application.CreatelineElementa (Nothirg, LineSt, LineEn)
Application Act ivellode 18eference AddElement ByLine

Linese.x -
Linese.¥ -
Linese.z =
Linekn x =
Linersy = ¥ - 1
Linetn.z -
Sec Myline = Applicavion.Createlineflenenc? (Hoching, LineSt, LineEn)
Applicacion Act 1veNode IReterence Ad4E lament yLine
cenpe i - %
Cemvelrn v
Cenpe.z - 2
Set MYCir = Appiication.CreateEilipseliemenc (othing, Cent, 0.25, 0.25, RotMacsix)
Applicacion. ActsveNode IRezerence. AddE lement RYCiz
SO NyCir < Application.CreatellipseEiementz (Nothing, Cen?e, 0.5, 0.5, RotNatrin)
Applicacion. Act iveNode iRezerence. AddLlenent Mycic
End 30

=3 <

OEBPS/Images/pg690_02.jpg
References - Chapter34

Avalabe References: e

Vol Basic For Apcations - [concel
¥ Bentley McroStation DGN 8.9 Object Library. —J
© 5% Alomaton

OEBPS/Images/pg324_01.jpg
& Named Groups

OEBPS/Images/pg53_02.jpg
Public X As Double
Public Y As Double
Public Z As Double

Sub Draw(X As Double, Y As Double. Z As Double)
‘Declare Variables
Dim MyLine As LineElement
Dim MyCir As EllipseElement

OEBPS/Images/pg691_01.jpg
. C:\Documents and Settings\All Users\pplication Data\Documents\Bentle
(General)

Sub TestExcelC()
Din yFxcel As Excel.Application
Set ayExcel » GetObject(, "Excel.Application”)
nagbox ayexcel.
End sw SiActvateMicrosofpp A
o ActveCell
& ActiveChart
& ActePrinter
& ActveSheet
& ActveWindow
2 ActveWorkbook

OEBPS/Images/pg32_01.jpg
Convol |

\A-N%FF#DJ_W_‘I‘.‘EE

OEBPS/Images/pg540_01.jpg
W immediate

Default New Level (0) 3 False
New Level (0) New Level (1) 3 False

New Level (1) Default 3 False

&

OEBPS/Images/pg330_01.jpg
Command Prompt Status
Place SmatLne > Entefstvetex) Fil [C:\Wictstaion VBANdocs\chapter17a dgn saved

OEBPS/Images/pg309_01.jpg
Name

i dn
‘ez don
I3 don
et don
s don
It con
Ifie.don
Jfis con
Ifes.dn
i dn

e
e
P
P
P
»e
»w
P
P
Er

Tree.
ey Merasation Desen e
iy eraSation Desn Fe
ey Pcrcsation Desn Fe
ey crosation Desn Fie
Bertey Macstaton D Fie
Bertey Mccstaton Dosqn Fie
Bertey Mircstaton Dosn Fie
Bentey Mrcstaton D Fie
Bentey Micrcstaton DesinFie
Bertey Mirostaten Dosn Fle

OEBPS/Images/pg51_01.jpg
Maciosin Al Standrd Pofects>
Descrpion:

OEBPS/Images/pg683_01.jpg
test. dgn Properties

Genersl Custom Sunmary.

Auhor: Jerry Winters

Category: Merostaton V84

Keywords: V84

Comments:

OEBPS/Images/pg30_01.jpg

OEBPS/Images/pg52_01.jpg
Public X As Double
Public Y As Double
Public Z As Double

OEBPS/Images/pg685_01.jpg
test. it Properties

General Summary.

Samgle bt fle
Mcrostation VEA

Serry Winkers

dsofle

dsotle properties

OEBPS/Images/pg312_01.jpg
B immediate

OEBPS/Images/pg530_01.jpg
W immediate

BeforeActivace:
Chenge:
AtterAceivate:
Chenge:
BeforeActivate:
Chenge:
Afterhceivate:
Chenge:

£langedvalve. dgn
Elangedvalve.dgn
£langedvalve. dgn
£langedvalve. dgn
Elangedvalve. dgn
Elangedvalve. dgn
£langedvalve. dgn
Elangeavalve. dgn

Uncicied sheer
Unticied sheet - BetoreActive
Unestled Sheer

Untitied sheet - Accive
Hodel-1

Hodel-1 - BeforeActive
Hodel1

Hoel) - hetive

OEBPS/Images/pg687_01.jpg
test. dgn Properties
Genersl Custon summary
N
Trpe:

Valo:

Properties: pame Value Type
Fortosk | LeamngMrostatan VoA Tet

k

OEBPS/Images/pg315_01.jpg
o ENTIT RN - o TV
e Subtype S SetxData

® Transform & Subtype
= Type S Transform
= URL o Type
2 URLTitle & URL

& Vertex & URLTHle o

OEBPS/Images/pg538_01.jpg
M immediate

New Level (0) Default 3 True
Default New Level (0) 3 False

OEBPS/Images/pg690_01.jpg
Microsoft Visual Basic

OEBPS/Images/pg680_01.jpg
For MicroStation

OEBPS/Images/pg50_01.jpg
™ C:Wicrostation VBAYChapter05.mvba - frmCh03 (Code)

Trtvace s Comantbutvent CIioK(

DrauTarget CObL(txtX.Text), CDbl(txtY.Text), CDbl(cxtZ.Text)
End Sub

<

OEBPS/Images/pg681_01.jpg
B Testing CDO Email - Message (HTWL)
Bo EX Yow [uet Fmat look Acons Heb
i uReply LRepytoAl | Forwed 4 VR A TP SR S A2

From: myaddress@myserver.com
To: youradbess@youserver.con

Subject: Testing CDO Emad

VBA
For MicroStation

OEBPS/Images/pg304_01.jpg
Note 1:
Note 2:
Note 3:
Note 4:
Note 5:
Note 6:
Note 7:
Note 8:
Note 9:

OEBPS/Images/pg512_01.jpg
i) You have fles waiting to be written to the CD.
To see th s now, cickthis baloon.

OEBPS/Images/pg682_01.jpg
Properties

General | Summary | Statistics |

Design Propeties
Tite:

Subiect

Clent.
Keywords
Comments:
Miestones
Manager

OEBPS/Images/pg307_01.jpg
& CellLibrary: [.\untitledicellWicroStation VBA.cel]
e
Use Shared Cele] Display 4 Cels nPath

Nore Descrpion _Type _Amolabon __ Where

AciveCele
Blacement | Box3 [Pant | Element

Teminalor | NONE Paten | NONE

OEBPS/Images/pg513_01.jpg
™ DYDICD-RW Drive (D:)
0 cot vew Fovartes

Delete m%ay Fles |

o Yy

OEBPS/Images/pg682_02.jpg
Microstation %]

OEBPS/Images/pg346_01.jpg
'

OEBPS/Images/pg557_01.jpg
est, dgn (30 - V8 DGN) - MicroStation V8

nt Elidl Iock \Rities Workspace Window
© Toisetoos Eo-So

g o el

peven o
" Color Table, i i
Coe oo
ey
- e
e , e
— "
Rendering. » Query Buider
e) Verly Urkages

Vew Atrbutes i+

OEBPS/Images/pg69_01.jpg
MicroStation =

Learning Microstaton VEA 15 asy.

Ly

OEBPS/Images/pg347.jpg
B CellExport.txt - Notepad

Te233.3070150922
162330307415 4312
18233, 3074134512
16233.3074134912

145177 3074134912
145171307415012
148170307018 4012
1633303074154002

17003. 6804376636
L6427 Es0437683¢
17615 caasserc
Taes. 630437687
L8227, €3047787¢
16551, 677437687
15651, 6a0437667¢
15517, 6804376636
L6951, 677437663
rictwtositi it

OEBPS/Images/pg558_01.jpg
Connect to Database

OEBPS/Images/pg347_01.jpg
B CellExport.txt - Notepad

Te233.3070150922
162330307415 4312
18233, 3074134512
16233.3074134912

145177 3074134912
145171307415012
148170307018 4012
1633303074154002

17003. 6804376636
L6427 Es0437683¢
17615 caasserc
Taes. 630437687
L8227, €3047787¢
16551, 677437687
15651, 6a0437667¢
15517, 6804376636
L6951, 677437663
rictwtositi it

OEBPS/Images/pg332_02.jpg
Selecton of Cel Foled. © NoElement: Found j @ Det

OEBPS/Images/pg549_01.jpg
N immediate

OEBPS/Images/pg698_01.jpg
M jmmediate

OEBPS/Images/pg333_01.jpg
MicroStation

Change Selection to Color 07

e gl

OEBPS/Images/pg54_01.jpg
Dim Cenl
Dim Lin
Dim Lin
Dim Rot!
‘Create
Linest.
Linest.
Linest.
LineEn.
LineEn.
LineEn.
Set MyLi
Applica
‘Create
Linest.
Linest.
Linest.
LineEn.
LineEn.
LineEn.
Set MyLi
Applica
‘Create
CenPt.X
CenPt.Y
CenPt.2

Pt As Point3d

eSt As Point3d

eEn As Point3d

Matrix As Matrix3d

Horizontal Line

S A

Yo=Y

=1

X=X+1

Y-y

-1

ne = Application.CreateLineElement2(Nothing, LineSt, Linefn)
tion.ActiveModelReference.AddElement MyLine
Vertical Line

X=X

RS

=1

X=X

¥F=%=1

1=1

ne = Application.CreateLineElement2(Nothing, LineSt, LineEn)
tion.ActiveModelReference.AddElement MyLine

Circles
=X
Y
-1

"

Set MyCir = Application.CreateE11ipseElement2(Nothing, CenPt, _

0.2!
Applica

5, 0.25, RotMatrix)
tion.ActiveModelReference.AddElement MyCir

Set MyCir = Application.CreateE1lipseElement2(Nothing, CenPt, _

0.5
Applica
End Sub

. 0.5, RotMatrix)
tion.ActiveModelReference.AddElement MyCir

OEBPS/Images/pg698_02.jpg
M immediate

R2c2iRC2

OEBPS/Images/pg337_01.jpg
Point 11501.8836494914 27463.2962386063 377 579 0
Point 9599.68844328587 28602.2371305697 196 475 0
Command PLACE SMARTLINE

Command PLACE BLOCK ICON

Command CGPLACE CIRCLE ICON

Keyin bogus keyin
Point 10796.1239475639 31518.0353275433 0 168 238 0
Point 10664.7076908189 30833.5756568922 0 144 363 0
Command MDL KEYIN lvimangr levelmanager dialog open

Point 11195.8483952442 31019.7486873093 0 241 329 0

OEBPS/Images/pg552_01.jpg
X Waiches

ZE - moeuns Dsipisorir Dulibaen ik

B parcel: Table
pare_valve

B 2 2098 12 15430 7913 v
531 1209 e iE) 12008 13 15260 7917 v
521209 e " 12008 14 1614028 v

OEBPS/Images/pg699_01.jpg
W Immediate =]

R2C2,R4C3,RSCS, RECE

OEBPS/Images/pg344_01.jpg
Mid

Start

OEBPS/Images/pg553_01.jpg

OEBPS/Images/pg699_02.jpg
W Immediate

R2C2:RSC2,R2C4,RSCA

OEBPS/Images/pg541_01.jpg
Element Selection
New Level (0) New Level (0)
Drag Selection
New Level (0) New Level (0)

Elenent Selection
Default Default 3 False
Delete Element
New Level (0) 1 False

5

3

False

False

OEBPS/Images/pg694_01.jpg
Microstation (%)

OEBPS/Images/pg330_02.jpg
Q- \ -l @ Blsls]r|s

> Select Fist Pint:

OEBPS/Images/pg543_01.jpg
M immediate

Add: 150 135
add: 5 0 137
Md: 4 0 138

<

OEBPS/Images/pg694_02.jpg
C:\Documents and Settings\All Users\Application DataWDocuments\BentleyWor

Sub TestExcel6()

ayExcel As Excel.Application

nySheeth As Worksheet

Set myExcel = Getdbject(, "Excel.Application”)
Set aySheech = ayExcel. ActiveWorkbook. Vorksheets ("SimpleGrid”)
MagBox mySheech.Cells(

End sw _Defaut{Rowindex, (Columnindex)

OEBPS/Images/pg331_01.jpg

OEBPS/Images/pg547_01.jpg
LineString 0 139
Line 0 140
Line 141
Line 182

Curve 134
Shape 135
Ellipse 0 145
Ellipse 0 147
Texe 0 138

o
0

Line 0 183
o
o

OEBPS/Images/pg697_01.jpg
Options.

Coor Inemtind Sae EmorCheckig Speling Securky
Vew Cokuaton Edt Generl Tnston Customlsts Chat

Rich e e T —
ore other appications Provide feedback with sound

-~ Function tooktes (] Zoom on rol with InteliMouse
UReconyuedfiht: 4 enpes

Options... | | Seryce Options

Sheets nnewworkbook: 3
Standod ort: el Vs v

Defauk e locaton: CHiDocuments and Settngs\adminstrator|My Dot
A& stertp, open al ies n:

User nane: Adnnitrator

OEBPS/Images/pg332_01.jpg
B Message Center

Cicle, Levet Defout
Shaoe. Level Defaut

Message Detais

Changes were made tothe le C\testa don These changes
e aais e maa b abl sty

OEBPS/Images/pg548_01.jpg
B imediste EX

Text Deleted
Shape Deleted

Ellipse Deleted
Line Deleted
Line Deleted

OEBPS/Images/pg697_02.jpg
1 Microsoft Exce! - Booki
“] He ER Yew Iwet Fomat ook Data Wndow Hep
[~ REETIZRE Vi s

@ 4 [

OEBPS/Images/pg693_01.jpg
1B Microsoft Excel - Chapter34a.xis

2
0 m Ex))
2 40 B0 80
0 0 90 1200
0 80 120 1600
50 1000 150 2000
B0 1200 180 2400

W 5w\ simpletrid { Complexcrd /sheets / | ¢
Ready

OEBPS/Images/pg27_02.jpg
Call Stack
Projec Mode Function

‘Chapterd3 UserFormi CommandBiuton] _Clck

[<Non Basic Code>]

OEBPS/Images/pg49_02.jpg
= Cwicrostat... (2[5

-
 Target Placement ()

OEBPS/Images/pg27_03.jpg

OEBPS/Images/pg25_02.jpg
 Watches CEX

s
AgpleationiAgpication UserFornt ConmandButtont_Cick

‘ACSManager ACSManager UserFormi CommandButon_Clck

DesigrFieDesirFle UserFormt CommandButtont Cick
ModeReference/ModeReference UserFormi CommandBiton_Clck

SettingsfSetings UserForm1 CommandButtont Cick

WorkspaceMorkspace UserFormt CommandButtont Cick

AifacherCelLlre <o cellea CelLirary UserForm1 CommandButtont_Cick
@espine BspineBspine UserForm1 CommandButton_Cick
CadnputGueue/CadnputQueue UserFormt CommandBtont Clck

*graph pages Siing UserForm1 CommandButton_Cick
CommendStateCommandState UserFormt Command@ton _Clck

CurertGrapnicc:t Long UserForm1 CommandButtont_Clck
{5 Cursorntormatior Cursorinformation/Cursorinformats UserFormt Command@tton! _Clk
ojectVEProject UserForm1 CommandButont _Cick

Fulame "C¥rogram Sing UserForm1 CommandButont _Cick
HasactveDesgnTrue Bookesn UserForm1 CommandButont _Cick
HasactvenoseR True UserForm Commanduton_Cick
Heott 1200 Long UserForm1 CommandBtont _Clck
IsAcademicVerssFalse UserForm1 CommandButont _Cick
IsCellbraryAtac Fase. UserForm1 CommandButont_Cick

OEBPS/Images/pg498_01.jpg
Chapter21.myba Properties.

Unknown applcation

CDocuments and Settings|Al Users\Applcation C
69.0K8 (70,656 bytes)
72,048 (73,728 bytes)

;ﬁ{g-ﬂ«w [ltpdden Agvanced.

OEBPS/Images/pg670_01.jpg

OEBPS/Images/pg26_01.jpg
Locals

BN T
UserFormt serforni
Arpomnin o
ACSManager ACSHanager
DesigrFleDesinFle
ModeReterenceModsetert
SetingsfSetings
Workspacemorkspace
<o cetearys CotLarary
Beplnespine.
CadinputQueve/Cadrputue
chapterd3 dn (20 - VB 0GI Srng
CommandSate CommandStat
CurentGraphicOraue 1 Long
Cursornformaton. Cursormtormation/Cursorinfo
ExecutinaVEProject ObectiVBProject

OEBPS/Images/pg499_01.jpg
T —
[o0t | adire_woon_telp

4 poferences 1

pacros.
options
Chapterz1 Propertes.

Towasree. X

OEBPS/Images/pg670_02.jpg
Regsvr32

‘;) DlRegsterserver i c|Program Fls{Mcrosot Office|Office11nsca o succeeded

OEBPS/Images/pg803_01.jpg
Save 2 P! acosotOffce Excel A In ()

OEBPS/Images/pg26_02.jpg
Chaprer03.dgn (2D - V8 DGN) - NicroStation VS X Edicion.

OEBPS/Images/pg499_02.jpg
Chapter21 - Project Properties

Genersl Pmtxﬁﬂ

Project Nane:
E

Project Description:

OEBPS/Images/pg671_01.jpg
 Object Browser

Searcn Rosuts
[brar

Casses. Warmbers o Fougrten
o <glovais» Appicaton
GetFoder
Gtk
S nvokeverd
IsBrowsable
IsFleSystern
IsFolder
Isink
MosOate
Name
parent
Pan
sae
e
S vers

Ciass Fokdorkom
Merter of .1
Cotesao rerace Foserten

OEBPS/Images/pg803_02.jpg
" Ewo Currency Tooks
cetpriong r

Browse
Interet Assstant VB4 [NS
Lookup Wizard =ty
Solver Add-n | Augomation... |
Bnatyss Toobak

Provides uncions and terfacesfor nencial and
Scentic. data anaysis

OEBPS/Images/pg27_01.jpg
MicroStation ®

Leaming Microstation VBA

(-

OEBPS/Images/pg49_01.jpg
Sub Main()
‘Draw Targets
DrawTarget 0, 0, 0
DrawTarget 3, 0, 0
DrawTarget -3, 0, 0
DrawTarget 0, 3, 0
OrawTarget 0, -3, 0

End Sub

OEBPS/Images/pg672_01.jpg
Browse For Folder

=5 Bentey
23 Documertaton

OEBPS/Images/pg248_01.jpg
& VBA Project Manager
Dedd &1> o=

OEBPS/Images/pg494_02.jpg
& VB Project Manager
D@#d®@A> &8

[Nome Dezciption _Localion AutoLoad
Thoptet! S S A Ui s 7|

OEBPS/Images/pg668_02.jpg
Additional Controls

Avaiabe Conioks:
B Microsoh Forms 20 TexBox

8 Microsoht Forms 20 ToggleButon

0 Microsolt Help 20 Contents Conl

0 Microsolt Help 20 Index Coniol

0 Microsolt Hisachical FesGid Contol 8 0[5
0 Microsl IE Object Wrapper Sample Control
0 Micrsolt ImageComboBios Contol 60 (5PS)

0 Microsolt mageList Contol 6.0 (5PE)

0 Microsolt magelis Contol, version 5.0 (5P
0 Microolt InkE i Coniol

0 Mictosalt InkPctue Contol

0 MicosolInemet Transer Control 60 (SPE) ¥
<. >

Shate

] Selected lems Orly

Mirosol Forrs 20 SpinBaton

Location CAWINDOWS\System32\FM20DLL

OEBPS/Images/pg800_01.jpg

OEBPS/Images/pg248_02.jpg
L Pl soartne

;

A2 Pce ks

OEBPS/Images/pg496_01.jpg
Configuration : User [untitled]

ecton
1y Search Paths
derng/images

uiy

dFies

red Fies

ng

~dads Checker
bobogy

emEny.

0 and Backup Fies
lton CGM
lton{GES

s fo Aoplcaions

< 3

VisuslBasic for Appcstons Setngs

Automaticaly save VBA poject System
Names of standard prjects User
Drectoies o seach for VBA Systen

(i) (o]

Egmin
C\Documents and Settings\All Users\Appiication D ata\D ocuments\Bentiey\\.

<

Descigion

Ditecloy thal s used when a new picject i created.
eV DRECTOR

Fot more ptions, clck onthe calegoy s f et

OEBPS/Images/pg669_01.jpg
Pick A Date

Nov 2005 1iov

D

OEBPS/Images/pg800_02.jpg
Assign Macro

OEBPS/Images/pg24_01.jpg
u Object Browser

Search Resulls

Classes Members of Application”

o <glonals> ACSManager

& AccuDrawHints ActiveDesignFile

& AcsManager

& ETITTMNNN (o Actvesetings

& ApplicationElement ActiveWorkspace

&% ApplicationObjectCo |- AddAttachmentEventsHandler
& ArcElement *® AddChangeTrackEventsHandler
&2 AreaPatiem S AddLevelChangeEventsHandler
&) Atachment 8 AddModalDialogEventsHandler
& atachments & | AdaModelactvateEventsHandler

Class Applcation
Member of M o5tationll

OEBPS/Images/pg497_01.jpg
New Configuration Variable
Vaiable: MS_VBA_GPEN_IN_MEMORY

NewVake coagonty

OEBPS/Images/pg66_01.jpg
Ciicrostation YBAWChapter05.m.. (2 BN

Private StartPointY is Double
Public StartPoint? hs Double

OEBPS/Images/pg800_03.jpg
Security Warning

Macros may contan viruses. It s usual safe to dsabe macros, s f the
macros s legRima, you mght ose some functionaly.

OEBPS/Images/pg25_01.jpg
W 0000012
0 frmBorderstyleNone.
Userformt
0- FCydealorms
32000
True
Tahoma
W 00000128
180
HepContextld 0
KeepScrolBarstisble 3 - fmscrolBarsBoth

OEBPS/Images/pg497_02.jpg
Save changes to yourconfiuraton i, [C:\Documents and
Settigs|al Users\Appicaton
DatalDocuments{Bentey\Workspacelusersiuntted.cf]

OEBPS/Images/pg66_02.jpg
Dim StartPointX as Double

OEBPS/Images/pg801-01.jpg
Assign Macro

Hscro name:

Macrosin: Al Open Workbooks v

OEBPS/Images/pg799_02.jpg

OEBPS/Images/pg666_01.jpg
B immediate

cest.dgn

Bentley Nicrostation Design File

<

OEBPS/Images/pg799_03.jpg
‘Copy Button Image.
paste Button Inage
ResstButtonInage |
0t Button Inage..
Change Button Image »
Defoul ke

7] Textonly (Aways)

Test Qriy (nMerws) |
Image gnd Text

Assign thperiok >
ssign o,

OEBPS/Images/pg494_01.jpg
B TimeTrack.xi - Notepad

e £t Famat Yew teb

3/11/2008
/172008
9172008
/172008
97172008

Administrator cogo.dgn
Admnistrator cogo. don

Admimistrator cogo.dan

Admnistrator cogo.don

Admnistrator constraints.dgn
Admimstrator constraints.dgn
Agmnistrator constraints.dgn
Admnistrator constraints.dgn
Administrator constraints.dgn
Admnistrator constraints.dan

12008
/172008 3

971172008 3:08:23
571172008 3:08:32
571172008 3:08:38
571172008 3:08:52

3TIITIIIITT

OEBPS/Images/pg668_01.jpg

OEBPS/Images/pg7_01.jpg
introduction ouw A Line Using PoocM i

et E"F’?“" 5

X % i

Eiby v :

2 | :
Draw Line Now

OEBPS/Images/pg29_03.jpg
7 C:\Wocuments and Settings\ll Userst... [&[89)€)

CommandBuriont

Dim MyApp As
Sec mypp = Ay
Debug. Princ My
DravLine

End Sun

Sub Dravine()
HsgBox "XN is
End Sun

=f= <

OEBPS/Images/pg294_01.jpg

OEBPS/Images/pg502_01.jpg
References - Chapter21

valable References:

rosoft xcel 1.0 Oblect s

Microsoft Exchange Event Service Confg 1.0 Type Li
Microsof FrontPage 4.0 Page Object Reference Lixc
Mcrosoft FrontPage 4.0 Web Object Reference Lbre
Microsoft Graph 11.0 Object Lbxary
Microsoft H323 Servce rovider 1.0 Type Lary.
Mcrosoft Help Data Servies 1.0 Type Ubrary
Microsoft HTML Objec Lbxary
Microsof InkDrvder Type Lbrary, verson 1.5
Mecrosof InkEck Control 1.0
Merosoft Internet Corercs
Microsof IP Conferencig Service Provider 1.0 Type.
Microsof Jet and Repication Objects 2.6 Lbxary
Mt | TSermee, Ohoet | ey

&

Microsot Excel 11,0 GbjectLbrary

Locaton: C:\Program Fes!krosoft Offce\OFFICEL NEXCEL EXE
Language: Standard

OEBPS/Images/pg679_01.jpg
B immediate

basic_help.chu C:\Progrss Files\Bentley\Docusentation\basic_help.cha
nicrostation.chn C:\Progra Files\Bentley\Documentation\nicrostation.cha
nicrostationvba.cha C:\Progran Files\Bentley\MicroStation\microstationvbs

readne nicrostation.chn C:\Progran Files\Bentley\MicroStation\readue microstatic
vba_concept.cha C:\Progren Files\Bentley\MicroStation\vba_concept.cha

OEBPS/Images/pg812_01.jpg
roject] - Microsoft Visual Basic [d

Ble Edt yew Project Fomat Debug Run
@8-3-8 =

08 o

B Project] (Project)

= 5 Foms.

| e

OEBPS/Images/pg297_01.jpg

OEBPS/Images/pg502_02.jpg
£ Operston o sowed because MicioStation s unving n secure mode.

OEBPS/Images/pg67_01.jpg
C:Wicrostation YBAChapter05.... [€]

(Gener

option Explicit

sup tst()
=5
End Sup

= <

OEBPS/Images/pg812_02.jpg
Add File

Flepome: [Fomiim o

Fiesofype: (VB Fies " fm." ol " pag”ds.

[Add As Related Document

OEBPS/Images/pg29_01.jpg

OEBPS/Images/pg502_03.jpg
1 The project could ot be loaded because s dighal signatuse could not be verfied.

OEBPS/Images/pg67_02.jpg
Microsoft Visual Basic (]

OEBPS/Images/pg29_02.jpg
7 C:Wocuments and SettingsWhil Users... [2)E)8)

CommandButtont v Click

Private Sub CompandBuctonl Click() o)

Din Myipp As Applicacion
Set MyApp = Application
Debug.Print MyApp.Caption
DravLine

End sun

Sus DrasLine()
== <

OEBPS/Images/pg506_01.jpg
C:\Documents and SeHings\All Users pplication Databocum... (o (8]
~ onbesignFileclosed v

" i —

Din BithEvents myMS As Application

OEBPS/Images/pg286_01.jpg
MicroStation Events

Fie Opened

T VBAZFle] ¢
o —

Fil Closed

[CiDocumerts nd et Al UsersApicaton
f‘ CilMcrostation eAZYiel don

OEBPS/Images/pg500_01.jpg
Chapter21 - Project Properties
Genessl| Protecton |

Lock peoject

ﬁlnwr«hm

Pasonord o viem project properti

password

Confrm password

I e [|

OEBPS/Images/pg675_01.jpg
T

C:\Progran
C:\Progran
C:\Progran
C:\Progren

€:\Progran
c:\Progran
€:\Progran

c:\Progran
c:\Progran
C:\Progran
C:\Progren

Files\Bentley\Docusentation
Files\Bentley\Licensing

Files\Bentley\MicroStation
Files\Bentley\MicroStation\assenblies
Files\Bentley\MicroStation\assenblies\ECFranework
Files\Bentley\MicroStation\assenblies\ECFranework\ extensions
Files\Bentley\icroStation\assenblies\J3pace
Files\Bentley\MicroStation\asseablies\J5pace\AddIns
Files\Bentley\Microstation\asseablies\ J5pace\nenaged
Files\Bentley\MicroStation\assenblies\J5pace\ resouzce
Files\Bentley\MicroStation\assenblies\J5pace \unnonaged
Files\Bentley\MicroStation\contig
Files\Bentley\Microstation\contig\appl
Files\Bentley\Microstation\conti) database
Files\Bentley\MicroStation\config)systen
Files\Bentley\Microstation\docs

OEBPS/Images/pg810_01.jpg
~ Proj rosoft ¥

[design]
e ER Yow Proct Fomet Qebup fun Query Disgram Toos Addins Window tep
@8- B#aoc)) NEAERAAD N

T =i e o
Dot Grageat | (81
= % Foms

5 Fomi (Fom)

OEBPS/Images/pg28_01.jpg
Options.

Edhor | Edior Fomat | General| Docking |

Dockatle
[]immediate Window
[¥]Locals Window
[¥] watch Window
[erotect Explorer
(7] Properties Window
7] gblectBromser

OEBPS/Images/pg500_02.jpg
I k‘ ‘Chapter21 (C:\Documents .

OEBPS/Images/pg676_01.jpg
B fmmediate

D
Share Name: \\Dev\Store

Volume: STORE

Total space: 81,956,655,104 Bytes

OEBPS/Images/pg810_02.jpg

OEBPS/Images/pg28_02.jpg
ADocuments and Settings\All User
T —

2 serForm1

OEBPS/Images/pg500_03.jpg
Chapter21 Password

OEBPS/Images/pg677_01.jpg
Vel 01o 316)
Sty

sty
“# mscontycfg - Men McroSiation Confiuraton FStrg
r

“# Cunent Revison”

“# $RCSthe msconfi gy 3

Nvaae TosrS00
Mok TesS00
Moset TestFS00
Mosuet TestFS00
Mode! TestFS0D
Moser TestFS0D
Mose! TestFS00

OEBPS/Images/pg811_01.jpg
Make Project
Saver | VB3

o
JRanyDayCode Addn ~JC2.EXE
JSetup Dcveackexe
Ssommaryitomaten LS
renine o
Wads nsoara o

Fie pame:

Froect exe

OEBPS/Images/pg293_01.jpg
MicroStation & wicrostation

[YN [NS ——

3

OEBPS/Images/pg501_01.jpg
Avaiable References:

 Viual Basi For Appicatons
 Bentiey McroStation DGN 8.0 Obiect Lbrary
 OLE Automation
M osct sctivg puriine

'IAS Helper COM Companent 1.0 Type Library.

OEBPS/Images/pg678_01.jpg

OEBPS/Images/pg811_02.jpg

OEBPS/Images/pg804_01.jpg
[3 Merostation v8A

| aBatchProcessng
| i material
decs.
(IDocuments.
(Fonts
from mark
apies
)Source Code
ouses
ves

Loz aonvai s o

 Fie pame:
Fles of type: addns (*.da; * 1)

OEBPS/Images/pg672_02.jpg
asseablies File Folder
acl7L.dll DL File

autonationdgn.dll DL File
bdtidoc. hea HTHL Document.

<

OEBPS/Images/pg804_02.jpg
[
[anlss Toopok
|y Toobok - v54
| Condton sum Wiz
Ewo Currency Toois
FlGetpricng
et Aasetart B
|| Lookup Wizard.

| Sover Addn

Maostationvba Add-In

OEBPS/Images/pg4_01.jpg
fiowarmaece

_fs precory -
Files - Directories:
Iniodichon mba DAMVBA Fies\

B MVBA Fiies

OEBPS/Images/pg673_01.jpg
Browse For Folder.

ge-oi |
> Documentation
 tcersing

12 Mcrostation

OEBPS/Images/pg805_01.jpg

OEBPS/Images/pg285_01.jpg
. Learning MS YBAxls - Sheet (Code)
Worksheet - change

Private Sup Worksheet_Change (ByVal Target As Range)
End sun
Private Sup Worksheet_SelectionChange (ByVal Target As Range)

End S

=3 .

OEBPS/Images/pg4_02.jpg
8 v Project Manager

C\Program Fies\Berlley’. \Defak rvba
D:\MVBA Fies\Iniroduction mvba

Intioduction VBA Introduction

OEBPS/Images/pg674_01.jpg
B Dsewn 2 roten

ks Coprogram Fleslgentiy

Fle and Folder Tasks (2)

2 b a et
@ Pbisths ok o

OEBPS/Images/pg809_01.jpg
New Project

YUTEIE AtveXBE ActvexDU

VeWeard Acivex Activex DataProject
Menager Document DI Document Exe:

=)

Concel
Hob.

Dontshow this daog inthe futre

OEBPS/Images/pg818_01.jpg

OEBPS/Images/pg81_01.jpg
Options

Edhor EdtorFomat General Docking

S
feosevemsoiasen

v

v,

71Dragrand-Drop Text Edtng
] Defaut to Full Mode Vew
7 Procedure Separator

Ok [Cocdl [Heo |

OEBPS/Images/pg81_02.jpg
Microstation (5
My Hourly Rate is $593.54

OEBPS/Images/pg820_01.jpg
B
5555555688888
3333388393338

SEEEEEEEEEE

=1 H
w !

OEBPS/Images/pg813_02.jpg
Project] - Project Properties

OEBPS/Images/pg814_01.jpg
Project? - Project Properties

OEBPS/Images/pg814_02.jpg
Save attpe: [Prject Fies (vop)

OEBPS/Images/pg817_01.jpg
References - Project! vbp.

Available References: I‘

< >

Bentey Mirostation DGN .9 Object Lbrary.
Location: C:\Program FeBentey \MiroStatonustaton.exe-
Language: - Standard

OEBPS/Images/pg812_03.jpg
Add File

Flepome: [Fomiim o

Fiesofype: (VB Fies " fm." ol " pag”ds.

[Add As Related Document

OEBPS/Images/pg813_01.jpg

OEBPS/Images/pg829_01.jpg
General

ABIAR

ol P
EBEm oy 3

doum
L~ -]

il_ly
fron o)

- |

OEBPS/Images/pg829_02.jpg
= Project] - Form1 (Form)

~ Form1 EE®

+ Models
+ Levels

OEBPS/Images/pg829_03.jpg
Modsl:

Buidng and Erising Mesh

Biidng Sio Drvgr Hech]
G and FilVokame.

Existig Teran Mesh

Fiished Buiding Sie.
Index

= Levets
Buldng SteTeran
BuldngSieMesh
Defaut

OEBPS/Images/pg823_03.jpg
Components

Contols | Desigers | Insertabe Objects

1+ Mcrosaft Windows Commen Controls 6.0 (SP6) &

Ricestt o o cort 39500
Frent v o G 20
oot v oot s S0
v
vy
Nt ot o 20 T
rooesco
it ey
et
et
ey Siuietvon

msttedt 1.0 Type Ubary

Insoftwre - IPWorks VS FlsMaler Control

OEBPS/Images/pg824_01.jpg
Project1 - msvba_mode... [

OEBPS/Images/pg828_01.jpg
Project Group - msvba_modeltiee. X
[=]- J(=]

‘msvbaControls (msvba_modekree.vbp)
= 5 User Controls
f Y eon et tnevb sbive.c6)
3 Projctt (tstingmodetree. vop)
= 5 Foms
Q) Fomi (testingnadetree frm)

OEBPS/Images/pg828_02.jpg
5 mavbaControls - mvha... (=B

OEBPS/Images/pg821_01.jpg

OEBPS/Images/pg823_01.jpg
New Project

StandadEIE ActvexEXE Actwexoll [EES
Cortrd

N B B B
ol
ol

VB Agpication
wizard

2

Data Prowct

Dot show this diog n the fuure

OEBPS/Images/pg823_02.jpg

OEBPS/Images/cover.jpg
Geometry
Bentley 3D 7
Institute Press MicroStation AF

VBA Geometry

configuration variables

natural di

LEARNING
MICROSTATION VBA

Jerry Winters

OEBPS/Images/pg591_01.jpg
M immediate

81 Found.
SR RARCELT TR
slink..7

old_nep_no.. 119
parcel_no..34

cle_no.. 119 3
owmer. .CGS LAND CONPANY.
parc_value. 575000
ste_name..P 0 BOX 10845
city. RIOKVILLE

state. . TENNESSEE
21p_code.. 37918

county. .KNOX

dxstrict. .NW-CONTY
zone_class..Ch
block_nus..0
Lot_nam...0

parc_srea. . 452206
perineter..3170

wapid. .6
currdate. .1996-03-11T00: 00:00
©XT..This i3 a memo field, used for really long text entries

OEBPS/Images/pg742_02.jpg
B DbSchema.txt - Notepad

Fle Edt Fomat Vew Heb

casLe_run£1 | True s |
CasLE RuN 72 True < |

CasLe run 73 True s |

[GATA RANGE |xy=18325 22751, 514 True |130] 255
TOWEROATS [Cabe ¥ |True 5|

TOWERDATS [Cable 2 [True s |
TOERDATS [Cable x [True < |

OEBPS/Images/pg593_01.jpg
W immediate

60 Parcels Found Betveen 1 and 2 Acres.
10 CRESTVOOD DEV THC 86657

36 VINSTON HAROLD J « JERRY N 46475

68 RODGERS CADILLAC INC 61295

71 SANFORD GEORGE B 58874

76 VISSER REAL ESTATE INVESTHENTS 53595

87 1B F CONPANY ¢ WILEURS 63518

90 STEPHENS VILLIAN J « KATHERINE WULLANE 44372
94 DANIEL FEALTY CORP % EASLEY-MCCALEE & 59003
100 UAL-MART PROPERTIES INC 65364

107 KINGTON CURTIS H ¢ PATRICIA 52386

110 MUFRAY TED E ¢ NCKINNEY JAMES NICHAEL 56333
111 ADKINS BOYD L ¢ HAFRINGTON GLENARD F 50360
113 HUGLEY DAVID B ¢ PEGGY C % UNION SECURITY MORTGAGE
114 ADKINS BOYD L « HARRINGTON GLENARD F 47912
135 CAIN LILLIE MAE LSD ONEGA ENTYRS INC 74120
134 CAIN LILLIE MAE 46608

145 CATN LILLIE MAE LEASED VESTSIDE INC 50262

156 SCHUBERT M A TR 69869

164 FIRST AMNERICAN WATIONAL BAWK 52457

184 CAIN LILLIE MAE LEASED OMEGA ENTPRS INC 59782
167 ROBERTS LARRY 3 ¢ SUZANNE 75045

2071

OEBPS/Images/pg588_01.jpg
W immediate

T rp—
aslink..1

014_nep_no. . 115-1

group_no..A

pazcel_no..s

clenol 119l 9

owmer. . CANTRELL VILLIAM B ¢ EVELYN U
parc_value. .9000

house_nun. .220

stx_naxe. .BRIDGEVATER RD

c1ty. JUOKVILLE

atate. . TENNESSEE

21p_code..37015

county. . KNOX

districe. NU-COMNTY

zone_class. .FA

block_num..0

lot_nam. .0

subd_nene. . CRESTVOOD HILLS UNIT 1
parc_area. . 16036

perineter. sl

napid..6

currdate. . 1986-09-19T00: 00: 00
©Xt..This 15 & memo field, used for really long text encries

&

OEBPS/Images/pg734_01.jpg
it e S

Description [Hauser Mcrowave Station
KABC-AM (Los Angeles)
KABC-TV (Los Angeles)
KACE-FM (nglevood)
KAGLTV (520 Bernardino)
KALL-AM (520 Gabre)
KAVLAN (Lancaster)
KAZN-AM (Pasadens)
KEET-AM (Canyon Courtry)
KEIG-FH (Los Angeles)

| KBOB-FM (West Covns)

AddNote | Draw In Mcrostation

OEBPS/Images/pg846_02.jpg
Working...

OEBPS/Images/pg58_01.jpg
CenPt.Y =Y
CenPt.Z = 7
For I = LBound(Radii) To UBound(Radii)

Set MyCir = Application.CreateEllipseElement2(Nothing, CenPt, _

Radii(1), Radii(I), RotMatrix)
Application.ActiveModelReference.AddElement MyCir
Next T
End Sub

OEBPS/Images/pg735_01.jpg
Description Mauser Wicrowave Station
Tower

Cos angeies

o7

34324m

Heizsen

perei

211823856

0
0
0
o
®

deter Ridge

OEBPS/Images/pg846_03.jpg
=k Project1.vbp - Packaging Report

P
FiesiMcrosoft Visus StudolVB98iPackagelProject] CAB.

There 5 0 a batch i inthe support drectary (C:Program

\Microsoft Viual Studo|VESBIpackageluppotiProfect] BAT) that
ol alow you o recreate the cab e ncase you make changes tosome
o the fles.

OEBPS/Images/pg58_02.jpg
Sub TestDrawCircled()
DrawCircle4 1, 1, 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5
End Sub

OEBPS/Images/pg736_01.jpg

OEBPS/Images/pg847_01.jpg
Fle Edt Vew Favorkes Tooks el

N k- P
ek T sewch | roders

) Ciprogram Flesicrosoft Visual StudolVeS8ipackage.
Folders x Mo
Package A wpont

RanyDayCode Addn project1,cA8
setup Feup exe
) Summarylnformation) SETUPLST

4 objecs (D ree space: 5.35 G8)

OEBPS/Images/pg58_03.jpg
Function Pi() As Double
Pi = Atn(1) * 4
End Function

OEBPS/Images/pg742_01.jpg
» immediate

Ring-a-Diag-bing, Baby

heep://blog. vixed. con/sex/

Setting the proper ood vith Your ring tone. <atrongPlusi¢/streng> “Teledildonic conception” cears its ©
Ticke and S1icke Animate Flicke

heep://plos. wized. comonkertites,

New app bring scrolling iaages to deskeops. CstrongPlusic/stcong> Uhat nakes Usb 2.0 tick From the Vi
he Pover of the S

Becp://blog.wized.con/gadgecs)

Poldable solax batier chargee pucs Life inc every gadget in your axsenal. <ScronPlusi</stcong South K
Tupan Grous o Beard

hecp: /. uized. con/meus/oluans 0, 70013-0, el suerss. index

As Japan's population ages, 1ts mambers are shrirking. Tousg and old shun o fast-paced Licestyle for a 51
Devious Tactic Snags hone Data

ctp: /. vized. con e echnoloqy/0,T0021-0.heal s, sndex

Vendors lapecsonate specch-iapaiced customers in handeeds of housands of (raudulent customcc-secvice cal

OEBPS/Images/pg84_01.jpg
MicroStation

OEBPS/Images/pg57_03.jpg
Sub DrawCircle4(X As Double, Y As Double, Z As Double, _

ParamArray Radii() As Variant)
‘Declare Variables

Dim MyCir As EllipseElement

Dim CenPt As Point3d

Dim RotMatrix As Matrix3d

Dim I As Long

‘Create Circles

CenPt.X = X

OEBPS/Images/pg723_01.jpg
MicroStation

Provider=Mcrosct. et OLEDB.4.0
User D=dnn

Data Source=C:Microstation VBAPlacePoints. b
Mode=share Deny None

Extended Progerties=""

Jet OLED System database="

Jet OLEDE Regity Path=""

Jet OLEDE: Campact Wihouk Replca Repar=Fae.
Jet OLEDBSFP=Faise

OEBPS/Images/pg844_02.jpg
4 Package and Deployment Wizard -Stat ben Items

Determine the start men groups and Rems that vl b created
by the nstalaton process.

- Bfrogems
= 2 Waostatn v sl

OEBPS/Images/pg580_01.jpg
Tags.tx -Notepad
o & Foma von b
21 s00sez01-c1cvattons . gon

b Sanaeies -t evatiors gan
£ et oo

ki

Bestan ei1e mer
et e

sencrey

OEBPS/Images/pg724_01.jpg
W immediate

Windaill Canyon
Wonens Taprovement Club of Huenene
Wood Cenyon

Wood Creek Park

Wood Rench 1027 Dan

Vood Rench Golf Club

Wood Rench Reservoir

Voodside Linear Park

Voodside Park

Vorld University

Xabaagua (nistorical]

Xocotoc (nistorical)

Yerba Buena Beach

Yerba Buena School

Ypuc (nistorical)

OEBPS/Images/pg845_01.jpg
§ Package and Deployment Wizard - Install Locations.

You can modfy the nstallocationfor each ofthe fies sted
below by changing the macro assigned tothe le nthe table.
desired, you can add subfoldernformation o the end o &
macro, 35 n $(ProgramFies)ySubFolder.

Choose the il you went to modey, then change the
information i the nsta Location cohum.

Name
MSCOMCTLOCK CHIWINDOWStsystemaZ HwrsysPath)
msstiorp ol CWINDOWSIsystena2 SwrsysPath)
Projectl.ere Ciprogram FlesiMcrosoft isual StudolVasa $(AppPath)

smndl CAWINDOWSIsystens2 HwrsysPath)
SIS CWINDOWSIsystens2 HwrsysPath)
VRCAPMdoa x| CAPrnarm FlesMerocnft ol ShAGIVRSR €nsv<oeh)

OEBPS/Images/pg583_01.jpg
33 C:Wicrostaion YBATags.bim - Wicrosoft Infernet Explorer
T BB Ve oot Toks M

&) Cipraostabon veaTags i

CDocuments and Settngs\Al Users\Application
DatalBeateyiWorkSSpacelProjectExamples\BuldngiDgnlbsi300 101-plan dgn

Tag Set Name Tag Name. Value D Eigh

CDocumeats and Sertngs\All Users\Appication
DataBentiey!WorkSpace Projects\Examples\Bualding\Dgnlbsi300ae20 1 -clevations. dgn

Tag Set Name Tag Name Value DEHea
TeleBlock Design Fie Ref 0
TiieBlock Broject Fie Ref 0
TeleBlock Date 0
TileBlock DrawnBy 0
TileBlock DRG NO 0

OEBPS/Images/pg729_01.jpg
M immediate

Yukon Elenencary School [Torrance
Yukon Interaediate SchoollInglevood

Yulups Elenentary School |Santa Rosa

Yoonne Harnon Developaent Center for the Hendicepped|San Bernardino North
Zemors Elenentary School Iioodland

Zemorano Elementary School [Naticnal City

Zela Davis Elementary School|Inglevood

Zion Luthersn School |0akland East

Zion Lutheran School |San Francisco North

Zion Lutheran School |Fountain Springs

Zion School [Anahein

Zoeter SchoollSeal Beach

Zupanic High School|San Bernardino South

OEBPS/Images/pg845_02.jpg
=k Package and Deployment Wizard - Shared Files

Wihen ths package i installd,the Folown fie(s) can be
instaled as shared Fes. Shared fes may be used by mare then
e program. They are only removed F avery program which
s them s rmovd, Chac the e you wa b it 5

Name. | source
| DProjectt exe C:iprogram FiesiMicrosoft Visuel Sudol VB3¢

OEBPS/Images/pg587_01.jpg
References - Chapter28

Avatable References:

Moosoft i, 2.6
Morcsoft iV, 3.0
Mcroscft M., 4.0
Mcroscft AN, 5.0
Microsckt 4., 6.0
Microscft AW, version 2.0
Microscft vsa dl
Mcrosoft Jscrt
Microsoft Vsa
Microscft_Vsa_Vb_CodeDOMProcessar
Mamer 170 Type Cbrary.
AEPLgIn 10 Type Lbeary
MC Iternal Web Eromser vent snk 1.0 Type Lbre
L1110 T e
>

Location: C:\WINDOWS|Systemazimnetsrviwdext. &
Lengusge: - Standerd

OEBPS/Images/pg731_01.jpg
£ | oraw inmerostaton

OEBPS/Images/pg846_01.jpg
*} Package and Deployment Wizard - Finished!
‘The waard has finihed colecting formation needed to bukd

this package, Ente the name under wich o save the settngs
Forthis sesson, then cick Fnsh to create the package.

St name:

{Standard Setup Package 1

OEBPS/Images/pg843_02.jpg
*k Package and Deployment Wizard - Cab Options

You can creats one arge cab e or mukipe cabfies for your
package. If you re going to dstrute your appicaion on
Foppy diss, you must create mukipe cabs and specy a cab
size o erger then the dsks you lento use. Choose the.
approprate option bekow.

OEBPS/Images/pg71_01.jpg
Dim HoursTolearnVBA as Double

HoursTolearnVBA = 36.25

OEBPS/Images/pg844_01.jpg
=k Package and Deployment Wizard - Installation Title

tle:

[crostaton VeA Sample

OEBPS/Images/pg600_01.jpg
Microstation

OEBPS/Images/pg59_02.jpg
Function RTD(AngleInRadians As Double) As Double
RTD = AnglelnRadians * 180 / Pi
End Function

Function DTR(AngleInDegrees As Double) As Double
DTR = AnglelnDegrees * Pi / 180
End Function

OEBPS/Images/pg751_01.jpg
% Data Link Properties

Provider Comnecion | Advanced | Al

Speciy th folowing to connect to Access dat:
1. Selector ener database name:

€ Wiciostation VBANomerdat s

2 Erterfomation 1 og onto the database:
Usesname: Adme,

 Blark password (Alow saving password

OEBPS/Images/pg854_01.jpg
{ RebbidMaostation Control A
Clean Mcrostaton Control &
Publsh MicroStation Control A

OEBPS/Images/pg59_03.jpg

OEBPS/Images/pg751_02.jpg
% Data Link Properties

Provider | Connection | Advanced Al

These are the iniialization propertes fot this type of dat.
value_ sslect a propetty. then choose Edit Value below.

| Hame Vae
Etended Properte: Ercel 50 e

Jet DLEDB Compact With. . False.

OEBPS/Images/pg854_02.jpg
Fle Edt Vew Favortes Toos Hep
Qs ©) 3 Pseusdh e

ks |2 C\Documents snd Settings|Admistrator My DocumentsiVisusl tuio 2005\Proects|icrostation Contrl AYMcrost

Folders X Name See Type
= 5 VoS 208 » Sineopeossbon 10K oLLFie
* £ baupries Clmarcsttion ool .exe 2606 Apcaon
© 53 Codo Strets S)acosaton Contol A 60X pragan Debug Dstabase
& £ Projects #Microstation Control Al 1KB XML Document

= (L2 Mcrostaton Control A
= 2 Merostation Control A
= Ebn
3 Debug
) Reease

OEBPS/Images/pg59_04.jpg
0im MyArc As ArcElement
Dim CenPt As Point3d
Dim RotMatrix As Matrix3d

OEBPS/Images/pg752_01.jpg
{eiles o E B a

_ 2[DATASET | cablex|_cable'] cable |
205 270 5141835 22791514 %0 22929 694
18414 20609 526 xy=1841422609526 Wy g7 a6

4 18407 20444 4RR wv=1R407 27444 2R5 1R 9%RR? AR

OEBPS/Images/pg855_01.jpg
Options.

Envronment
Projecs and Soktons
Geners
VB Defats
TextEdtor
Windows Forms Designer
Device Tods.

Visual 00 proects kcaticn:
i Setingeiadnbietrator iy DocumentsiVial tudo 2008 Proct]

Visual Studo user project templates locatin:
CiDocuments and Setgs\AdninstratorMy Documents|Visual Studo -

Visual Studo user Rem templtes ocaton:
C:Documents and Settngs\Adninstrator|My DocumentsiVisual Studo -

(7] Aways show Error List # buld fnishes with errors.
[/ Track Active Item in Soktion Explorer

[Show advanced buid configurations

L show sokution

[5ave new projects when created

[7]Wern user when the project locabon s not rusted
[show Outout widow when buld starts

[promet for symbok renaming when renamingfies

[=

OEBPS/Images/pg5_01.jpg
Modulel Proceduel

Step Into

Delete.

Macrosin: [<Al Standard Proe:

l‘zm

OEBPS/Images/pg752_02.jpg
B DbSchema.txt - Notepad

Fle Edt Fomat Vew Heb

casLe_run£1 | True s |
CasLE RuN 72 True < |

CasLe run 73 True s |

[GATA RANGE |xy=18325 22751, 514 True |130] 255
TOWEROATS [Cabe ¥ |True 5|

TOWERDATS [Cable 2 [True s |
TOERDATS [Cable x [True < |

OEBPS/Images/pg595_01.jpg
M jmmediate

Cable Tension
1200

1
color

veighe/ee
2

13

covers

OEBPS/Images/pg744_01.jpg
Welcome to Work.

|
|
| Googe.
|
|

Survey Fnds Googe 15 Stongin China

‘American commts suiide i Bugarien iermet forum (AFF)

HeR Block says Inuk to change ad cams (Reuters)

STMroto mrket chip to detect brd flun humans (Reuters)

Being a teen s har work for this entrepreneur (USATODAY.com)
Google gains ground on Badu in China: study (Reuters)

Mcrosoft o offerproducton-eady Vista technologes (InfoWord)

Foolsh Foecast; Motorola's Marginal Success (The Moty Fool)

3 Rdesed o Pk Commer (ewsoctr

OEBPS/Images/pg851_02.jpg
Add Reference

COM projects Browse Recent

ey Microseation DG,

CAPICOM v2.0 Type Lieary ogan il
Contien 1.0 Turm thosre CapROGRANT
<

OEBPS/Images/pg597_01.jpg
Racze
Fac3=
Faca=Cable Tension

RiCameighe/cc

OEBPS/Images/pg746_01.jpg
I DbSchema.txt - Notepad.

Flo Edt Fomat View Heb

wsysaccessobjects [oata|True| 12813992
wsysaccessob jects |10 True 3|

Placenotes |Notesy | True|130]50
Placenotes |Notevate True 7|

P acenotes |Flacelo True | |
Pacenotes | TheNoce | True | 130(0
p1acenotes [Umiauero Faizels
Points |CellNams True 130130
Poincs (County [True 1300

peints josscrpcion| True 1501100

Points |E1evatyon True3 |
Points [Federal status | True[130130
Points [Latoec True|s
Points [Latows True 130
e | Londec | True €|
Points [Lonows True 13018
Points [FointType [True|130|20
ints | Popul atton True 3 |
Poincs [Ret-LatDec True 5|
PoINts [Ref_Latons True 130]
Poincs [Ret_Lonoec True s |
Po1nCs [Rat_Lonows [True 130]8
o |stateTrie 13012
Points Typea|True
Points Types | True 13013
Poincs |uniqueso|Falze 3|
Points |USae-To| True | |

OEBPS/Images/pg852_01.jpg
% Microstation Conrol A - Mcrosoft Visust Sudio

P Gk Vem st Sl Dy Oua Tk Wndm Comrty b

Ry o0 b3

crostoton Control A® | Form. 0 Omsn) St P

[unmtptmcr

[ey
Scomaibe. M 8060 The

N a60 Foe
NI 2000 fame

OEBPS/Images/pg599_01.jpg
B ProcessThese. txt - Notepad

Fie Edk Fomat View Heb
c:ncrostation vea\satenerocessing\File A.dgn

C:\iCrostation VBA\BatchProcess ing\Fle <. dgn
M1 Crostation VBA\BatehProcess ing\Fle €. dgn

OEBPS/Images/pg750_01.jpg
¥ Data Link Properties
Provder | Cormecion| Advareed| A1 |
Seec the data ou went 1o cormect
[[OLE D8 Provis]
CornectvtySevee rovidr
MedaCa 30508 OLE OB Povide

‘ MeeCotaogergedDB OLE DB Povier
}mews OLE 08 Provider

Microsol 154 1.1 OLE DB Provider
Mictosof Jet 351 OLE DB Proveer

Picosotjet 400LEDEProvider L L}
Miciosoh OLE DB ProviderFor Data Minng Services
Mictosoh OLE DB Prvider for Indesing Senvice.
Mictosoh OLE DB Provider forItemet Pubshing
Mictosoh OLE DB Provider for DDBC Divers
Mictosol OLE DB Provider for DLAP Services
Mictosoh OLE DB Provider for OLAP Senvies 80

| Microso DLE DB Providr fo Dracke
Mum OLE DB Provider or Dok Search
M\uumﬁ OLE DB Provider for SOL Server

| Mictosoht OLE DB Providr for Visual FosPro

OEBPS/Images/pg852_02.jpg
Miaostaton Control A* Form1.vb [Design

3 Buonl_D

OEBPS/Images/pg59_01.jpg
Sub TestPi()
Dim CircleArea As Double
Dim CircleRadius As Double
CircleArea = 3.5
CircleRadius = Sqr(CircleArea / Pi)
DrawCircle3 2.5, 2.5, 0, CircleRadius
End Sub

OEBPS/Images/pg750_02.jpg

OEBPS/Images/pg853_01.jpg
Locaton CiDocuments and Settngs|Admritraor|y DocumentsiViusl Sudo 200SiProjects v [mome.. |
SctonNape: Maostation Control & 17 creste recoryfo soon

C ‘R’&"

OEBPS/Images/pg84_02.jpg
2 Level Manager
Loves Rt £

30 chapte? 80
2 AlLevet
(= Faes

B X B smbooy Bev v oo

Name Nurber
Detautt D

OEBPS/Images/pg743_01.jpg
Welcome {o Work

Today's Yahoo Tech RSS Feed:

OEBPS/Images/pg850_01.jpg
127208 0554020y B o o o
e o g s s s 155
e o S a1t s
T AR g

1o ean et
o e o o a5 i, S
P B e e e s S0 A
s et o b £
Mo 06 21119 O i et e
e e e e ot e
st

2 o 00020 b g s
s e e i o e

10200 19034 BT T o 05 2 s i
| STy Mo o e o 95
S0 et B by o 4 e e
o e okt s
| 0 17952 1 e e, 800
e it e

e
| St e a2 2 e
SIS

OEBPS/Images/pg593_02.jpg
AL i) 100

e 2.8
[I # Cable Tension o)
A B c o E F G H i
1
=] [Esbte Tersion] 1200 17 color
3 weighy 2 13 towers
4 ™ 600
5
6 [B R Z[DATASET Cable x| Cable Ysble 2]
7 835 22791 514 183252278 16290 22929 634
[} 18414 22608 526 xy=16414 2260 18379 22747 906
9 18427 20444 465 xy=18427.2244 18392 22582 845
0 18441 22076 436 xy+18441.2227 18406 22414 816
n 18461 22062 446 xy=164612206 18426 22200 626
12 18458 21340 420 184582194 18423 22078 800
13 18492 21852 343 ny=18492.2185 Ta4s7 21990 723
i 18445 21635 335 ny=16446.2183 B4 2973 718
15 18653 21454 436 xy=186532145 818 2152 816
16 18610 21374 361 ny=186102137 18575 21512 741
17 18495 21363 259 ny~18495.2136 18460 21501 639
18 18485 21198 224 xy+184852119 8450 2133 604

OEBPS/Images/pg743_02.jpg
2 Properties - IstRSS
stRSS Usigox

Aphabetic Categorzed

[T tess
sackCobr (] 8800000058
eordercolor [l 8800000068

Borderstye 0 Eorderstletione
BoundColumn 1

ComnCout 2

Coumrvieads Fase

Cobunnibidths 250505t
ControlSource

‘ControiText Double-cckto view stry.

OEBPS/Images/pg851_01.jpg
Proecttpes:
= Veusl Bosc
Wedows
+ SnartDevice = =
Starter kts J < B 82
+ Other Languages Wrdows class Lbrry Console
+ Other Proec Trpes Aopication Aogicaton ContralLbeary Lbrary

|

Enpty Project

My Templates

A profect or creatng an appicaton with » Windows use terface

Nee: Mcostation Contro A

OEBPS/Images/pg70_04.jpg
Dim MySalary as Long
MySalaray = 123456

OEBPS/Images/pg838_01.jpg
How Project b
@ OpenProjec... ko

AgdProjct.
Remove Project:

& saye Project Group
Savg Project Group .

Save fmTestSystenOLLfm Cul+s
Save fmTestsystemoLL fm ...

OEBPS/Images/pg710_01.jpg
A 8 ¢ i E { £

[Documents 3nd SeTogsV UseriVppicaton DarmBertl {VIor Space Proe e mple Buting O ESSAE T P gar]

]
2

3 Tag Seieme TagMame _Tog Volue Tofigh 0 Low

4 [Cozomerts and Setingi AT Users\hggheation Dot Berie i Space e o Ersmgle ok g Dor ESS00RETOT Piae Vichen
5

5

7

Tag Sertame Talame—— Taq Valus Tofigh 0 Low

' [Cacmants snd Seing AT Users\iggteation DatsBeris U rSpace Prow T g EuMeg g BSO00AET-E wravons 337
s Tag Seihame TagRame Tag Volue g 0 ow

0 Tillock Design Fie Rel 0 500
11 Prjec Fie Rel 0 3500
2 Oste 0 35091
iE} Checked By 0 E]
i oRGNO. A 0 B
i Rev 1 0 5095
i3 Jobto esam 0 0%
7 Scae o 0 2007
1 T2 Facade Tatrant Optns 0 w51
i} Tee Soutn Eleaton sng ° =8

20 [CDocuments 3nd SwigoVAl U Aggicion Dt eriey Werk SpareProe 12 vamgie Bunin DS IR St dar

OEBPS/Images/pg839.jpg
References - TestSystemLL.vbp

Avaisble References:

 ViualBasic For Appications
 Visusl Basicruntme objects and procedures
Vil Basic objects and procedhres
 OLE Automaton
© msvba_Wniel
¥ Microsot Actvex Data Objects 2.8 Lbxary
 Microsot Scrgtig Runte
 Microsot Shel Control And Automation
© Microsoft Excel 1.0 Object L
 Microsoft ADO Ext. 2.5 for DOL and Securty.
 Microsct Speech Object Lbrary
145 Helper COM Component 1.0 Type Lbrary
TAS RARN K Brotoerd 1.1 Torn Loy
<

Mcrosof Message Queue 3.0 Oblect Lbrary

Locaton: C/\WINDOWS|system3ZIMQOA.OLL
Longuage: Standard &

OEBPS/Images/pg710_02.jpg
TleBlock
TleBlock
TleBlock
TiteBlock
TitleBlock
TiteBlock
TiteBlock
TiteBlock
TileBlock
TitleBlock

Design File Ref
Praject File Ref
Date

Checked By
DRG. NO.

Rey

Job No

Scale

Tile2

Title

AEWT
1

EEETLY

T
Facade Treatment Options
South Elevation and

36089
%020
36091
3092
36094
36095
360%
36097
36151
38152

OEBPS/Images/pg705_01.jpg
i
7
3
1
5
6
7
]
9
10
11
12
13
18
15
1
17
18
19
2
2
2
2

2
%
»

5.328729698
3456159917
-4 622206053
2987002472
4169913054
1851114764
4330360124
2757192593
2782085713
4768307758
4979771456
2844507751
15 35135842
1621397367
4345543968
36.01242886
3443815527
25.49842919
13.442982
4035505243
-18.46141973
37.20410466
6704128391
1553724853

TR

3306775051
3355681358
10503424
807424377
4294456857
25 40802339
030271807
4219122509
3 50908479
-1 918510852
211381557
4082086309
1191863398
17 71678675
1.407118929
4561200874
2427163771
1451513287
1218440165
3963685911
1654321707
387312531
3384766375
18 2653331
291209628

1060048308
1612641372
6740530447
11.58952008
1803490077
17.79778533
1271775582
17 52240842
-5 833780353
16.59443405
8423401139
1097469319
2367553777
2246271813
5 470716498
16 67426187
5996325708
1231695913
46510586
14 34005614
7 858084502
1968034631
1124281818
-2.96787557
4542273424

OEBPS/Images/pg832_01.jpg
Standard BE ActiveX BXE

EN

VB wizard
Manager

~o

2

Activet

%?

Actvex

Document DI Document Exe

-~

~

Dontshow ths dislog i the futre

OEBPS/Images/pg70_01.jpg
Dim N as Integer
N=7-3-1

OEBPS/Images/pg833_01.jpg
Project] - Project Properties

Generl | Make | Conple | Congarent | Debusong |
Froec e

¥ Uporade Actvex Controls

OEBPS/Images/pg70_02.jpg
Dim N As String
N = IS

MsgBox "Learning MicroStation VBA " & N & " Easy."

OEBPS/Images/pg834_01.jpg
Project] - Project Properties
Genera| Make | Comple Component | Debugoing |
Start ode

OEBPS/Images/pg70_03.jpg
Dim PageNumber as Integer

PageNumber = 2

OEBPS/Images/pg836_01.jpg
References - TestSystemDLL.vbp

Avalable References:

[Vil Basc For Appications

| Vsusl Basicruntime objects and procedures
 Visual Basc cbjects and procedures

 OLE Automation

M
%ﬂs -y +

OEBPS/Images/pg830_01.jpg

OEBPS/Images/pg700_01.jpg
W Immediate

OEBPS/Images/pg831_01.jpg
J) omoostsarvrinCirostatn Ve oo, oo s,

OEBPS/Images/pg701_01.jpg
M Immediate

OEBPS/Images/pg831_02.jpg

OEBPS/Images/pg704_01.jpg
Amoov(.vmym
AND("(-100)+50
AND("(-100)450
AND("(-100)+50
AND('(-100)450
AND("(-100)+50

7 =RAND('(-100)450

-RAND)"(-100)#50
AND("(-100)+50
-RAND)"(-100)+50
AND("(-100)+50
AND("(-100)+50
AND("(-100)+50
AND("(-100)+50
AND("(-100)+50
=RAND("(100)+50

=RAND('(100)450

AND()'(50)+25
RAND('(50)+25
RAND("(50)+25
RAND('(50)+25
RAND()(50)+25
RAND('(50)+25
AND("(50)+25
AND('(50)+25
AND('(50)+25
AND(' (SUJ‘ZS

]

:
Sepheebie
®

Level

OEBPS/Images/pg831_03.jpg
Additional Controls

Avalabie Contols:

0 MSCustonLog Corirol
O MSDTHostCH Clase

I MSDTHostCH Class

0 MSDVDAdn Clase

O MSFlexridWizard Subizard
00 Mse Contiol

0 MSNCSALog Contol

0 MsnMusicStatusli Closs
0 MSODBCLog Cortiol
O MSRES Class

Lol boConnols msvbe modsivee

O MSWebDVD Closs N s G

ol rcvba, o
Location C:AMicroStaton VBA\msvba_modelise.ocx

OEBPS/Images/pg189_02.jpg
MicroStationdGHi

Search Resuts h;summm

Thrary Ciass Wember

O MiciostationDoNFO] TentodeEierart [sddTotin

I\ MicroStatonDGN &% ApplcationElement & AsTedElement
W\ MicroStatonDON & ArcElement o AsTedslement
I\ MicroSIatonDGN <4 AulianCoordinateSvstemE | AsTedElement

Ciasess Wembers of TexNodeElement.
2 TagDefriton AdDatabaseLink

2 TagDefnitons © AdiTag

2 TagElement © addTage

4 Tagset SaaTodine

& Tagsets + | & sauseraiviisbata

Sub AddTextLine| NewTextLine A3 Siring)
Merber of i Station Gl T tfodee]

OEBPS/Images/pg18_01.jpg

OEBPS/Images/pg188_03.jpg
Members of ‘Application’

' Name

OnDesignFileClosed

OnDesignFileOpened

9 OpenDesignFile

9 OpenDesignFileForProgram
e Path

S Pi

OEBPS/Images/pg189_01.jpg
Function OpenDesiguFile(DesignFileName As String. [ReacOnyy As Boolean.
[V7Action Astas V7 Action = msVTActionAsKUsef)) AS DesiauFile
Member of HicroStation0Gll Appication

OEBPS/Images/pg177_01.jpg
Write Out File

Rems To Wike
© Levels

© Lo Syles
@ Textstyes

¥ Viows

v Author

W Subject
B Cancel

OEBPS/Images/pg17_01.jpg
Gex ool

 sdectal cobea
B dent T
&’ owdent Shit4Tab
3 UstPropertesiethods Ctri+

1
5 o cosin |
st |
Paraeterinfo Crleshitel |
oot _ e |
‘Bookmarks. v

OEBPS/Images/pg188_01.jpg

OEBPS/Images/pg718_01.jpg
L\ 1 you change e name extension, the fl may become unusatie

A yousure you want o change &7

OKB Text Document

OEBPS/Images/pg843_01.jpg
k Package and Deployment Wizard - Included Files

The fles i the It below wi be Inciuded n your package. Clck
‘d to nchde addtiona fes. Cloar the checkbor tothe et of
the e name toremove a e fromthe package.

Hsereiee
Esteunnis
EstensT e
[v86 Runtime and OLE Automation
Bveesnar.ou

Sowce 7
C:lprogram FiesiMicrosoft Vs
CAWINDOWSIsystem2

Cilprogram FiesiMicrosoft is

CAWINDOWS|systemsz

OEBPS/Images/pg188_02.jpg
Object Browser

Classes
o <glonais>

8 Accuprawtints

& AcsManager

&1

@ ApplicationElement

&8 ApplicationObjectConnector

& ArcElement

& AreaPatten

& Attachment

& Attachments

& AudlianCoordinateSystemElement
8 spine

& Bspinecure

& splineCunetiement

@ espinesurtace

3 BsplinesurtaceElement

& Cadinpuwessage

& cadpuaueue

Members of Application”
ACSManager
ActiveDesignFile
ActiveModelReference
ActiveSetings
Activeworkspace

S AddAtachmentEventsHandier

© AddChangeTrackEventsHandler

S AddLevelChangeEventsHandler

S AddModalDialogEventsHandier

S AdoModelActvateEventsHandler

S AddModelChangeEventsHandler

S AdusavensEventsHandier

S AddViewUpdateEventsHandler

S AppenaXatum

S ApiyHorizontalScalingF nF OrEMF

S AppierticalScalingFixFOrEMF

® AssembleComplexatringsAndshapes

© a2

Class Applcation
Member of HictoStationGHl

OEBPS/Images/pg718_02.jpg
¥ Data Link Properties %) ™ Data Link Properties

Provider Comectin | advanced | A1

‘Spacy th okowing 1 connct o Acces dota
OLE 08 Proviet) W SR 1. Selct o et dtabas rame:

Cormaciivty Service Provder [C\Wicrostation VBA\PlacePonts ndb

MedaCataogD8 OLE 08 Povce

MedaCotooghergedDB OLE DB Provider 2 Erte domaionto g anto e daabase
MedaCotologW/eb0B OLE D8 Provcr i e

Mietoso ISAM 1.1 OLE D8 Prover o

MictostJe 351 OLE DE Providr

L Ty ——
iz OLE 08 Pove S

Vo OLE 00 Povi v e
| Vit OLE 08 Provr b OGE Orvrs

| Mt OLE 8 v OLAE Srces

| Wi OLE 0B Provar o OLAP Samces 80
| e LE 08 v oD

| Meorh OLE 08 o o Ok Soch

| Merroh LE 08 v oS Seve

OEBPS/Images/pg182_01.jpg
Zoom And Pan

OEBPS/Images/pg182_02.jpg

OEBPS/Images/pg716_02.jpg
@ Help and Support Center

Favorkes €2) etory (7] Suport /| Optons

- pev——

Search Results
Using Data Link

You can use the Data Link program to ¢
] file that can be referenced for fut
System, you can open the Data Link pr¢

resuts found for udl

Suggested Topecs (1 resuts)

To open Data Link
1. Open® windows Explore

Overviews, Articles and Tutorials

OEBPS/Images/pg841_01.jpg
i Microsoft visus Basic 6.0

) Microsoft Viusl Studo NET 2003 >
5 Mirresnft Wh Prblichinn »

OEBPS/Images/pg717_01.jpg
Folder Options

General View Fie Types | Offine Fles

ou can apply the view(such as Detais o Ties] that
el o gl s o oo s

(Abiomirases | | ot AlFoins

Advanced setings
) Fles and Flders
71 Automaticaly seaich for network folders and rntrs
1 Diply e sie mfomation nfkdes s

7] Disply smple folder view i Explorer's Folders st
7] Display he conients of syste folders

Display the ful pah n e adefess bar

Display the ful pah te e bar

Do ot cache thumbnls

 Hidden fles and foides
Do not show hidden s andfoders
2 Show hkdenfles and folders
o strers oo e o

OEBPS/Images/pg841_02.jpg
& Package and Deployment Wizard

Select project: 2
CiProgram FlesiMicrosoft Vil Studo\VBSBIprorect vbe +

Bunde this projec ko a dstrbutable package, such a5 an
‘—‘J Internet cabor setup program.

e

Send one ofthis project’s packages to dstrbuion st such as
an Inter server.

Rename, dupkcate, and delete your packaging and degloyment
serts for th projec

OEBPS/Images/pg717_02.jpg
> 3] marosot o accessAgpation

‘Arrange Tcons By ») Mcrosoft PowerPont Presentation

Refresh . pont hop Pro 9 Inage

) Miosct Ofce Publher Document
6 Play Lst Document

(@) Wave So 3

) Mcrosof Exce Workshest
wezore
o

ew

Customize Th Foder

Undo Rename ctisz

OEBPS/Images/pg842_01.jpg
+t Package and Deployment Wizard - Package Type

‘Choose the type of package you want to create.

OEBPS/Images/pg717_03.jpg
b et Dociment. 22 W
I

OEBPS/Images/pg842_02.jpg
*k Package and Deployment Wizard - Package Folder
Choose the foder where your package vl be asseribed.

ot Visual Studol V838 package
T A [3a

OEBPS/Images/pg712_01.jpg
South Elevation and
Facade Treatment Options

1:100

BSI300A AE201 1.0

OEBPS/Images/pg83_01.jpg
MicroStation MicroStation

SET

Mierosation rz Wicrsiaton @

OEBPS/Images/pg714_01.jpg
References - Chapter35

Avalable References:

Mrosoft Actve Data Objects 2.0 brary
Microsot ActiveXData Obects 2.1 Lbrary
Microsft ActveXData Obects 2.5 Lbrary
Microsot ActiveK Data Obects 2.6 brary
Microsoft ActiveX Data Obects 2.7 Lbrary
Mcrosoft ActveX Data Obects 2.8 brary
Microsoft ActveXData Objects Recordset 2.7 Lbrary
Microsaft ActiveX Plugn
Microsoft AddIn Desrer
Microsaft ADO Ext. 2.7 For DDL and Securky
Microsoft Agent Control 2.0
Microsolt Agent Server 2.0
Microoft Agent Server Extensions 2.0
Meroacé Aoty Seunun Shol sar ek - 1.0 Torn
< >

OLE Automation

Location: - CWINDOWSIsystem32\STDOLEZ. T8
Language: Standerd

OEBPS/Images/pg840_001.jpg
[E—
Contk | Desines | Irsstaio Oticts |

| Microsoft Winsock Control 6.0 (5P6)

W b/
Microsoft Windows Conmon Controls 6.0 (5P5)
Location: - C:AWINDOWSIsystena2IMSCOMCTL OCK

OEBPS/Images/pg715_01.jpg
» Object Browser.

?

Clsses Wombers o Comecto
0 ADCPROP_ASINCT | Exacte

2% ADCPROP_AUTORE # ExecuteComplete

sF ADCPROP_UPDATE # InfoMessage

5 ADCEROP-UPOATE k! Isomtontov

5 tecenur ose

P EoomanErun | ©
&% Command ® OpenSchema

5 CommandpeEnu | Popenes

2 CompareEnum Frovder

& Connection + |'® RolloackTrans

‘Sub pen[ConnectionSting A5 St [UseriD As Siringl, [Password As Siing, [0pbons As Lor
Meber of ALODE Conec

OEBPS/Images/pg840_01.jpg
[E—
Contk | Desines | Irsstaio Oticts |

| Microsoft Winsock Control 6.0 (5P6)

W b/
Microsoft Windows Conmon Controls 6.0 (5P5)
Location: - C:AWINDOWSIsystena2IMSCOMCTL OCK

OEBPS/Images/pg716_01.jpg
UnigueD]USGS 1D| Site| Dosergtion | PantType] Courty | TypeA] TypeB| LaONS | LonOWS | LaDac | Lonec |

U2 142908 UT__ Lake Pont care 906 A0 TSN 807018 11224658
102 1347 UT Lake Pt P 906 s 1205w 0808 112262
MOX VB8 UT Lake Port Commtry_camwtery_ Toose 9085 QU0IN 12166 HENB 1122626
MO USMSAUT Lake Portierchonge crossig Toosle 9045 AATEN 121640 D6 11225305
MO VTGN UT LakePorhecton pal Toose S0 OLZN 12BIW 07205 112258
UOE WS LakePowel Owicek ol Gafeld 9017 JSUA 110S06W 609 110418
U0 1BUOUT Lake Ridge g Reh 905 ST 111087 4195063 1110083
UG 11607 UT Lake idge Bl Salee 0% AN 12AIBW MG 11207167
U031 14200 UT Lake idge nige Weesr £905 AN 1118MBW 41283 1114657

U0 BT Lake odge nige Cache 9005 aEDN MW 4155 1266
WO 3T Lake Rdge nige Reh 90% AN Rz 4210 1 2278

OEBPS/Images/pg840_02.jpg
Microsoft Visual Basic

OEBPS/Images/pg839_01.jpg
References - TestSystemLL.vbp

Avaisble References:

 ViualBasic For Appications
 Visusl Basicruntme objects and procedures
Vil Basic objects and procedhres
 OLE Automaton
© msvba_Wniel
¥ Microsot Actvex Data Objects 2.8 Lbxary
 Microsot Scrgtig Runte
 Microsot Shel Control And Automation
© Microsoft Excel 1.0 Object L
 Microsoft ADO Ext. 2.5 for DOL and Securty.
 Microsct Speech Object Lbrary
145 Helper COM Component 1.0 Type Lbrary
TAS RARN K Brotoerd 1.1 Torn Loy
<

Mcrosof Message Queue 3.0 Oblect Lbrary

Locaton: C/\WINDOWS|system3ZIMQOA.OLL
Longuage: Standard &

OEBPS/Images/pg170_01.jpg
v KeyPress

Private Sub txtX_KeyPress (ByVal _
KeyAscii As MSForms.ReturnInteger
select Case KeyAscii
Case Asc("0") To Asc("9")
case Asc(".")

If InStr(l, txtX.Text, ".”) > 0 Then
KeyAscii = 0
End If
case Else
KeyAscii
End Select
End Sub

OEBPS/Images/pg174_01.jpg

OEBPS/Images/pg16_01.jpg

OEBPS/Images/pg16_02.jpg

OEBPS/Images/pg175_01.jpg
Point List Reader

ort ot e 6o VoRowts 52

Pots InFie

